Math Circles Week 1 April 2004

Some Basic Genetics:

Most living things pass on their characteristics to the next generation as information encoded
by a chemical called DNA. There are many ways for species to reproduce, but here we’ll only
be interested in organisms that reproduce sexually. These organisms have two copies of each
DNA strand and the copies are not necessarily the same. Each chunk of DNA that contains
the information for one particular feature (like eye color, hair color, blood type and diseases
such as sickle-cell anemia and cystic fibrosis) is called a gene.

The different possibilities for each gene are called alleles. For example the gene for eye color
could have the allele that codes for blue eyes, or the allele that codes for brown eyes. Let’s
let A represent the allele coding for brown eyes and a represent the allele coding for blue
eyes. Then, since each individual has two copies of each gene, any one individual could have
one of three genotypes: AA, Aa, aa. The genotype of an individual refers to the specific
types of each gene that they have. If an individual has two of the same alleles (AA or aa)
we call them a homozygote. If an individual has two different alleles (Aa), we call them a
heterozygote.

When individuals mate, they each give one of their genes to their offspring, so the babies
have one copy of a gene from their mother and one from their father. For example, if a
mother and father both have AA genotypes, all of the children will have AA genotypes.
However, if one parent has the AA genotype and one has the aa genotype, all of the children
will have the Aa genotype. Likewise, if one parent has the AA genotype and the other has
the Aa genotype, half of the children will have AA and half will have Aa.

In the field of mathematical biology, it is common to make simplifying assumptions before
proceeding with the mathematical analysis of a problem. For our purposes we’ll assume the
following;:

(1) Non-overlapping Generations: This means that individuals in one generation die before
the members of the next generation are born. This probably doesn’t seem like a reasonable
assumption for humans, and is actually more reasonable for things like annual plants and
some invertebrates. However, this assumption will make our work a lot easier and will still
give us some useful information.

(2) Random Mating: This means that mating takes place completely at random. This may
also seem a bit unreasonable since movie stars tend to marry other movie stars rather than
your average professor at the University. However, it is pretty unlikely that a person chooses
their boyfriend, girlfriend, husband or wife based on their blood type. Likewise, a person
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with brown eyes may be more attracted to another person with brown eyes, but they won’t
care if that person has the genotype AA or Aa. So, for some genetic traits, this may be a
pretty good assumption.

(3) Sexes are Equivalent: For our models, we’ll assume that males and females have the
exact same genotypes in the same proportions. As you’ll see in our classroom simulations,
we’ll all be able to mate with everyone else.

(4) No Migration: For our models, we’ll assume that no one is coming into or leaving our
population. We can imagine a population of individuals living on an island that is very
difficult to get to and is rarely visited by outsiders.

Basic Notation
We will use the following notation.

D = fraction of the population that is type AA (Dominant Homozygous)

H = fraction of the population that is type Aa (Heterozygous)

R = fraction of the population that is type aa (Recessive Homozygous)
We assume that the three genotypes given above (AA, Aa, and aa) are the only possible
genotypes for the trait we are studying. Therefore, D + H + R = 1. We are also interested
in the fractions of the individual alleles (A and a). Each individual carries two alleles, so
the total number of alleles in the population is two times the population size. If we are
calculating the fraction of alleles that are of type A, we have two contributions from AA
individuals and one contribution from Aa individuals. Likewise, for alleles of type a, there
is one contribution from type Aa individuals and two from type aa. We use p to represent
the fraction of alleles in the population that are of type A and ¢ to represent the fraction
that are a. We must have ¢ = 1 — p since there are only two types of alleles.

2D+ H H H+2R H

P=orHETR) 2 1TyD+H+R) 2

Hardy-Weinberg Equilibrium

For our first example we’ll assume that the three genotypes have no effect on whether you live
or die. For example, they might determine the color of your eyes or hair. Let’s assume that
people with the AA or Aa genotype have brown eyes and the people with the aa genotype
have blue eyes. There’s no reason to think that people with brown eyes will be more likely
to survive and reproduce than people with blue eyes (and vice-versa), so we say that there
is no selection for one genotype over another. As in our class simulation, we’ll assume that
the initial population starts out with 1/2 AA and 1/2 aa. What will happen over time?
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Using our notation defined above, we have genotype frequencies of Dy = 1/2, Hy = 0,
Ry = 1/2 and allele frequencies of py = 1/2 and ¢y = 1/2. We will make a mating square
to determine all of the possible offspring types and their proportions. The first column and
row represent the genotypes of the parents and the interior boxes represent the offspring.
The first interior box (top left) gives the probability that an AA mates with an AA. This
is % . % = i. Each child gets one allele from each of its parents. In this first pairing, all of
the children are AA. The second interior box in the top row represents the pairing of an AA
with an aa, which also has probability % . % = i. All of the children from this pairing are
type Aa since they receive an A allele from one parent and an a allele from the other parent.

