Math Circle for March 24 and 31, 2004
Distance and Metric Spaces by David Hartenstine

Measuring the distance between two objects is a basic mathematical ac-
tivity, and provides a starting point for geometry. A familiar example of this
is finding the {Euclidean) distance between two points in the zy-plane. The
set of all points in the plane together with this method of computing the
distance between any two points is an example of a metric space, which is
a set S of objects together with a metric, a way of computing the distance
between any two elements of S. There are many examples of metric spaces
other than points in the plane; metrics can be defined on matrices, functions,
sets of points and other mathematical objects.

Distance in the Plane

The (Euclidean) distance d((z1,¥1), (2, y2)) between two points (z3, 1)
and (z2,y2) is the length of the line segment with endpoints (z;,y;) and
(z2,y2). By drawing a right triangle with vertices at (z;,v1), (z2,%2) and
(z2,7), and using the Pythagorean theorem, this length is

d((zx1, 1), (fi?m’yz)) = \/($1 —T2)? + (1 - ya)?.

By considering this distance function, we can observe some of its proper-
ties and then define a metrie, or distance function, for situations other than
points in the plane, based on these properties.

1. The distance between two points P, = (zy,1) and Py = (zg,%) is
always non-negative, d(F;, P;) > 0. Also, the only way d(P;, ;) can
be zero is if x; = z, and y; = y;, meaning that P, = P,. So for any
two points P, and P, d(FP;, ) > 0 and d(P, P) = 0 if and only if
P=P,.

2. The distance is symmetric, meaning that the distance from P, to P,
is the same as the distance from P to Py, or d(Py, P») = d(P,, P,) for
any two points P, and P;.



3. A less obvious property of the distance function is the triangle inegual-
ity: For any points F;. P and Fs.

d(Py, B) < d(Py, Ps) + d(P5. Ps).

The reason for calling this the triangle inequality comes from the ge-
ometric property that if P, P, and P; are the vertices of a triangle.
the sum of the lengths of any two sides is larger than the length of the
third side. Another way of thinking of the triangle inequality is that if
vou want to from P, to F;, it is never shorter to ﬁrst £0 to some point
P; and then go to P, from Ps.

These three properties are considered to be the most important features
of the distance function, and provide the definition of a metric space.

Metric Spaces

Let S be a set, and let d be a (real-valued) function defined on pairs of
elements of S. S is called a metric space (with metric d} if:

1. d(P,, P;) > Oforall P, P, € Sand d(P;, P2) = Oifand only if P, =
2. d(P, P)=d(P,,P) forall P,, P, € S.
3. d(P}, Pg) < d(Pi, Pg) -+ d(P3,P2) for all P}, Pg, P3 €S.

Note that the set of all points in the zy-plane with the distance formula
above is a metric space.

Once a set has a metric (a way to measure distance), other geometric
objects can be defined. One example is a circle. In standard geometry, a
circle of radius 7 centered at a point P is the set of all points that are (or
are less than) a distance r away from F,. The metric space version of this
is: If d is a metric on a set S, the circle centered at Py of radius r is the set
of points P € S such that d(P, Fp) = (<)r. These “circles” might look very
different from Euclidean circles.

First we’ll take a look at some metrics on the number line and in the
zy—plane. Each of these metrics gives a different way of measuring the
distance between points. Later we’ll look at examples of metric spaces for
different underlying sets.



A simple example of a metric space is the number line with the metric

d(z,y) = |z —yl.

Since this distance is defined by absolute value, d{z,y) > 0 for all r and
y, and the only way it can be zero is if z = y. Also, for anv z and y.
d{z.y) = d(y.z). The only thing left to check in order to verify that this is
a metric space is the triangle inequality. We need to show that for all r, y
and z,

r-yl<le—z[+]z—9l . (1)

If z = y, then |z — y| = 0, and inequality (1) holds for any point z. If £ # y,
we can assume that £ < y. There are then three possible locations for the
third point z (drawing a picture of each of these possibilities might make
things more clear). If z < z, [y~ z! > |z —y| and (1) holds. If z is in between
z and y, then

g =yl =z — 2| +2 - |

which is OK for (1) to be true. Finally, if 2 > y, then |z — z| > |z — ] and
(1) holds for this case too. Therefore, the triangle ineguality holds, and this
is indeed a metric space.

