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Mathematical meaning in formal systems. Remember last time we worked
with the LT-system.

Symbols: {L,T,o}

Axioms: {oLToo}

Rules: RULE I: If zLTy is a theorem, then so is zLToy.
RULE II: If zLTy is a theorem, then so is zoLToy.

We realized that the LT-system contained “hidden meaning”. The theorems of this
system are exactly the strings that look like

00...0 LT 0o0...0
—— N——

m times n times

where 1 < m < n. The LT-system holds all information about the concept of “less
than” for the positive integers. Consider the following table which summarizes the
system and the interpreted meaning.

System Meaning Mathematical Meaning
strings of symbols: oooLTooooo | mathematical statements: 3 < 5
axiom: oLToo axiom: 1 < 2
RuLE 1 ifa<bthena <b+1
RuLE 11 ifa<bthena+1<b+1

theorems mathematical truths

The left column represents the meaning inherent in the system itself. LT is
a formal system as defined last time. It has symbols, strings, axioms, rules and
theorems. In fact, this is all the LT-system really 4s. The right column represents
a special way we have interpreted the system. This meaning isn’t “built into”



the system. Instead, it is something we observe from outside. The only reason
this second meaning is at all interesting to us is because of the last row of this
table. If we interpret strings of os as numbers and LT as “less than”, then it turns
out that the theorems of the system correspond ezactly to all true mathematical
statements of the form a < b where a and b are positive integers. If the system
happened to produce the theorem ooLTo or LooLT, we would not be happy with
the mathematical interpretation of the system.

Exercise: Consider the following formal system, called the IA-system.
Symbols: {I, A, o}
Axioms: {ooloAo}
Rules: RULE I: If zIyAz is a theorem, then so is zI1zAy.
RULE II: If zIyAz is a theorem, then so is zoloyAz.

Which of the following strings are theorems of the IA-system? If a string is a
theorem, show how you produce it. If not, what goes wrong?

(a) oooooloooAoo

(b) ooolooooAo

(c) oAoolooo

Can you find a mathematical interpretation of the symbols? What do the axioms
and rules “mean” mathematically?



KS-numbers. Now let’s take a detour and talk about KS-numbers. The first
thing we need to know about KS-numbers is that

31,233 is a KS-number.

There are also two rules which will help us find new KS-numbers. To understand
these rules, we need to agree on some notation. Let M and N be two positive
integers. By N div M, we shall mean the result of dividing N by M and throwing
away the remainder. By N mod M, we mean the remainder of the division. So

3div2=1, 3div3d=1, 3divl =3,
3mod2=1, 3mod3 =0, 3modl =0,
N mod M

N+M=NdivM +
M

The rules for making new KS-numbers are
RULE A: If N is a KS-number and if (N div 10%) mod 100 = 12 then
[(N div 10%) - 10 + 3] - 10* 4 (N mod 10*)
is also a KS-number.
RULE B: If N is a KS-number and if (N div 10¥) mod 100 = 12 then
{[(N div10¥*2) - 10 + 3] - 1,000 + 123} - 10* + (N mod 10*)
is also a KS-number.
Notice that 31,233 is a KS-number and that
(31,233 div 10%) mod 100 = 312mod 100 = 12

so both RULE A and RULE B apply. If we use RULE A with N = 31,233 and k£ = 2,
we get that

(31,233 div 10?) - 10 4 3] - 10? + (31,233 mod 10?)
= [312-10 + 3] - 10? + 33
=3,123-10% + 33 = 312,333

is also a KS-number.



Similarly, if we use RULE B with N = 31,233 and k& = 2, we get that

{[(31,233 div 10*) - 10 + 3] - 1,000 + 123} - 10? + (31,233 mod 10%)
= {[3-10 4 3] - 1,000 + 123} - 102 + 33

={33-1,000 + 123} - 10% 4 33

= 33,123 - 102 4 33 = 3,312,333

is also a KS-number.

Exercise: Use the rules to make a few more KS-numbers. Do you see a pattern
that reminds you of something we’ve talked about before? (Hint: Try writing the
numbers without commas.)



LT-numbers. The name KS-numbers was perhaps a little misleading. (Of course,
I didn’t want to give away the surprise.) From now on, let’s call them LT-numbers.
The way we get LT-numbers is to start with the LT-system and use the trick of
“Godel numbering”. To do so, we choose a number to represent each of the symbols
of the LT-system:

L~ 1 T+ 2, o < 3.

Then we can encode any string in the LT-system by its Godel number obtained by
replacing the symbols in the string by their number equivalents. For example

ooLTooo < 3,312,333
LTLLooL < 1,211,331
oLoLoo < 313,133.

