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We’ve been pretending to travel over various train systems for the past few
weeks, partly as an excuse to consider interesting counting problems.  We will discover
soon that the underlying mathematical structure of the train system “graph” (stops =
vertices, tracks between adjacent stops = edges) has many interesting applications
unrelated to train travel.  We will still want to compute quantities such the number of
paths of length “n” between different vertices, and to do so more systematically than we
have done up until now.  It turns out that there is an amazing computational and
theoretical connection between graphs and matrix theory, which we will now explore.

Noville:
Consider the train system indicated by the directed graph below.  Notice that the

tracks are only one-way.  The mathematical term for such a collection of vertices and
directed edges is a directed graph, or digraph.  If all tracks run in both directions the
corresponding mathematical structure is called a (plain) graph.  We will be more precise
later.

(1) Consider trips which start at station 2, and tabulate trips of length up to 10.
Organize the table today so that the vertices are arranged vertically and the trip lengths
increase horizontally:

<-- Trip length -->

0 1 2 3 4 5 6 7 8 9 10 11
0 1 0 0 1 1 0 1 2 1 1
1 0 0 1 1 0 1 2 1 1 3
0 0 1 1 0 1 2 1 1 3 3

1
2
3
4 0 1 1 0 1 2 1 1 3 3 2

1 2
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This tabulation process is becoming tedious.  And suppose we wanted to record all trips
from all stations!  Luckily for us, if you can compute matrix powers it turns out to be
easy to let your calculator track all this data.

Begin with the matrix which in row i of column j records the trips of length 1
which originate at vertex j and end at vertex i.  In other words, there is a 1 in this entry if
there is an allowed edge from j to i, and otherwise there is a 0.  This matrix is called the
incidence matrix of the digraph (or graph).

(2)  Can you construct the incidence matrix for Noville?

If you start multiplying the incidence matrix by itself, in other words taking powers of A,
you may notice an interesting pattern:

The second columns seem to reproduce our trip table.  So probably the other three
columns tell us similar information.  Assuming they do, you should be able to answer
questions like:

(3) How many trips of length 10 start at station 3 and end at station 2?  Is this the same as
the number which start at station 2 and end at station 3?  How many trips of length 10
start and end at the same vertex?

 := A



























0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0

 = A2



























0 0 1 0

0 0 0 1

1 1 0 0

0 1 1 0

 = A3



























0 0 0 1

1 1 0 0

0 1 1 0

0 0 1 1

 = A4



























1 1 0 0

0 1 1 0

0 0 1 1

1 1 0 1

 = A10



























1 1 1 2

2 3 1 1

1 3 3 1

1 2 3 3



Can it be a coincidence that the matrix powers of the incidence matrix give the
trip tables?  Of course not!

Theorem:  The ij entry in the nth power of the incidence matrix for any graph or digraph
is exactly the number of different paths of length n, beginning at vertex j and ending at
vertex i.

We can illustrate the theorem by doing a computation.  From this example you can see
how to prove the general result by induction.

(4) Let’s assume that the 10th power of A does reproduce the trip tables for Noville
correctly.  Let’s compute the 11th power, and verify that it must then reproduce the
table for trips of length 11.

Remember, to get the ij entry in the product AB you focus on row i of A and column j of
B, multiply the corresponding entries together, and add up.  For example, to get the entry
in row 4 and column 2 of the product we focus on the fourth row of A and the second
column of B, in our case:

We then compute

What does this computation mean in terms of trips of length 11, starting at 2 and
ending at 4?  All such paths can be constructed from paths of length 10 starting at 2, by
adding a final segment.  According to first entry in the second column of A10,  there is 1
length-10 path from 2 to 1 According to first entry in the 4th row of A, we can append a

1•1 + 1•3 + 0 •3 + 0 • 2 = 4
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final segment to this trip by following the edge from 1 to 4, giving a path of length 11
from 2 to 4.  Similarly, there are 3 length-10 paths from 2 to 2, and there is an edge from
2 to 4.  There are 3 long paths from 2 to 3, but no edge from 3 to 4.  There are 2 long
paths from 2 to 4, but no edge from 4 to itself.  Thus the total number of length 11 trips
from vertex 2 to vertex 4 is exactly the computation we did in the matrix product entry:

Thus if A10 gives the correct trip table for paths of length 10, it follows by considering
each entry of its product with A, that A11 is correct for trips of length 11!

(5) How many trips of length 100 start at station 1 and end at station 2?  (Perhaps you
wish to use your calculator here!)

---so the answer is 73,237,462.

(6)  What graph or digraph has the following incidence matrix?  Have we been there
before?

1•1 + 1•3 + 0 •3 + 0 • 2 = 4
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