Examples and Anti-Examples

For each of the following functions, determine if it defines a metric on the
given set. If it is a metric, what do circles look like in that metric space? If
it is not a metric, is it possible to make it into a metric by working with a
subset of the given set?

1. Foi points P, and P, in the zy-plane, let

{0, #P=P
(P, Fo) “‘"{ 1, i P #P,.
2. For z, y on the number liné, let d(z,y) = |z — 2y|.
3. For points Py = (x,,y;) and P> = (x2,y,) in the zy-plane, let

d(Py, Py} = max{|z; — z2|, |11 = v2|}.



4. d(z,y) = |r* — y?| for z and y on the number line.
5 For P, = (z;,3) and P = (29, y2) in the xy-plane. let

d(Py, P} = |z1 — 2] + {1 — w2l
6. For z, y on the number line, let d{z,y) = (z — y)2.

Answers: #1 is a metric and circles are either single points or the whole
plane. #2 is not a metric because if £ # 0, d(x,z) # 0. Note also that
this distance is not symmetric: d{z,y) # d(vy,z). #3 is a metric and circles
are squares with sides parallel to the z— and y— axes. #4 is not a metric.
because for example d(—1,1) = 0; it is however a metric when the set is
restricted to the interval [0,00). #5 is a metric and circles are diamond-
shaped (they are like the squares in #3, but rotated 45 degrees). #6 is not a
metric, because the triangle inequality fails (take 2 = =1, y = 1 and z = 0).

Distance in Space and on Surfaces

The formula for the Euclidean distance between two points P, = (1,91, 21)
and P, = (Z3,ys, 22) in 3-space is

d(Ph P?) == ‘\/(zfi - $2)2 =+ (yl —_ y2)2 - (21 - 22)2.

This is the length of the line segment from P, to P,, by using the Pythagorean
theorem as in the plane. Any metric defined on points in 3-space can be
used to define a distance between points. The metrics in the plane in the
last section can be extended to 3-space.

The formula above, however, is not always the way we measure distance
between points lying in a three dimensional space. For example, we can think
of the Earth as being a subset of 3-space, and the surface of the Earth as
being the surface of a sphere. When measuring the distance between points
on the Earth’s surface, say from Salt Lake City to Rome. we don’t draw a
line through the two points and measure the distance along those points.
This distance would correspond to the distance traveled if a tunnel was dug
in a straight line through the Earth, starting at Salt Lake and ending at
Rome. This is not very practical, one usually does not travel between cities
by tunneling from one to the other. Instead we measure the distance between
two points P, and P on the Earth by measuring the shortest path starting
at P; and ending at P that stays on the surface of the Earth,
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Generally, if S is anv surface. we can define the distance between two
points F; and P> on 5. by

d(Py,. Py) = min length(~y) (2)

where -~y is any path starting at F). ending at P,. and always staving on the
surface S (v C .5). Notice that when S is all of 3-space or is the plane. this
is the same thing as what we get with the standard distance formulas.

Some Questions

1. Given two points on a sphere (like the Earth’s surface), is there alwavs a
path of minimal length between the two points? If so, can you describe
what it looks like? Can there be more than one shortest path between
two given points?

2. Can you think of a set, say in 3-space or in the plane, where there is
no path of minimal length?

3. Is the distance defined above in (2) a metric for all surfaces? If not.
what do we need to know about the surface to guarantee that it is a
metric?

Answers: For #1, the (shorter) arc of the great circle through the two
points is a path of minimal length. There are infinitely many minimal paths
when the two points are antipodal, like the North and South Poles. For
#2, if one point is deleted from the plane, there is no shortest path between
any two points for which the line between them would pass through the
missing point. The example of . #2 shows that this distance is not defined
(and therefore not a metric) between two points when there is no minimal
path. If the surface S is not connected, then there are no paths between
points in different components. and again (2) is not a metric. When there
exists a minimal path between any pair of points in S, {2} does define a
metric.

