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Finite Permutation Groups

Given a set S with n elements, consider all the possible one-to-one and onto func-
tions from S to itself. This collection of functions is called the permutation group
of S, because the functions are simply permuting the elements of S. We notice
immediately that it doesn’t matter what the elements of S are (numbers, planets,
tacos, etc) just that there are n distinct ones in the set, so we may refer to the col-
lection of functions independantly of the set they are acting on as the symmectric
group of degree n or the permutation group on n letters and denote it Sn.

Example: Let n = 3 and S = {1, 2, 3}. What functions are in S3?

The word “group” means that Sn satisfies some special properties, which are given
in the following definition:

Definition: A set G together with an operation ∗ is a group if

1. For g, g′ in G, g ∗ g′ is in G. We say G is multiplicatively closed.

2. There is an element e in G such that for every g in G, e ∗ g = g ∗ e = g. We
call this element the identity.

3. For every g in G there is an element g′ in G such that g ∗ g′ = g′ ∗ g = e. We
say every element g has an inverse g′, which we typically denote as g−1.

4. The operation is associative. That is, for f, g, h in G, f ∗ (g ∗h) = (f ∗ g) ∗h.

1



Remark: Every group we deal with today will satisfy 4, so we will not be check-
ing this condition in examples or exercises.

Example: The natural numbers N = {1, 2, 3, . . .} with addition is not a group.
Take natural numbers n and m. Since the sum of two natural numbers is a natural
number, we satisfy condition 1. However, if n + m = n then m = 0, but 0 is not
in N, so we don’t satisfy condition 2. Even if we add 0 to the set, we do not get a
group because if n + m = 0, then m = −n, but we have no negative numbers in
our set, so we don’t satisfy condition 3. If we add all the negatives of the natural
numbers to the set, we get the integers with addition, which satisfies all the con-
ditions so is a group.

Exercise: The integers with multiplication is not a group. Which condition(s)
do we fail to satisfy? What group can we get by correcting the set (as we did in
the example)?

We claim Sn with composition is a group. If f and g are in Sn, they are both
bijective maps on S, an arbitrary set with n elements. So, f ◦ g is a map from
S to S, and we have to check it is one-to-one and onto. To prove injectivity, let
x and y be in S and suppose f ◦ g(x) = f ◦ g(y). Then, since f is one-to-one,
g(x) = g(y), and since g is one-to-one, we conclude x = y, so f ◦ g is one-to-
one. For surjectivity, choose any z in S. Since f is onto, there exists a y in S

such that f(y) = z. Since g is also onto, there is an x in S such that g(x) = y.
Therefore, f ◦ g(x) = f(y) = z so f ◦ g is onto. Hence, f ◦ g is in Sn, so Sn is
multiplicatively closed under composition. Let i be the map from S to S that
fixes all the elements–we call this the identity map. Then, for any f in Sn, x in
S, i ◦ f(x) = i(f(x)) = f(x) = f(i(x)) = f ◦ i(x), so f ◦ i = i ◦ f = f , so i is the
identity element of condition 2. Finally, for any f in Sn, for any y in S, there is
an x in S such that f(x) = y, since f is onto. Define a map g from S to S so that
g(y) = x. Then f ◦ g(y) = f(x) = y and g ◦ f(x) = g(y) = x, so f ◦ g = g ◦ f = i,
so g = f−1 and we satisfy condition 3. Therefore, Sn is a group.

Cycle Decomposition

We would like a way to write down the elements of Sn efficiently in a way that
makes the elements and multiplication less abstract. To do so, we will introduce
cycle notation. As an example, recall the function of S3 that takes 1 7→ 2, 2 7→ 3,
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and 3 7→ 1. In cycle notation, we would write this (1 2 3). But our functions
won’t always permute the elements of the set cyclically. Consider the function in
S4 that takes 1 7→ 2, 2 7→ 1, 3 7→ 4 and 4 7→ 3. This function permutes the set
{1, 2, 3, 4} in two disjoint cycles: (1 2) and (3 4). In cycle notation, we would
write this function (1 2)(3 4). As a convention, if a function fixes an element,
e.g. the fuction 1 7→ 2, 2 7→ 1, and 3 7→ 3 in S3, we omit the one element cycle
from the notation: (1 2)(3) = (1 2).

