Today's lesson and objectives

Functions

- Identify relations between two variables and determine if they are functions
- Use function notation and evaluate functions
- Determine the domain of a function
- Model problems with functions

Functions

- A *function f* from set A to set B is a rule that to each element (INDEPENDENT) of the set A assigns EXACTLY one element of the set B (DEPENDENT).
- Set A is called the *domain* of *f*, while B is called the *range* of *f*.

Different ways to describe a function

- Verbally sentence describing how the dependent and independent variable are related
- Numerically using a table or list of ordered pairs
- Graphically drawing all the ordered pairs on a coordinate system (the independent variable corresponds to the horizontal axis, and dependent to vertical)
- Algebraically writing an expression that describes how one variable depends on the other

Are these functions? Find the domains and ranges.

- There are 120 students in the class M1050.
- To each student in the class M1050 we associate their grade on the final exam.

Domain: Range:

Function: yes no

• To each score 1 to 100 we associate a student with that score.

Domain:

Range:

Function: yes no

other number

Are these functions? Find the domains and ranges.

• $\{(1,2), (1,3), (2,4), (2,5), (3,6), (3,7)\}$

Domain:

Range:

Function: yes no

• $\{(2,8),(3,7),(4,6),(5,7),(6,8)\}$

Domain:

Range:

Function: yes no

Is this a function? Find the domain and range.

х	У
1	13
2	21
3	17
3	17
4	12
5	15

Is this a function? Find the domain and range.

- Is y a function of x if we have 3x + 5y = 2
- Question: "Do we have only one y for each x?

To find that out we should express y in terms of x, and see if we get a unique (only one) value of y for each individual x:

Is this a function? Find the domain and range.

- Is x a function of y? We have 3x + 5y = 2
- Question: "Do we have only one x for each y?"

To find that out we should express x in terms of y, and see if we get a unique (only one) value of x for each individual y:

Function notation and evaluating functions

$$g(x)=2x+4$$

Evaluate function g at 2, 4, -3, 1/2

Piecewise defined functions

$$f(x) = \begin{cases} x^2 - 1, & x \leq 3 \\ x + 3, & x > 3 \end{cases}$$

- Evaluate *f* at 6, -12 and 0
- Draw a table of values for x∈ [-1, 5]

$$\int x^2 - 1, \qquad x \le 3$$

x	f(x)
-1	
0	
1	
2	
3	
4	
5	

Find the domains of the following functions

$$g(x) = \sqrt{1 - 2x}$$

Find the domains of the following functions

$$h(s) = \frac{s(s+3)}{(s-2)(s+4)}$$

Find the domains of the following functions

$$h(x) = \sqrt[3]{1-2x}$$

Graph of a function f is the set of all points (x, f(x)) in the coordinate plane.

• Graph f(x) = 2x-1

What can the graph tell us?

- Can I read the value of a function at a given point?
- If I know the value of the function, can I find its origin (the value of independent variable this value corresponds to)?
- Can I read the domain and range?

What can the graph tell us?

Is this a function? Find its domain and range

Vertical line test

• A curve in the plane is a graph of a function of x only if every vertical line intersects that curve in at most one point.

Review

• Let the function f be defined by

$$f(x) = \frac{1}{\sqrt{1-x^2}}$$

- Indicate whether the following statements are true or false:
- **1.** f(x) is never positive.
- **2.** f(x) is never zero.
- **3.** 0 is in the domain of f
- **4.** All negative real numbers are in the domain of *f*
- **5.** All positive real numbers are in the domain of f
- **6.** 1 is in the domain of f
- **7.** *f* is never negative.

http://matti.usu.edu/grapher/