Metrics on Graphs

Metrics are used to measure more than distance between points in the
plane or in space or on surfaces. They can also be used to measure distance

between points on graphs, the distance between two matrices or functions.
or between two sets.



Example 1 Taxicab metric: Consider a square grid of points connected
bv vertical and horizontal lines. like that pictured below. We can define the
distance between two of the points to be the minimal number of line segments
that have to be covered when going from one point to the other. We can
think of the lines as (two-way) streets and the points as intersections in a
city like Salt Lake that is set up on a grid. Then the distance between P,
and P is the smallest number of city blocks that have to be driven past in
order to get from P, to P,.
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1. Verify that this is a metric. Is this similar to any of the metrics we saw
for points in the plane?

2. What if one-way streets are allowed, so that some of the edges can only
be traveled in one direction? We can still define the distance between
two points as the smallest number of blocks that must be passed to get
from one to the other. Is this distance a metric? Why or why not?

Answer to #2: No. If P, and P, are adjacent intersections connected by
a one-way street from P, to Py, then d(Py, P) < d(P, P1).

Example 2 Chess pieces: The game of chess is plaved on an 8 x 8 checker-
board. There are several different pieces involved in the game, and each is
allowed to move according to different rules. For each piece. we can measure
the distance between any two squares S; and S; on the board by defining it
to be the smallest number of moves permitted for that piece that gets the
piece from S; to Sp. Assume that nothing (like another piece in the way)
prevents the piece from performing its moves. As a result of this assumption.
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this distance is not of much practical use from the point of view of the actual
game of chess.

Let’s focus on just four of the chesspieces. The bishop can move in any di-
agonal direction anv number of squares until the edge of the board is reached
(but in one particular move can only move in one direction). The rook (the
one that looks like a castle) moves in a similar wayv to the bishop. but has
to move in either a horizontal or vertical direction. The queen can do any-
thing the rook or bishop can. The knight (horse) can move in either of the
following ways: move 1 square in a vertical direction followed by 2 squares
horizontally, or move two squares vertically, then 1 square horizontally. Note
that there are eight possible moves for the knight unless the edge of the board
makes some of them impossible.

1. Which pieces lead to metrics? You might want to convince yoursell
that all of the requirements for metrics are satisfied (note that this dis-
tance is similar to the distance used on surfaces above and the taxicab
metric), because the distance is defined in terms of a minimum number
of moves {and all moves are reversible), except for possibly the ability
to measure the distance between any two squares. If a piece cannot get
from S; to S,, the distance is not defined.

2. For those pieces whose distances aren’t metrics, is there a way to define
the distance between squares that a piece can’t move between in order
to make it a metric?

3. For each of the distances (metric or not), what do the circles of radius
1, 2 and 3 look like?

-

4. What is the maximum distance between anv two squares in each met-
ric? This number is called the diameter of the metric space.

Answers: All of them except the bishop. which can’t move from a black
square to a red square, produce metrics. We can define a metric by the
bishop by defining the “distance” between any red and black square to be
some large number (larger than the maximum number of moves to get from
any square to another square of the same color); the triangle inequality will
then hold. Of course. the distance between red and black squares will not
correspond to the number of moves necessary to move between the squares.
In the rook metric, the circle of radius 1 is the vertical and horizontal lines



of squares passing through the center (of the circle}. Anv circle of radius two
is the whole board. In the bishop distance. the circle of radius one is the
squares that lie on the diagonals through the center. and a circle of radius
two is the set of all squares with the same color as the center. The circle of
radius one for the queen is the set of all squares that lie on the diagonals or on
the horizontal and vertical lines through the center. a circle with radius two
is the whole board. The circles in the knight metric are more complic:7ed.
The diameter of the board in the rook or queen metric is two. In the knight
metric, the board has diameter six (it takes six moves to get from corner to
corner).

A Metric on Functions

Let S be a collection of functions. If we can find a metric on S. we can
compute the distance between any two functions. As a result, we will be
able to make sense of the statement “These two functions are a distance X
apart”.

