3.3 Properties of Logarithms
Properties of Logarithms

In section 3.3 you will learn to:
* Use properties to evaluate or rewrite logarithmic expressions.
* Use properties of logarithms to expand or condense logarithmic expressions.
® Use the change of base formula to rewrite and evaluate logarithmic expressions.
® Use logarithmic functions to model and solve real-life problems.
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Properties of Logarithms

Your calculator has only two keys that compute logarithmic values.

log x means log,ox
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In x means logx
—— ——

Suppose you need to compute a logarithm in some other base, a
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Change of base formula:
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Since a logarithm is an exponent, the properties of logarithms are just like the
properties of exponents.

Exponents Logarithms
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Let's apply the properties of logarithms.

a) log, 5+ log, 6 = ]zj“f 30
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b) log (12a) - log (2a) = OJ YU Cj



3.3 Properties of Logarithms

In solving equations, it will be helpful to expand and condense logarithmic expressions

Expand thes
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Condense these into a single logarithmic expression:
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Suppose we know that log, 2 = 0.41 and log, 3 = 0.54, use the
properties of logarithms to ?
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Logarithms are useful in reporting a broad range of data by converting it into a more
manageable form. Consider the intensity of earthquakes.

Let I, = the intensity of a "standard" earthquake that is agreed upon as minimal
(barely detectable.)

Let I = The intensity of a much larger earthquake.

The magnitude M of the latter quake I relative to I0 is defined by

1
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You may have heard of the Richter scale that measures the intensity of an earthquake.

What is the magnitude M of an earthquake measured to be 10,000 times more intense
than a standard quake? ...I-o 1. =100
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Example:

On October 17, 1989 a major earthquake struck the San Francisco Bay
area only minutes before Game 3 of the World Series in Candlestick
Park. lts intensity was measured as 7.1 on the Richter scale.

How many times more intense was it than a minimal quake?

a) 12, 500 times more intense?

1,250,000 time more intense?

12 0 times more intense?
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