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The pigeon hole principle is easy to state: if you place N + 1 pigeons in N holes, then

there must be at least one hole with at least two pigeons in it. (The proof amounts simply

to counting.) One may elaborate on the principle in various ways. For instance, if N + 1

objects are to be placed in M holes with M ≤ N , then at least one hole must contain at

least two objects. A further elaboration goes as follows: if kN + 1 objects are to be placed

in M holes with M ≤ N , then at least one hole must contain at least k + 1 objects. (The

previous case took k = 1. The first case took k = 1 and N = M .) And so on.

The pigeon hole principle seems trivial and in some ways it is. So it’s astonishing that

it can be used to solve such a wide variety of interesting problems. This week we’ll focus

on these kinds of problems. In practice, it is often quite easy to identify a problem as one

requiring the use of the pigeon hole principle. But it is often challenging to determine what

part of the problem should play the role of the “pigeons” and what should play the role of

the “holes.”

Many of the problems I list here were taken from Chapter 4 of Mathematical Circles

(Russian Experience), by Dmitri Fomin, Sergey Genkin, and Ilia Itenberg published by the

American Math Society. The website http://www.ma.umist.ac.uk/avb/Pigeon.html is

also full of good problems.

So what about the other items in this week’s title? The story begins with the King of

Sweden in the late 1800’s. He (or rather his esteemed mathematical adviser, Mittag-Leffler)

was concerned with the stability of the solar system. Once one writes down Newton’s

equations governing the laws of motion of the planets, it quickly becomes clear that one

cannot hope that the solar system is periodic; that is, that one cannot hope that planets

of solar system will someday return to the exact positions they currently occupy. Given

this, once can ask: if we wait long enough, will the planets return arbitrarily closely to their

current position? This is a version of the famous n-body problem (with n = 10 since I’m

feeling generous and counting Pluto as a planet).
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The King of Sweden offered a prize for a solution to this problem. Henri Poincaré1

submitted a thick manuscript (of several hundred pages) giving a solution. The solution was

later found to be fatally flawed, but since Poincaré introduced so many revolutionary ideas

in his submission, he was still awarded the prize.

That takes care of pigeons, planets, and Poincaré. But salad dressing? It happens that

one (correct) lemma proved by Poincaré in his submission to the King answers the following

question. Suppose you are given a completely full bottle of oil and vinegar salad dressing.

Imagine it’s been sitting on a shelf for a while, so the oil is floating on top. So you need to

shake it. You give it one shake, then another, then another2 You happen to be dining with

an inquisitive guest who asks: After a finite number of shakes, will a molecule of oil ever

return to the position it originally occupied before you started shaking?

Poincaré answered this problem by employing a version of the pigeon hole principle. His

answer is so useful it even has a name, the Poincaré Recurrence Theorem. The argument

actually shows that almost every molecule of oil returns to its original location infinitely

often. (One way to make “almost” precise is to say that those that don’t return infinitely

often occupy no volume in the bottle of salad dressing. But that’s a topic for another day.)

We’ll give the salad dressing solution at the end of class today.

1Poincaré was a remarkably influential mathematician. You might find it worthwhile to take a peek at his

wikipedia entry.
2All shakes are exactly the same, no air is in the bottle, liquids are incompressible, and nothing spills out

of the bottle while shaking.
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exercises i

1. A bag contains beads of two colors, black and white. What is the minimum number

of beads that must be drawn from the bag (without looking) in order to guarantee that one

has drawn two beads of the same color?

2. A million pine trees grow in a forest. It is known that no pine tree has more than

600,000 needles. Prove that there are two pine trees in the forest with the same number of

needles.

3. Given any set of 12 integers, show that one may always choose two of them so that

their difference is divisible by 11.

4. The maximum packing density for human hair is about 500 hairs per square centimeter,

meaning that is reasonable to assume that no person has more than a million hairs on their

head. The population of Utah is about 2 million. Prove that there are two people in Utah

with the same number of hairs on their head.

