Composition of functions

Inverse functions

Today's objectives

- Define composition of functions
- Give examples of composing functions algebraically and by graphing
- Define inverse function
- Practice finding inverse function algebraically and by graphing

Beads and necklaces

Few years ago I took up beading for fun. I would buy a bag of varied beads

• As my beading skills got better, I found that people liked my designs and are willing to pay for my necklaces. I started selling them at a local farmers' market for \$9.50.

$$g(n) = earnings$$
 from n necklaces
$$g(n) = 9.5 n$$

• I would like to know how much money I will make based on the number of bags of beads I buy.

b
$$\longrightarrow$$
 parmings $g(f(b))$

$$f = \int_{0}^{\infty} n = f(b) - g(n)$$

Definition

• Let $f: A \to B$, $g: B \to C$ be two functions. Composition of f and g is a function, denoted by $g \circ f$, defined by:

Find $g_o f$ if

$$f(x) = 7x - 2$$

$$g(x) = x^{2} - 2x$$

$$g(x) = x^{2} - 2x$$

$$= (7x - 2)^{2} - 2(7x - 2) =$$

$$= (7x - 2)^{2} - 2(7x - 2) =$$

$$= (9x^{2} - 2xx + 4 - 14x + 4) =$$

$$= 49x^{2} - 42x + 8$$

$$f(x) = x^{2} - 2x$$

$$g(x) = 7x - 2$$

$$g(x) = 7x - 2$$

$$g(x) = 7x - 2$$

$$= 7(x^{2} - 2x) - 2 =$$

$$= 7(x^{2} - 2x) - 2 =$$

$$= 7x^{2} - 14x - 2$$

The following functions can be written as $g_{\circ}f$. What are f and g?

$$F(x) = \sqrt{x^{2}-2x+1} \qquad g(x) = \sqrt{x}$$

$$f(x) = x^{2}-2x+1$$

$$f(x) = x^{2}-2x+1$$

$$f(x) = -2x+1 = F(x)$$

$$F(x) = \frac{x+2}{x+7} = \frac{x+2}{(x+2)+5} \qquad g(x) = \frac{x}{x+5}$$

$$f(x) = \frac{x+2}{x+7} = \frac{x+2}{(x+2)+5} \qquad g(x) = \frac{x}{x+5}$$

$$f(x) = -2x+1 = F(x)$$

$$f(x) = -2x+1 = F(x)$$

Graphing composition of functions

If we did a whole bunch of points

Remember my beading problem?

d(u) = w

• As my beading skills got better, I found that people liked my designs and are willing to pay for my necklaces. I started selling them at a local farmers' market for \$9.50.

$$g(n) = 9.5 n$$

• would like to know how many necklaces I need to make in order to earn

$$779 = 9.50 / \div 9.5$$

 $\frac{779}{9.5} = 0$
 $82 = 0$

What if I wanted represent n in terms of my earnings
$$g(n) = 9.5n$$
 /= 9.5

$$\frac{g(n)}{g(n)} = 0$$

$$h(m) = \frac{m}{q.5}$$

$$h(g(m)) = m$$

$$g(h(m)) = m$$

Interesting question

• If I have a function f can I find function g so that $g \circ f(x) = x$?

Inverse function

• If a function $f: A \to B$ has the property that each element of B is the image of exactly one element of A (we say f is injective), then f has an inverse function, f^{-1}

$$f \circ f^{-1}(x) = x$$
$$f^{-1} \circ f(x) = x$$

• *Horizontal line test:* Function *f* has an inverse if each horizontal line intersects the graph of *f* in **exactly** one point.

Finding the inverse function

$$x | f(x) = y$$
 $x | f'(x)$
 $y = f(x)$
 $y =$

Finding expression for inverse

$$f(x) = 2x + 1 \qquad y = 2x + 1 \qquad f^{-1}(x) = \frac{x - 1}{2}$$

$$y - 1 = 2x \qquad f^{-1}(x) = \frac{x - 1}{2}$$

$$g(x) = \frac{x - 3}{2x + 1} \qquad \frac{x - 3}{2x + 1} = y \qquad (2x + 1)$$

$$x - 3 = y (2x + 1)$$

$$x - 3 = 2xy + y$$

$$x - 2xy = y + 3$$

$$x (1 - 2y) = y + 3 \qquad (1 - 2y)$$

$$x = \frac{y + 3}{1 - 2x}$$

$$x = \frac{y + 3}{1 - 2x}$$

$$y - 2x^{2} + 1 \qquad -1$$

$$y - 1 = 2x^{2} / -2$$

$$y - 1 = 2x^{2} /$$

Finding the graph of inverse function

