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1. STy KNOT A PROBLEM

Let’s review our "knot theory”™ from last week. Tie a knot in a piece of string. Glue the
two ends of the string together. The result is a string that has no loose ends and is fruly
knotted. Unless we use scissors, there is no way we can untangle the string. This knotied
loop of string is what mathematiciang call a knot. This material is taken from a great book

called The Knot Book [7] .
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We think of the knot as being made of flexible rubber. If we move the knot around,
stretch it, twist it, or bend it, we still have the same knot. That is, we do not distinguish

between the original knot and & deformation of it.

Definition 1. Projection

We call a picture of a knot a projection of the knot. We learned last week that a knot has
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of the same knot).

Last week we saw how to "add” knots together. We saw how knots behaved somewhat
like integers, with prime knots and prime integers. They differ from integers in that for

some knots, it matiers where the cut is introduced.
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We spent a lot of time examining the moves of a knot which simplify {or compiicate} its

projection while leaving the knot unchanged.



2. REEMEISTER MOVES

Given two projections of the same knot, we should be able to rearrange the strings so
that the projections are the same. This rearranging would take place in our 3-dimensional

world and would not allow for one strand to pass through another strand.

Definition 2. Reiudemeister mouve
One of three ways to change @ projection of a knot that will change the relation between the
crossings. Any two projections of the same knot con be abteined from the other by a sertes

of Reidemeister moves.

2.1. Type I Reidemeister move. The first move allows us to put in or take out a twist

22, Type II Reidemeister move. The second move allows us to either add two crossings

Or ¢ move two crossings. L L
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2.3. Type 111 Reidemeister mave. The third move allows us to slide a strand of the

knot from one side of a crossing to the other side of the crossing.
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The ideas we have seen are not limited to just single knots. For example, we can consider

two or more knots which are linked together.
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The unlink of tiwo components and the Hopf link.
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3. LiNKs

A Hnk is a set of kaotted loops all tangled up together. Two links are considered the

game if we can deform one link to the other without any strand-intersections.

3.1. Exercise. The Barremean Rings (or link} consist of three mutuaily intertocked loops
{rings) with the property that removing any one of the rings makes the link fall apart. That

i3, no two rings are linked. Sketch a projection of the Borremean Rings.

3.2. Exercise. Do the two projections below represent the same link?
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3.3. Link Invariants. We want to describe some feature of a link which is independent of
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the projection.

One way to measure numerically "how linked up” components of a link are is by linking
number. We compute the linking number of a link at each intersection of two components
by the rule shown in the figure. Then, add up the resulting +1's and -1’s and divide by two.

This is the lnking number.
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Computing linking number.



3.4. Exercise. Compute the linking number of the unlink, the Hopf link, and the Borre-
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mean link.
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3.5. Exercise. Show the linking number is an invariant of an oriented link. That is, once the
orientations are chosen on the two components of the link, the linking number is unchanged

by deformations of the link.
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4. TRI-COLORABILITY

A strand in a projection of a link is a piece of the link that goes from: one undererossing

to another with only-overcrossings in between.

Definition 3. Tricolorable
A projection of a knot or link is tricolorable if each of the strands in the projection can be
colored one of three different colors , so that at each crossing, either three different colors

come together or all the same color comes together. We also require that at least two colors

are used,



4.1. Exercise. Which of these knots are tricolorable?
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4.2. Exercise. Show that the Reidemeister moves preserve tricolorabilisy.
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By your hard work in the above exercise, you have shown that either every projection
of a knot is tricolorable or no projection of that knot is tricolorable. For example, every
projection of the trefoil knot is tricolorable, and every projection of the unknot is not
tricolorable.  Can we use tricolorability to conclude that the figure-8 knot is is not the

unknot?

5. KNOTS AND POLYNOMIALS

We are still seeking a good knot invariant which can tell us whether two knots given
to us are the same. We find such an invariant in knot polynemicls. We will compute the
polynomial directly from a projection of the knot, but any two different projections of the

same knot will vield the same polynomial. So the polynornial is an invariant of the knot.
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5.1. Bracket Polynomial. < K > denotes the bracket polynomial of a knot K.

We create this polynomial using a few {common sense) rules.