We fill in the other boxes using similar reasoning.

| AA (1/2) | aa (1/2) |
l | |
AA (1/2) H AA (1/4) I Aa (1/4) I
l | |
aa (1/2) H Aa (1/4) I aa (1/4) I

We can use the table we’ve just created to determine both the fractions of the three types
of individuals in the next generation and the new allele frequencies.

1 1 1 1 1
B H 1 12 1 H 12 11
p=Dit =g+ =3 n=5 th=—"+7=3

You may have noticed something interesting about the last two calculations. If not, notice
that our new allele frequencies p; and ¢; are exactly the same as they were in the parent
generation! Does this make sense? At the start, we assumed that there is no advantage to
having one genotype over another (brown eyes versus blue eyes), so its not that surprising
that the relative number of A and a alleles in the population stays the same. However, they
seem to have reorganized themselves into different pairings. We started out with parents
that had either two A’s or two a’s. Now, we see that half of the population is a new type
Aa. Let’s see what happens when we look at the grandchildren of our original population.
To do this, we’ll make another mating square, adding a third row and column for the Aa
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Again, we’ll use the table we’ve just created to determine the fractions of the three types of
individuals and the allele frequencies in the second generation.

aa (3-1=1/16)

type.
| AA (1/4) | Aa_(1/2) | aa_(1/4) |
| | | |
I | AA (3-i=1/16) |
AA (1/4) || AA (1/16) | | Aa (1/16) |
I | Aa (3-3=1/16) | |
| : : :
| AA (3-i=1/16) | AA (3-1=1/16) | Ao (3-1=1/16) |
| | | |
Aa (1/2) | | Aa (2-§-{=2/16) | |
| | | |
| ad (3-§=1/16) | aa ($-1=1/16) | aa (3-1=1/16) |
| | | |
| | | |
I | ad (3-5=1/16) | |
aa (1/4) || Aa (1/16) | | aa (1/16) |
| | |
| | |

1 1 1 1 1 1
D:4'—:— H: - —_ = — :4._:_
2 16 4 2 =816 3 R 16 4
B H 1 1/2 1 o 12 011
P=bDet =gty =y L=y =T

Hopefully, you've noticed something interesting about all of these calculations. If not, notice
that we got the exact same frequencies in our first generation! It looks like our population
is at some sort of equilibrium. In fact, after only one generation our population has reached
something called the Hardy-Weinberg equilibrium.

We started with a population that was half AA (brown eyes) and half aa (blue eyes) so
the allele frequencies were both 1/2. What would have happened if we had started with
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unequal proportions? Assume that Dy is the fraction of AA in our parent generation, Hy is
the fraction of Aa and Ry is the fraction of aa. Let’s make a mating square and see what
happens.

First, we’ll look at the fractions of the three types of individuals in the next generation.

aa (% . RQH())

| AA (Do) | Aa_(Ho) | aa_(Ro) |

| | | |

| | AA (- DoHo) | |

AA (Do) || AA (DF) | | Aa (DoRo) |
| | Aa (3-Doly) | |

| | | |

I | | |

| AA (3-HoDo) | AA (1-H3) | Aa (3 HoRo) |

I | | |

Aa (Hp) H } Aa (2% HE) : I
|| aA (% . HODO) | aa (i : HOQ) | aa (% . HORO) |

I | | |

| | | |

| | ad (- RoHo) | |

aa (Ro) || Aa (RoDo) | | aa () |
| | |

| | |

1 1 1 Hp\?
D, =D? + 5 DoHo + 5 DoHy + ZHg = (DO + 70)
1 1 1 1 1 Hy\ (H
Hy = §D0H0 + DoRo + §D0Ho + 5 5+ §HORO + RoDo + §ROHO =2 (Do + 70> (70 + Ro)
1 1 1 H, 2
Ry = LH3 + 5 HoRo + 5 Roy + B = (70 4 RO)

Once we've factored the terms, we notice that D; = pZ where py is the initial fraction of A
alleles in the population. Likewise, H; = 2pyqo and R; = 3, where gy is the initial fraction
of a alleles in the population. Now, let’s look at the new allele frequencies.

