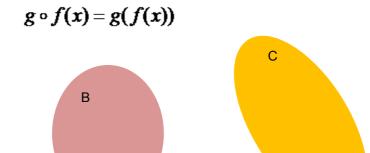
Composition of functions

Inverse functions

Today's objectives

- Define composition of functions
- Give examples of composing functions algebraically and by graphing
- Define inverse function
- Practice finding inverse function algebraically and by graphing


Beads and necklaces

•	Few years ago I took up beading for fun. I would buy a bag of varied bead	S
aı	nd found that I can make 14 necklaces from it.	

- As my beading skills got better, I found that people liked my designs and are willing to pay for my necklaces. I started selling them at a local farmers' market for \$9.50.
- I would like to know how much money I will make based on the number of bags of beads I buy.

Definition

• Let $f: A \to B$, $g: B \to C$ be two functions. Composition of f and g is a function, denoted by $g^{\circ}f$, defined by:

Find $g_{o}f$ if

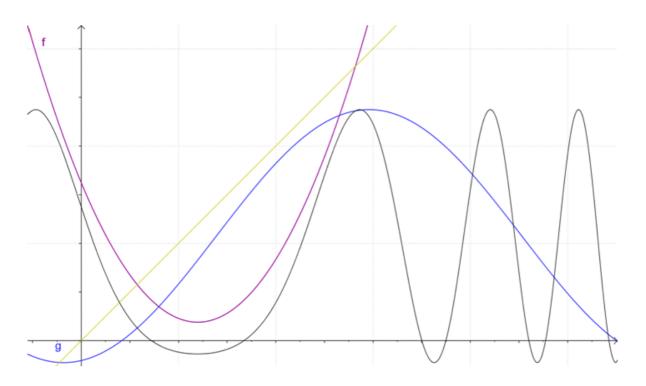
$$f(x)=7x-2$$

$$g(x)=x^2-2x$$

$$f(x) = x^2 - 2x$$

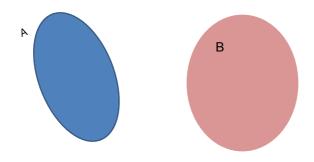
$$g(x)=7x-2$$

The following functions can be written as $g_{o}f$. What are f and g?


$$F(x) = \sqrt{x^2 - 2x + 1}$$

$$F(x) = \frac{x+2}{x+7}$$

Graphing composition of functions


If we did a whole bunch of points

Remember my beading problem?
• As my beading skills got better, I found that people liked my designs and are willing to pay for my necklaces. I started selling them at a local farmers' market for \$9.50.
• I would like to know how many necklaces I need to make in order to earn \$779.

Interesting question

• If I have a function f can I find function g so that $g \circ f(x) = x$?

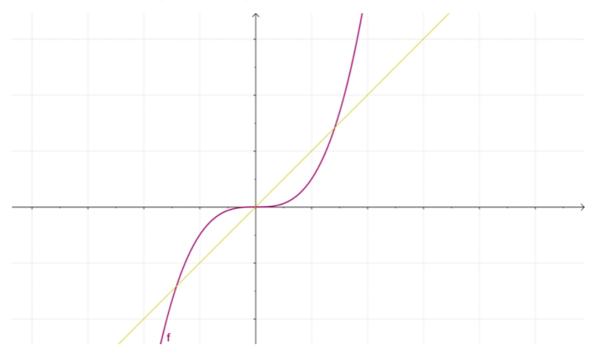
Inverse function

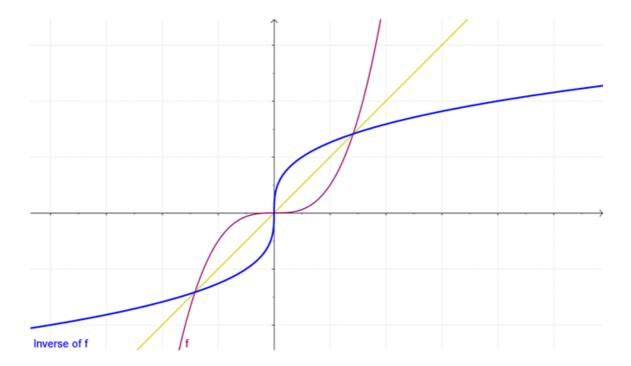
• If a function $f: A \to B$ has the property that each element of B is the image of exactly one element of A (we say f is injective), then f has an inverse function, f^{-1}

$$f \circ f^{-1}(x) = x$$
$$f^{-1} \circ f(x) = x$$

• *Horizontal line test:* Function *f* has an inverse if each horizontal line intersects the graph of *f* in **exactly** one point.

Finding the inverse function


Finding expression for inverse


$$f(x)=2x+1$$

$$g(x) = \frac{x-3}{2x+1}$$

$$h(x)=2x^2+1$$

Finding the graph of inverse function