Note: You may assign numbers to the symbols in any way you like (You’re not even
restricted to single digits!) as long as you do so in such a way that no two strings
give the same number. To see what can go wrong, imagine if we had said

L< 1 T < 11, o < 111.

What string does 111,111,111 stand for?

Notice the relationships between RULE I and RULE A and between RULE 11
and RULE B. In particular, see how we can use arithmetic operations to detect the
presence of 12 in a number the equivalent of detecting LT in a string. Multiplica-
tion and division by powers of 10 allow us to shift digits left and right. Using this
with the mod operation allows us to extract portions of the number just like we can
extract portions of a string. Also notice how the rules allow us to insert 3s, just like
we were able to insert os in the LT-system.

In fact, the set of LT-numbers exactly mirrors the set of theorems in the LT-
system. By this, I mean that a string of Ls, T's and os is a theorem in the LT-system,
if and only if its Godel number is an LT-number. Here are some examples.

ooLTooo is a theorem <= 3,312,333 is an LT-number
LTLLooL is not a theorem <= 1,211,331 is not an LT-number
oLoLoo is not a theorem <= 313,133 is not an LT-number.



A formal system for mathematics? By now we’ve seen how we can design
formal systems which represent the concepts of “less than” and addition on positive
integers. In fact, we can combine the two systems into one big system that represents
both the less than comparison and the addition of positive integers.

Symbols: {L,T,I, A, o0}

Axioms: {oLToo,o00loAo}

Rules: RULE I: If zLTy is a theorem, then so is zLToy.
RULE II: If zLTy is a theorem, then so is zoLToy.
RULE 111I: If 2IyAz is a theorem, then so is z1zAy.
RULE 1V: If zIyAz is a theorem, then so is zoloyAz.

It seems natural to wonder if we could continue adding more symbols, axioms
and rules to our system and eventually design a formal system let’s call it the
Q-system — powerful enough to represent all pure mathematics. In other words, we
would like the Q-system to...

a) have a mathematical meaning in which the strings of symbols can be inter-
g g
preted as mathematical statements.

(b) produce theorems which are always true when interpreted as mathematical
statements.

(¢) produce the corresponding theorem for every true mathematical statement.

What Godel proved was that if our formal system is powerful enough to handle
number theory, then we can’t have all three of (a), (b) and (c). Since (a) and (b)
are absolutely necessary for the formal system to be useful to us, we can interpret
Godel’s result as follows. There will always be some true mathematical statements
which are not theorems of the formal system.

Godel’s proof. Suppose our Q2-system, is powerful enough to deal with number
theory. (Principia Mathematica is such a system.) We also want the system to
have at least properties (a) and (b) from above. Can we also have (¢)? As a formal
system, 2 will have symbols, axioms, production rules and theorems. For it to
handle number theory, it’s symbols must be powerful enough to enable us to encode
statements like “17 is a prime number” or “9 divides 17”7 or “183,231,112 is the
sum of two cubes”.

One main ingredient of Godel’s proof is the use of Godel numbering. A second
ingredient requires us to have a “free variable” in our formal system. Take for



example, the LT-system and suppose we wanted to be able to write the mathematical
statement “a < 3.” To say something like this in the LT-system, we only need one
more symbol: a. Let’s give a a Godel number, a <= 4. Now we can write a < 3
in the LT-system if we like.

aLTooo

The Godel number of this string is 412,333. What if we substitute this number in
for a? Well, we get the ridiculous statement

000000..00 LTooo
—_———
412,333 times

Though it might be ridiculous in this case, Godel used this technique of substitut-
ing a statement’s own Godel number back in for one of its variables. Using these
ingredients and the fact that the formal system is assumed to be able to handle
statements of number theory, Godel proceeded to “break” the system. He produced
a special string of symbols, lets call it G, in the formal system (2 in our case), that
could be interpreted as

G is not a theorem of the €2-system.

In other words, G is a string of symbols in the £2-system whose mathematical inter-
pretation is that G is not a theorem.

G is not a theorem. We can see immediately that G had better not be a theorem
of the Q2-system. Let’s pretend it is a theorem and see what happens. Since, G is a
theorem, we would like to believe it because of (b). We don’t want a formal system
that lies to us. On the other hand, G tells us that it is NOT a theorem. This
contradiction leads us to the conclusion that G is not a theorem.

G is true. On the other hand, think about the mathematical interpretation of the
string of symbols called G. We saw above that G is NOT a theorem of the £2-system.
But this is exactly what the symbols of G mean mathematically. Therefore, there
is a true mathematical statement namely “G is not a theorem of the 2-system”
which is not a theorem (when written in symbols) of the €2-system.

And Goédel wins. There is no formal system for all mathematics. Any sufficiently
powerful formal system which doesn’t lie to us can’t tell us the whole truth either.