Now that we’ve seen how to write permutations as cycles, we can see how to multi-
ply cycles. Let f = (1 2 3) and g = (1 2) in S3. Then f ◦g = (1 2 3)(1 2).
Since we regard the product as a composition of functions, the convention is to
“multiply right to left,” in that g takes 1 7→ 2 and f takes 2 7→ 3, so f ◦ g : 1 7→ 3.

Exercise: Repeat the above calculation to find f ◦ g(2) and f ◦ g(3). What is
the cycle notation for f ◦ g?

Exercise: What is the cycle notation for g ◦ f = (1 2)(1 2 3)? Remember
to multiply right to left.

We notice something very important: That (1 2 3)(1 2) 6= (1 2)(1 2 3).
This is why, when multiplying elements of the group, we need to remember to
multiply right to left, or we’ll end up with the wrong answer! There is a special
kind of group where we do not have to worry about the order of multiplication:

Definition: A group G is said to be abelian if for any g, g′ in G, g ∗ g′ = g′ ∗ g.

Observe further that (1 2)(3 4) = (3 4)(1 2). We say these cycles are dis-
joint, because they share no numbers. It is true in general that for disjoint cycles
σ, τ that στ = τσ.

Exercises

1. We have seen (1 2) and (1 2 3) are two elements of S3. Express the other
4 elements of S3 as products of these two elements.

2. Express the following as the product of disjoint cycles:

(a) (1 2 3 5 7)(2 4 7 6)
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(b) (1 2)(1 3)(1 4)

(c) (1 2 3 4 5)3

(d) (1 2 3)(3 5 7 9)(1 2 3)−1

3. Express the following as a product of two-cycles:

(a) (1 2 3 4)

(b) (1 2 3)(4 5 6)

(c) (2 3 5 7)(2 4 7 6)

4. The order of a permutation is the number of times you have to repeat the
permutation before you return to the identity permutation (the one that fixes
everything). What is the order of an n-cycle?

5. If you have two disjoint cycles, both of order n, what is the order of their
product?

6. Given a 2-cycle and a 3-cycle, what is the order of their product? For exam-
ple, what is the order of (1 2)(3 4 5)? Find the orders of the cycles in
problem 3.

7. With the previous three problems in mind, find a shuffle of a deck of 13 cards
that requires 42 repeats to return the cards to their original order.

Elementary Symmetric Polynomials

Suppose you are given the equations x+y+z = a and 1
x
+ 1

y
+ 1

z
= 1

a
, and are asked

to prove that one of x,y, and z is equal to a. We are used to solving problems of
this type by finding out where the graphs of those equations intersect–i.e. by solv-
ing for one variable in terms of the others and checking a bunch of cases. I claim
that one of x, y, and z must be equal to a because a is a root of the polynomial
p(t) = t3 − at2 + bt− ab for any b. This solution is much faster, but it is not at all
obvious why this observation leads to our desired conclusion. The idea is to find b

such that x, y, and z are all the roots of p(t). Then, since a is also a root, a must
coincide with one of x, y, and z. But how do we find such a b? To investigate,
we will explore the general relationship between the roots of a polynomial and its
coefficients.
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Definition: A polynomial in n variables is homogeneous of degree k if all the
monomials have degrees which sum to k.

Examples:

1. p(x) = x is a homogeneous polynomial of degree 1 in one variable.

2. q(x, y, z) = x4 + y2z2 is a homogeneous polynomial of degree 4 in three
variables.

3. r(x1, x2, x3, x4) = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 is a homogeneous
polynomial of degree 2 in four variables.

We notice something special about r. For q, if we swap x and z, q(z, y, x) =
z4 + y2x2 is not the same polynomial as q(x, y, z), but for any permutation of the
xi, r remains the same. We say r is symmetric.

Definition: A polynomial p in n variables, x1, x2, . . . , xn is symmetric if for any
permutation σ ∈ Sn, p(x1, x2, . . . , xn) = p(xσ(1), xσ(2), . . . , xσ(n)).

Exercise: Is p(x, y, z) = x + y + z symmetric? Is p(x, y, z) = x + y?

Definition: The kth elementary symmetric polynomial in n variables, denoted
sk(x1, . . . , xn) is the sum of all possible degree k monomials in n variables with
each xi appearing no more than once in each monomial. Formally, for k ≤ n,

sk(x1, . . . , xn) =
∑

1≤i1<...<ik≤n

xi1xi2 . . . xik

Example: p(x, y) = xy2 + yx2 is symmetric and homogeneous, but not an
elementary symmetric polynomial. The polynomial r(x1, x2, x3, x4) above is an
elementary symmetric polynomial.

