
Formal Systems II: G�odel's ProofNathan AlbinNovember 2, 2005Mathematical meaning in formal systems. Remember last time we workedwith the LT-system.Symbols: fL;T;ogAxioms: foLToogRules: Rule I: If xLTy is a theorem, then so is xLToy.Rule II: If xLTy is a theorem, then so is xoLToy.We realized that the LT-system contained \hidden meaning". The theorems of thissystem are exactly the strings that look likeoo:::o| {z }m timesLToo:::o| {z }n timeswhere 1 � m < n. The LT-system holds all information about the concept of \lessthan" for the positive integers. Consider the following table which summarizes thesystem and the interpreted meaning.System Meaning Mathematical Meaningstrings of symbols: oooLTooooo mathematical statements: 3 < 5axiom: oLToo axiom: 1 < 2Rule I if a < b then a < b+ 1Rule II if a < b then a+ 1 < b+ 1theorems mathematical truthsThe left column represents the meaning inherent in the system itself. LT isa formal system as de�ned last time. It has symbols, strings, axioms, rules andtheorems. In fact, this is all the LT-system really is. The right column representsa special way we have interpreted the system. This meaning isn't \built into"1



the system. Instead, it is something we observe from outside. The only reasonthis second meaning is at all interesting to us is because of the last row of thistable. If we interpret strings of os as numbers and LT as \less than", then it turnsout that the theorems of the system correspond exactly to all true mathematicalstatements of the form a < b where a and b are positive integers. If the systemhappened to produce the theorem ooLTo or LooLT, we would not be happy withthe mathematical interpretation of the system.Exercise: Consider the following formal system, called the IA-system.Symbols: fI;A;ogAxioms: fooIoAogRules: Rule I: If xIyAz is a theorem, then so is xIzAy.Rule II: If xIyAz is a theorem, then so is xoIoyAz.Which of the following strings are theorems of the IA-system? If a string is atheorem, show how you produce it. If not, what goes wrong?(a) oooooIoooAoo
(b) oooIooooAo
(c) oAooIooo
Can you �nd a mathematical interpretation of the symbols? What do the axiomsand rules \mean" mathematically? 2



KS-numbers. Now let's take a detour and talk about KS-numbers. The �rstthing we need to know about KS-numbers is that31; 233 is a KS-number.There are also two rules which will help us �nd new KS-numbers. To understandthese rules, we need to agree on some notation. Let M and N be two positiveintegers. By N divM , we shall mean the result of dividing N by M and throwingaway the remainder. By N modM , we mean the remainder of the division. So3 div 2 = 1; 3 div 3 = 1; 3 div 1 = 3;3mod 2 = 1; 3mod 3 = 0; 3mod 1 = 0;N �M = N divM + N modMM :The rules for making new KS-numbers areRule A: If N is a KS-number and if (N div 10k)mod 100 = 12 then[(N div 10k) � 10 + 3] � 10k + (N mod10k)is also a KS-number.Rule B: If N is a KS-number and if (N div 10k)mod 100 = 12 thenf[(N div 10k+2) � 10 + 3] � 1; 000 + 123g � 10k + (N mod10k)is also a KS-number.Notice that 31; 233 is a KS-number and that(31; 233 div 102)mod 100 = 312mod 100 = 12so both Rule A and Rule B apply. If we use Rule A with N = 31; 233 and k = 2,we get that [(31; 233 div 102) � 10 + 3] � 102 + (31; 233mod 102)= [312 � 10 + 3] � 102 + 33= 3; 123 � 102 + 33 = 312; 333is also a KS-number. 3