5. Twenty-five crates of apples are delivered to a store. Each crate contains the same

kind of apples, and there are three possible varieties. Prove that among these crates there

are at least nine containing the same variety of apples.

6. Suppose there are M soccer teams (each with 11 team members) gathered at the Salt

Lake City airport. The teams are trying to travel to San Diego for a tournament. Bad

weather has canceled most flights so that now there are only 10 flights, each of which can

take only M players. One team member decided to beat the weather and drove to San Diego

before the storm. Prove that at least one complete team will arrive in San Diego for the

tournament.

7. Given 8 different natural numbers, none greater than 15, show that at least three pairs

of them have the same positive difference.
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exercises ii

1. Consider any group of five people. Prove or disprove: there are two that have an

identical number of friends within the group.

2. Several soccer teams enter a tournament in which each team plays every other team

exactly once. Show that at any moment during the tournament there will be two teams

which have played, up to that moment, an identical number of games.

3. What is the largest number of squares on an 8-by-8 chessboard which can be colored

green so that in any arrangement of “trominos” of the form

at least one square is not colored green?

4. What is the smallest number of squares on an 8-by-8 chessboard which can be colored

green so that in any tromino at least one square is colored green?

5. Ten students solved a total of 35 SAT problems. Each problem was solved by exactly

one student. There is at least one student who solved exactly one problem, one who solved

exactly two, and one who solved exactly three. Prove or disprove: there is also one student

who solved at least five problems.
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exercises iii

1. What is the largest number of kings which can be placed on a chessboard so that no

two of them put each other in check?

2. Show that an equilateral triangle cannot be covered completely by two smaller equi-

lateral triangles.

3. Fifty-one points are scattered inside a square with a side of 1 meter. Prove that

some set of three of these points can be covered by a square with side length equal to 20

centimeters.

4. 2001 flies are inside a cube of side 1. Prove that three of them are within a sphere of

radius 1/11.
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exercises iv

1. Prove that among any six people, there are either three people each of whom knows

each other (i.e. there is a “clique” of three people), or else there are three people who are

mutual strangers.

2. Show that there are two powers of two which differ by a multiple of 1987.

3. Prove that among any 52 integers, two can always be found such that the difference of

their squares is divisible by 100.

4. Prove that there exists an integer divisible by 1987 whose decimal representation

consists entirely of 1’s.

5. Show that there exists a number of the form 10m − 1 which is divisible by 2004.

6. Prove that there exists a power of three that end with the three digits 001 (in its usual

base-ten form).

7. Fill each box in a 3-by-3 arrangement of boxes with either 1, 0, or −1. For any such

arrangement show that of the eight row, column, and diagonal sums, two sums must be

equal.

8. The digits 1, 2, . . . , 9 are divided in three groups. Prove that product of the numbers

in one of the groups must exceed 71.

9. Consider any subset of 10 integers. Prove that there exists a subset of them whose

sum is divisible by 10.

10. Fifteen boys gathered 100 nuts. Prove that two of them gathered the same number

of nuts.

11. A warehouse contains 200 boots of size 9, 200 botts of size 10, and 200 boots of size

11. Of these 600 boots, 300 are left boots and 300 are right boots. Prove that there are at

least 100 usable pairs of boots in the warehouse.
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challenges

1. Let a be irrational. Prove that there are infinitely many rational numbers r = p/q

(written in lowest terms) so that

|a − r| < q−2.

2. Prove that among 52 natural numbers, one can find two numbers m and n such that

either the sum m + n or difference m − n is divisible by 100.

3. Given n integers, prove that there are there is a subset whose sum is divisible by n.

4. Five points are positioned inside an equilateral triangle of side 1. Prove that there are

two of them a distance less than 0.5 from each other.

5. Prove that some power of 2 has a decimal expansion that begins with 1999.; i.e. prove

there exists n such that

2n = 1999 . . . .