Exercise: How many monomials are there of degree k in n variables?

Exercise: How many monomials are there in the elementary symmetric polyno-
mial of degree k in n variables?

You may have learned in algebra while learning how to factor polynomials that
any integer root of a polynomial with integer coefficients will divide the degree
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zero term. It is not difficult to see why this should be so–Suppose a and b are
roots of x2 − cx+d. Since we know the roots, we know how factor this polynomial
as (x − a)(x − b). When we multiply out the factors, we see x2 − (a + b)x + ab =
x2 − cx+ d; consequently, a+ b = c and ab = d, so a and b must divide d. Observe
further that a + b = s1(a, b) and ab = s2(a, b), so we can rewrite the polynomial as
x2 − s1(a, b)x + s2(a, b). It happens to be true in general, that if a1, a2, . . . , an are
the roots of a degree n polynomial, then

n∏

i=1

(x − ai) = xn +

n∑

i=1

(−1)isi(a1, . . . , an)x
n−i.

We will prove this by induction on the degree of the polynomial. If our polynomial
is of degree n = 1 with root a, the left hand side is x− a, and the right hand side
is x − s1(a) = x − a, so the equation holds for n = 1. Suppose the equation holds
for all polynomials of degree n. Let p(x) be of degree n+1 with roots a1, . . . , an+1.
Then, we can write

p(x) = (x − an+1)

n∏

i=1

(x − ai) = (x − an+1)(x
n +

n∑

i=1

(−1)isix
n−i),

where we let si denote si(a1, . . . , an) for brevity. By multiplying out the right hand
side:

p(x) = xn+1 − (s1 + an+1)x
n +

n−1∑

i=1

(−1)i+1(si+1 + an+1si)x
n−i + (−1)n+1an+1sn

Since
s1 + an+1 = (a1 + . . . + an) + an+1 = s1(a1, . . . , an+1)

and
snan+1 = (a1a2 . . . an)an+1 = sn+1(a1, . . . , an, an+1),

if we can show si+1 + sian+1 = si+1(a1, . . . , an+1) for all the other i, we conclude
the equation holds for n + 1, hence for all n. By definition,

si+1(a1, . . . , an+1) =
∑

1≤j1<...<ji+1≤n+1

aj1aj2 . . . aji+1

By separating the sum with respect to monomials divisible by an+1, we see the
above is equal to

∑

1≤j1<...<ji+1≤n

aj1aj2 . . . aji+1
+ an+1

∑

1≤j1<...<ji≤n

aj1aj2 . . . aji
= si+1 + an+1si
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so it is clear the relationship we wanted holds.

Returning to our original problem, let b = xy+xz+yz, then (t−x)(t−y)(t−z) =
t3 − (x+ y + z)t2 +(xy +xz + yz)t− (xyz) = t3 −at2 + bt−ab, since 1

x
+ 1

y
+ 1

z
= 1

a

implies b
xyz

= 1
a
.

Exercise: Compute the following polynomials in two ways–multiplying everything
out manually first, then computing the coefficients via the elementary symmetric
polynomials to verify they yield the same answer.

1. (x − 1)(x − 2)(x − 3)

2. (x − 1)(x + 2)(x − 3)

3. (x − 2)3(x − 3)2

Exercise: Using a combination of elementary symmetric polynomials and other
techniques, expand the product

(x −
√

2 −
√

3)(x −
√

2 +
√

3)(x +
√

2 −
√

3)(x +
√

2 +
√

3)

Exercises

Solve the following problems using elementary symmetric polynomials.

1. Find a, b, c such that the roots of f(x) = x3 + ax2 + bx + c are a, b, c.

2. Let a1, a2, a3 be roots of 6x3 − 2x2 + 3x + 5. Find a polynomial with roots
1
a1

, 1
a2

, 1
a3

.

3. Let a1, a2, a3 be roots of 2x3−7x+8. Find a polynomial with roots 1
a1a2

, 1
a2a3

, 1
a1a3

.

4. Let a1, a2, a3 be the three roots of x3 + 3x + 1.

(a) Find a polynomial with roots a2
1, a

2
2, a

2
3.

(b) Find a polynomial with roots a1 + a2, a1 + a3, a2 + a3.

5. The Wicked Witch said that the following polynomial has 2005 integer roots:
x2005 + 2x2004 + 3x2003 + . . .. Prove she is a liar.
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