To keep things somewhat simple and make things definite, let’s consider
the set of functions that are defined for all z € [0,1], and are continuous
on that interval. A function is continuous on an interval if its graph can be
drawn without lifting the pen from the paper. So continuous functions don’t
have any jumps in their graphs.
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The set of continuous functions on [0, 1] is often denoted C([0.1]). Con-
tinuous functions have some nice properties. The sum or difference of any
two continuous functions is continuous. Also, if f is continuous, then so is



if]. Also. a continuous function achieves a maximum and a minimum on a

closed and bounded interval. This means that if f is a continuous function

on an interval {a.b], then there are numbers x; and z; in the interval ja. b,

such that f(z,) > f(z) for all z in [a.b]. and f(z,) € f(z) for all r € ja. b,
We can define the distance between f and g € C{[0.1]) by

d{f.g) = Jex |f(z) — glz)] (3)

With respect to this distance, function A is closer to function B than function
C is.

™

1. Does (3) define a metric on C([0,1])?

2. What does the circle of radius 1 centered at f(z) = 0 look like? What
about the circle centered at g(z) = 27

3. What happens if we replace the closed interval [0.1], with the open
interval (0, 1)?

4. What happens if we replace the bounded interval |0, 1] with the infinite
interval {0, 00)?

Answers: This is a metric. Since it is defined by absolute value, d(f,g) > 0
for any f, g € C([0,1]). The only way it can be zero is if f{zr) = g(z) for all «
in the interval, in other words if f and g are the same function. Also, when [



and g are continuous, the function | f — g| is also continuous on [0. 1]. so it has
a maximum value on [0.1]. so d(f. g) is defined. For anv z. |[f{r) — g(z)| =
lg(z) — f(x)|. so d{f. g) = d(g. f). To see the triangle inequality. let 7. g and
h be any functions in C({0, 1]). Then. for any z € [0.1]. by using the triangle
inequality for points on the number line.

7(2) = 9(@)| < |f(2) = hi(z)| + [h(z) - g(a)
< max |1(2) = h(@)| + max k(@) - 9(@)] = d(f. k) +d(h, g).

T 0<e<]

Now since we started with an arbitrary z € [0, 1], this inequality holds for
any point x where max |f — g| is achieved, and we get

U<r<1
so the triangle inequality holds, and this is a metric. The circle of radius
one centered at any function is the set of all functions in C([0,1]) whose
maximum distance from the center is one (or less than one). For example.
the circle with radius one, centered at f(z) = 0 is the set of all continuous
functions on [0, 1] with maximum absolute value 1. Some examples are:

i
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If we consider an open interval, the distance between two functions might
not be defined because it could be infinite; take for example the functions
f(z) =0 and g{z) = 1/z on the open interval (0,1). Both of these functions
are continuous, but for z close to 0, g(z) is very large and the maximum
of |f(z) — g(z)| = 1/r does not exist. We run into similar problems on
the infinite interval [0, 00). The functions f(z) = 0 and g(z) = z are both
continuous on this interval, but max|f(z) — g(z)| = max z does not exist.
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Metric on Sets

Is there a way to define a metric on the set of regions or sets in the plane”
What would such a distance have to do? Suppose S and T are two subsets of
the plane. Then if d is a metric on such sets. we must have that d($.7) > 0
and is zero if and only if § = T. This means that the distance between two
sets should be zero only if the sets are exactly the same. We also need to
know that d(S5,T) = d(T,5), that is that the distance from S to T is the
same as the distance from T to S. Finally, we need to know that the triangle
inequality holds, in other words, if U is a third set in the plane, then

d(S,T) < d(S,U) + d(U,T)

Since we know how to measure distance between points in the plane and
sets are made up of points, it might be a good idea to use something we know
about distance between points in defining a distance between sets. Let’s start
with something simple. What if we let S) be a square with side length 1 and
centered at (0,0), and define S; to be the same square translated in the
positive z-direction say 10 units? What should the distance between S; and
So be? Well, if we translated S, ten units in the negative z-direction, it
would land right on top of 5;, so S; and the transported S; are the same set,
so it makes sense to define the distance between a set and and a translation
of the set to be the length of the translation.

