—3x+4y=>5
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Determinant of a Matrix

Every square matrix has a number associated with it, called the
determinant of 4. It may be written det(4) or |A].

For a2 x 2 matrix, det(4) is given &s formula.
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Ex 1: Find the determinant of each of these matrices.
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Cramer's Rule
For a set of two equations in two unknowns, Cramer's Rule says that
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Ex 2: Use the rule above th determlne the solution. i
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Determinant of a 3x3 matrix is more complex.
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Given the square n X n matrix 4 where n > 1, and a; represents the entry in
the i row and /" column:

N}
N}

the minor, M; of the entry a; is the determinant of the (n-1)*(n-1) matrix
left after deleting row i and column j from the matrix 4.
« the cofactor, C; of entry a; is C;=(-1)""M,.
1 -1 0
Ex 3:Find all M; and C; for this matrix. 4=[ 1 0 -1
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The determinant of an n X n matrix, where n > 1, is the sum of the entries in any
row or column multiplied by each entry’s respective cofactor. —

1 -1 0
1 0 -1].
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Ex 4: Find the determlnant of 4=
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To use Cramer's Rule to solve a set of 3 equations, let D = det 4. D, is found
by replacing the first column of 4 by the constants. D, is found by replacing
the second column of 4 by the constants, and D, is found by replacing the
third column of A4 by the constants.
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