H Hy\? H, H,
o= (oo ) (0 ) (3 4 0)
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H Hy H H
(s 2 (s 2 )< (s )

2 2 2 2
H H, H, H, 2
0= Fem= (o) (3 o) s (7o)
H, Hy H H,
= (70—1-130) (D0+70+70+R0> = (704‘5)0) = Qo

These are exactly the same as before! Once again we see that the fraction of each allele stays
constant over time. In our calculation of Dy, H; and R;, we found that instead of using the
mating square, we could use the formulas Dy = p2, H, = 2pyqo and Ry = ¢2. If p; is exactly
the same as py and ¢ is exactly the same as qq, the genotype frequencies Dy, Hy and Ry will
be exactly the same as Dy, H; and R;. So, we seem to have reached an equilibrium. It turns
out that after only one generation, any population will reach Hardy-Weinberg equilibrium.

What we’ve done so far suggests that after only one generation, a population will contain
the exact same fractions of all genotypes in all future generations. This means that if half
of the population has brown eyes now, half of the population will have brown eyes 100 years
from now. Do you think this is what happens in real life? If we’re talking about eye color,
this doesn’t seem like a bad prediction. However, remember that at the start we assumed
that eye color will have no effect on whether you live or die. What if we look at a gene for
something more important than eye color? Will our analysis still hold?

Before we can answer this question, we introduce the biological concept of fitness. If I ask
you how fit you are, you may answer by telling me how strong you are, or how far you can
run. In biological terms, physical strength is not necessarily important to an individuals
fitness. In genetics, all that really matters is passing on your genes to your children, so that
your genes carry on even after you die. So, when we are thinking of genetics, the fitness of
an individual is the number of children he or she will leave in the next generation. If you
live to be 100 years old, but never have children, your biological fitness is zero. On the other
hand, if you have quintuplets at the age of 25 and die the next day, your biological fitness is
still pretty high. With this idea in mind, let’s look at some examples.

Lethal Recessive

Cystic Fibrosis is a genetic disease that you may have heard of. A person with cystic fibrosis
often has large amounts of mucus gathering in their lungs, which can lead to respiratory
infections and eventually death. Before modern medicine, people with cystic fibrosis did not
live long enough to reproduce and have children. So, in genetic terms, their fitness was zero.
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(With current medical techniques a person with this disease can live quite a long time, but
for our example, we'll assume that advanced medical techniques are not yet available.)

It turns out that cystic fibrosis occurs when a person has two copies of a recessive allele (aa).
On the other hand, if a person has only one copy of the allele (Aa), they are just as healthy
as a person without the allele at all (AA). If we are thinking only of genetics, a person
born with cystic fibrosis effectively dies at birth, since they make no contribution to future
generations. So, we might expect that after some time, the a allele will disappear from the
population. Let’s see if this is the case.

For this example, we’ll start with an entire population of heterozygotes (Aa). Using our
notation from before Dy = Ry =0, Hy = 1, po = 1/2 and ¢y = 1/2. We can use the results
of the Hardy-Weinberg equilibrium to make our calculations a little easier. According to
Hardy-Weinberg, the fractions of the three genotypes in the next generation will be:

N2 1 11 1 N2 1

N T RO
1 =P 9 1 1 Poqo 59 5 1= 4 9 4

In this example the aa individuals will all die before they reproduce, so we really have R; = 0.
Now, we’ll have to rethink the proportions we have above. One way to do this, is to think
of a smaller total population size equal to Dy + H; = p3 + 2poqo. To figure out the actual
fractions of AA and Aa individuals in the population, we can divide the results above by
our total size p2 + 2pyqo. Therefore, the first generation of children is

»y 1/4 1 _ 2poq 1)2 2

D: = = — e — — —
LT Rt 2p0qe 1/4+ 172 3 YT R 2peqe 1/4+1/2 3

and the new allele frequencies are
H, 1 1 2 H, 1
P1 1 5 37373 q1 5 173
The first thing you may notice is that the allele frequencies are not staying the same from one
generation to the next. This makes sense as individuals with two a alleles die and do not pass
on any alleles to future generations. As expected, the fraction of a alleles in the population
is decreasing (from 1/2 to 1/3). Let’s see what happens after one more generation.