The problem of defining a metric on the set of planar sets would not be
very difficult if all sets were translations ogceach other. Unfortunately, this is
not the case. Two squares of different areas are not translates of each other,
and neither are a square and a triangle. Furthermore, not even all congruent
sets are translates of each other: If we take a square and rotate it 45°, we
still have a square, but the original square and the rotated one are not the
same set, and they are not translates of each other.

The distance between two sets should be small when the sets are close
to being identical. The problem is how to determine when sets are close
to being identical. What should the distance be between a set, say a circle
with radius one including its interior and another circle (again including its
interior} with the same center but with radius three? What about with a
circle of radius 1007 All of these circles have exactly the same shape, but the
largest one is pretty far from being identical to the small one.

For technical reasons, lets confine our attention to what are called compact
sets. A set of points in the plane is compact if it is both bounded and closed.
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A set S is bounded if a circle with finite radius can be drawn in such a wav
that S is inside it. A set is closed if it contains all of its boundarv points.
Some explanation is necessary here. A circle or a polygon. together with all
of the points interior to it, is a closed set. The boundary of such a set is the
outside of the set (which is the original circle or polygon). However, if mv set
is just the set of points interior to a circle, this set is not closed because the
boundary (the circle itself) is not included. In fact. if even one point on the
circle is not included in the set, the set is not closed. These are very simple
examples of closed sets ~ there are much more complicated examples.

-
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Finding a metric on the set of compact sets is not easy, and one was
discovered fairly recently (say in the last 100 years or so). This metric is
called the Hausdorff metric. To define it we need to define the r-expansion
of a set. Let S be a set of points in the plane. The r-ezpansion of S (let’s
call it 5;) is the set of all points (z,y) in the plane that are a distance less
than or equal to » away from seme point in S. A way to visualize this is by
drawing a circle of radius r (including its interior) at each point of S. Then
S, is the union of all points contained in these circles.
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We can now define the Hausdorfl metric on compact sets.

d(S,T)=min{r: SC T, and T C 5;}

So the Hausdorff distance between S and T is the smallest number r for
which the r-expansion of S contains 7 AND the r-expansion of T contains
S. A special case is when T C S. Then we don’t have to expand § at all
in order for it to swallow up 7, so the distance between T and S is just the
amount we have to expand 7 in order for T, to contain S. In the picture
below, a small expansion of S will contain 7", but a much larger expansion
of T is needed in order to swallow S.

e
i
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1. Check that this is a metric.

2. What is the distance between a set and its translation by z units? Is
this what we thought earlier?

3. What do circles in this metric look like?
4. Do we still have a metric if sets that aren’t bounded are allowed?

5. What happens if sets that aren’t closed are allowed? Hint: What is the
distance between a circle plus its interior and its interior?

Answers: This distance can’t be negative, since only r > 0 makes sense for
the r-expansions. Also, because the sets are bounded, the distance between
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any two of them is finite. Since the definition is symmetric. we have that
d(ST)=d(T,S)forany Sand T. f S=T.then SC T and T ¢ S and
d(5.T) = 0 (like it should be). Also. iff d{S.T)=0.then SC T and T C S.
and therefore S = T. The triangle inequality can be proved by contradiction.
Suppose that d(S.T") = ry for some number ry, and suppose that there is a
third set U such that the triangle inequality does not hold for S. T and U.
This means that

d(S,T) £ d(S,U) + d(U,T)

Let ry = d(S,U) and ro = d(U,T). Then r; + r5 < 7. Therefore, S C U,
and since U C T;,, U,, C Ty, 4r,. Therefore, S C Ty 4r,. Similarly, T C
Sry4ro- Therefore, since the distance is defined as a minimum, d(S5,T) <
71 + 72, but we already know that d(S.T) = ry > r; + 75, but this is a
contradiction. If unbounded sets are allowed, the distance between them
could be infinite; an example is a point and a half-plane. If sets that aren’t
closed are allowed, the minimum may not be defined: For example, let §
be a circle and its interior and let 7" be just the interior of the circle. Then
T C S, and for any r > 0, S C T, so there is no smallest r, and the distance
is not defined. If this minimum is taken to be zero, then we have two sets
that are not identical (but are very close) that are a distance zero apart and
this distance is no longer a metric.
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