Similarly, if we use Rule B with N = 31; 233 and k = 2, we get thatf[(31; 233 div 104) � 10 + 3] � 1; 000 + 123g � 102 + (31; 233mod 102)= f[3 � 10 + 3] � 1; 000 + 123g � 102 + 33= f33 � 1; 000 + 123g � 102 + 33= 33; 123 � 102 + 33 = 3; 312; 333is also a KS-number.Exercise: Use the rules to make a few more KS-numbers. Do you see a patternthat reminds you of something we've talked about before? (Hint: Try writing thenumbers without commas.)
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LT-numbers. The nameKS-numbers was perhaps a little misleading. (Of course,I didn't want to give away the surprise.) From now on, let's call them LT-numbers.The way we get LT-numbers is to start with the LT-system and use the trick of\G�odel numbering". To do so, we choose a number to represent each of the symbolsof the LT-system: L () 1; T () 2; o () 3:Then we can encode any string in the LT-system by its G�odel number obtained byreplacing the symbols in the string by their number equivalents. For exampleooLTooo () 3; 312; 333LTLLooL () 1; 211; 331oLoLoo () 313; 133:Note: You may assign numbers to the symbols in any way you like (You're not evenrestricted to single digits!) as long as you do so in such a way that no two stringsgive the same number. To see what can go wrong, imagine if we had saidL () 1; T () 11; o () 111:What string does 111; 111; 111 stand for?Notice the relationships between Rule I and Rule A and between Rule IIand Rule B. In particular, see how we can use arithmetic operations to detect thepresence of 12 in a number { the equivalent of detecting LT in a string. Multiplica-tion and division by powers of 10 allow us to shift digits left and right. Using thiswith the mod operation allows us to extract portions of the number just like we canextract portions of a string. Also notice how the rules allow us to insert 3s, just likewe were able to insert os in the LT-system.In fact, the set of LT-numbers exactly mirrors the set of theorems in the LT-system. By this, I mean that a string of Ls, Ts and os is a theorem in the LT-system,if and only if its G�odel number is an LT-number. Here are some examples.ooLTooo is a theorem () 3; 312; 333 is an LT-numberLTLLooL is not a theorem () 1; 211; 331 is not an LT-numberoLoLoo is not a theorem () 313; 133 is not an LT-number:
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A formal system for mathematics? By now we've seen how we can designformal systems which represent the concepts of \less than" and addition on positiveintegers. In fact, we can combine the two systems into one big system that representsboth the less than comparison and the addition of positive integers.Symbols: fL;T; I;A;ogAxioms: foLToo;ooIoAogRules: Rule I: If xLTy is a theorem, then so is xLToy.Rule II: If xLTy is a theorem, then so is xoLToy.Rule III: If xIyAz is a theorem, then so is xIzAy.Rule IV: If xIyAz is a theorem, then so is xoIoyAz.It seems natural to wonder if we could continue adding more symbols, axiomsand rules to our system and eventually design a formal system { let's call it the
-system { powerful enough to represent all pure mathematics. In other words, wewould like the 
-system to...(a) have a mathematical meaning in which the strings of symbols can be inter-preted as mathematical statements.(b) produce theorems which are always true when interpreted as mathematicalstatements.(c) produce the corresponding theorem for every true mathematical statement.What G�odel proved was that if our formal system is powerful enough to handlenumber theory, then we can't have all three of (a), (b) and (c). Since (a) and (b)are absolutely necessary for the formal system to be useful to us, we can interpretG�odel's result as follows. There will always be some true mathematical statementswhich are not theorems of the formal system.G�odel's proof. Suppose our 
-system, is powerful enough to deal with numbertheory. (Principia Mathematica is such a system.) We also want the system tohave at least properties (a) and (b) from above. Can we also have (c)? As a formalsystem, 
 will have symbols, axioms, production rules and theorems. For it tohandle number theory, it's symbols must be powerful enough to enable us to encodestatements like \17 is a prime number" or \9 divides 17" or \183; 231; 112 is thesum of two cubes".One main ingredient of G�odel's proof is the use of G�odel numbering. A secondingredient requires us to have a \free variable" in our formal system. Take for6



example, the LT-system and suppose we wanted to be able to write the mathematicalstatement \a < 3." To say something like this in the LT-system, we only need onemore symbol: a. Let's give a a G�odel number, a () 4. Now we can write a < 3in the LT-system if we like. aLToooThe G�odel number of this string is 412; 333. What if we substitute this number infor a? Well, we get the ridiculous statementoooooo::oo| {z }412;333 times LToooThough it might be ridiculous in this case, G�odel used this technique of substitut-ing a statement's own G�odel number back in for one of its variables. Using theseingredients and the fact that the formal system is assumed to be able to handlestatements of number theory, G�odel proceeded to \break" the system. He produceda special string of symbols, lets call it G, in the formal system (
 in our case), thatcould be interpreted asG is not a theorem of the 
-system.In other words, G is a string of symbols in the 
-system whose mathematical inter-pretation is that G is not a theorem.G is not a theorem. We can see immediately that G had better not be a theoremof the 
-system. Let's pretend it is a theorem and see what happens. Since, G is atheorem, we would like to believe it because of (b). We don't want a formal systemthat lies to us. On the other hand, G tells us that it is NOT a theorem. Thiscontradiction leads us to the conclusion that G is not a theorem.G is true. On the other hand, think about the mathematical interpretation of thestring of symbols called G. We saw above that G is NOT a theorem of the 
-system.But this is exactly what the symbols of G mean mathematically. Therefore, thereis a true mathematical statement { namely \G is not a theorem of the 
-system" {which is not a theorem (when written in symbols) of the 
-system.And G�odel wins. There is no formal system for all mathematics. Any su�cientlypowerful formal system which doesn't lie to us can't tell us the whole truth either.7