Rule 1: <> =1

Next we want a way for determining the bracket polynomial of a knot in terms of the
bracket polynomiat of simpler knots. We make the bracket potvnomial of our original knot
a Enear combination of the bracket polynomials of our new, more simple knots. We do not

yet know what coefficients to use, so let’s call them A and B.

Rule2: <X =A<)(>+B <>
<X =A<+ B<)(>

Finally, we want a rule which adding in a trivial component to a link.

Rule 3: <[> =C <>

For our polynomial to be useful, it must be unchanged by the Reidemeister moves.

5.2. Exercise. Show that the bracket polynomial is unchanged by a Type Il Reidemeister

move. (This will put some restriction on our coefficients.)

<> =A<y >+ B<H>
= MA< Y > + B< 8>) + BA< & + B< ¥ >)
= A(A< S + BC< X)) + B(A< ) (> + B< 2X>)
= (A2 + ABC + BY)<X> + BA<) (> LY

Effect on bracket polynomial of Type Il move.



The result of this exercise gives us a reformulation of our rules.

Rule 1: <> =1
Rule 2: <V\>mA<)(>+A“?<,‘:’.,>
e =A<+ AT ) (>

Rule 3: LU = (~A - ATh<l>

5.3, Exercise. Show that the bracket polynomial is unchanged by a Type 111 Reidemeister
move. {Easier than for Type II moves.)

(Now, apptly the fact that Type Il
moves don't change the bracket

X = A< > + A< polynomiab
= A<D+ AT = <X

Effect on bracket polynomial of Type Ill move.

5 4. Before we look at the Type I Reidemeister moves, let’s first flex our muscles.

Exercise. Find the bracket polynomial :

OUO> =~ (A 2+ A) <O> =~ A2+ A7)

= A

5 5. Exercise. Find the bracket polynomial :

<> = A<@Q> + AT <QD>
= AA<@®> + AL<GD>) + ATHA<) > + A1 <(D )
= A(A(—(A2 + A7) + AL + ATHAD + A=A+ A7)

5.6. Exercise. Find the bracket polynomial :
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5.7. Exercise. Find the bracket polynomials and compare the results :

<V =A< g >+ A Y >

A(~AT—A )<~ AT

il

= —Ads —— >

< T = A >t AT ST
= A —2 + A=A A < —>
= ~A s >

Effect on bracket polynomial of Type I move.

We notice that the two polynomials {which we hoped would be the same) are different
just by a sign. If our knots are the same, but twisted in different directions, the bracket
polynomial picks up on this. We see that the bracket polynomial is not the perfect invariant
we were looking for - but it’s close. We need to add one more ingredient to the mix.

Given a knot, we orient it and compute the twist number as follows. At each crossing
of an orienled knot projection we have either a +1 or -1 as in the figure below. {Note if

we rotate the understrand clockwise to maich the overstrand we count this as a +1, and a

counterclockwise rotation gives a -1.) \ / \/

a b

{a) +1 crossing. (b} —1 crossing.

5.R. Exercise. Find the twist number.
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5.9 Exercise. Show that the twist of a link projection is invariant under Reidemeister

moves 11 and 111
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5.10. Exercise. What is the effect on the twist number of a Type | Reidemeister move?
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W 4 i. JONES POLYNOMIAL
We incorporate the bracket polynomial into a new polynomial which accounts for the
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twisting of knot.

X(L) = (~A%" W < L >

We've already checked that w(L) and < L > are unaffected by Type I and 1 moves, so

X (L) is unaffected as welll What happens to X (L) after a Type 1 move? Suppose first we

" had a strand as in thejfigure belowlin a projection L', and we then took out the twist giving

1

us a new projection L. i . ' L- L
Th Y=wlly+1, e
en w(l') = w(L)+1, s0 6 '% I
X(I) = (=470 <1 4
— (__AB)-»—(w(L)Jrl} <L
- (_Aa)w{w(L)»*Al}((_Ali) < L >)
= (A% < L >



Hooray! The new Jones polynomial X{L) is unaffected by this Type | Reidemeister move.
{1t is also unaffected by the other version of a Type I move.) So, X{L) is an invariant

for knots and links.

6.1. Example. Last week we found Reidemeister moves which transformed the following
projection into the unknot. By all of our hard work, we know that the Jones polynomial of

hath projections is simply L. (Try it, if you don’t believe me.)
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6.2. Exercise. Find the Jones polynomial X (L). oi/khe/tﬂo knots shown below. P EQWT
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