2 2/3)? 1
S B (2/3) 1

S 42pa (2/3)°+2(2/3)(1/3) 2
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, = 2p1qu _ 2(2/3)(1/3) _ 1

pi+2ma (2/3)°+2(2/3)(1/3) 2

H 1 1 3 H, 1

= D e —_ = — == — = —
e N R =5 =7

Again, the fraction of a alleles in the population has decreased from 1/3 to 1/4 and the
fraction of A alleles seems to be increasing towards 1. Will the fraction of A alleles actually
go to 1 or to some other large fraction?

Before we get into a lot of algebra, let’s go ahead and consider the more general case where pg
is not specified from the start. Once we have a general result, we can compare it to our class
simulation by setting py = 1/2. First, we write down a general equation for p; remembering
that ¢ = 1 — po.

p1:D1+E: I Podo Po (po + 1 — po) _ 1
2 pi+2pogo PR+ 2pogo po(po+2—2po) 2 — po

This formula will hold in general for any step so we can write

1
Pn+1 = 9 _

n

Let’s solve for the equilibrium points, or the points where p,.1 = p,. We will call the
equilibrium point p*. We have

1
Tl = () =1= @) - +1=0= (p'—1)°=0

The only equilibrium point is p* = 1. This corresponds to the case when A is the only allele
in the population. Will the population actually go to this equilibrium?

To answer this question, let’s first see if we can come up with a way to calculate p after several
generations without going through each of the iterations (i.e. py to p1 to ps ...). Do you see
a pattern in what we’ve calculated so far for the special case py = 1/27 We have py = 1/2,
p1 = 2/3 and py = 3/4. It looks like a formula for this case might be p, = (n+1)/(n + 2).
Now, let’s see if we can find a pattern for the general formula. We'll start by looking at the



Math Circles Week 1 April 2004

first few iterations.

1
p g
' 2 —po
1 1 2 — po
p2: g g
2—=p1 2-1/(2=po) 3—2po
1 1 _3—2p0

p3_2—P2 2= (2—po)/(3—2p0) 4 —3po

For general py it looks like

:n—(n—l)po

P =+ 1) = npy

might be what we are looking for. Let’s use a method called proof by induction to prove
that it is in fact the correct formula. First, we notice that the formula gives us the correct
answer when n = 1.

1 —(0)po 1

p =
! 2 —(1)po 2—po

Let’s assume the formula is correct for n = k£ and show that it works for n = k + 1. This
will show that the formula must work for all n.

1 1
Pk+1 = _ = k—(k—1
2Pk 2- (kil)_gﬁg
(k+1) = kpo (k+1) — kpo

" 2(k+1)—2kpo—k+ (k—Dpo (k+2)— (k+ Lpo

This is exactly the form our formula predicts. Now, we can use our formula for p, to predict
what will happen after a long time has passed. We can rewrite the formula by grouping the
n’s together.

. _n=(n=Dp _ (=) +po
" (n—l—l)—npo n(l—p0)+1

From here it is easy to see that as n — oo, p, — 1.

9
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It looks like the “bad” allele will eventually disappear, but how long will it take for this to
happen? First, we'll look at our specific example where py = 1/2 and make a table of values.

Po b1 D2 p3 y2 D5 0 Pio D20

0.5 067 075 08 083 0.8 --- 092 0.95

We're definitely getting closer to 1, but not very quickly. To get an idea of how fast p will
approach one, we will look instead at ¢ = 1 — p and see how fast it approaches zero. That
is, we’ll be looking at how fast the bad a allele disappears.

~n—po)+po _ n(l—po)+1—n(l—po)—po
n(l—py) +1 n(l—py) +1

anl_pnzl

From this equation, we see that ¢, (the fraction of allele a in the population) approaches zero
at a rate related to n, or the generation time. This rate also tells us how fast the A allele
takes over. We’ll come back to this result later when we compare this example to others.
In summary, we've found that if a recessive allele is lethal when it occurs as a homozygote
(aa), and has no effect when it occurs as a heterozygote (Aa), it will eventually disappear
from the population. However, this disappearance will take a long time.
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