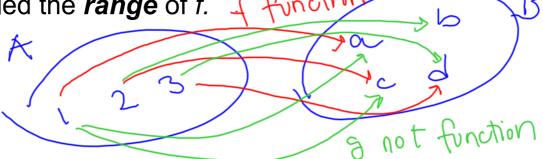

Functions

And a whole bunch of other goodies



Functions

• A *function f* from set A to set B is a rule that to each element (INDEPENDENT) of the set A assigns EXACTLY one element of the set B (DEPENDENT).

• Set A is called the **domain** of f, while B is called the **range** of f.

Different ways to describe a function

- Verbally sentence describing how the dependent and independent variable are related
- Numerically using a table or list of ordered pairs
- Graphically drawing all the ordered pairs on a coordinate system (the independent variable corresponds to the horizontal axis, and dependent to vertical)
- Algebraically writing an expression that describes how one variable depends on the other

Are these functions? Find the domains and ranges.

- There are 120 students in the class M1050.
- To each student in the class M1050 we associate their grade on the final exam.

Domain: Students in MI050 }
Range: Function: yes no

• To each score 1 to 100 we associate a student with that score.

Domain:
Range: students in Mi050 y
Function: yes no
student |
or some other number

Are these functions? Find the domains and ranges.

• {(2,8),(3,7), (4,6),(5,7),(6,8)}

Domain: $\{2,3,4,5,6\}$ Range: $\{8,7,6\}$ Function: yes no

Is this a function? Find the domain and range.

of functions

	x	У
	1	13
	2	21
	3	17
	3	17
	4	12
	5	15

Jonain - { 1,2,3.4,6}
Nange : {13,21.17,12,15}

Is this a function? Find the domain and range.

- Is y a function of x if we have 3x + 5y = 2
- Question: "Do we have only one y for each x?

To find that out we should express y in terms of x, and see if we get a unique (only one) value of y for each individual x:

$$3x + 5y = 2 \quad | -3x$$

$$5y = 2 - 3x \quad | -5$$

$$y = \frac{2 - 3x}{5}$$

$$y = \frac{2 - 3x}{5}$$
Range: R

Is this a function? Find the domain and range.

- Is x a function of y? We have 3x + 5y = 2
- Question: "Do we have only one x for each y?"

To find that out we should express x in terms of y, and see if we get a unique (only one) value of x for each individual y:

$$3x+5y=2/-5y$$
 Domain: R
 $3x=2-5y/-3$ Range: R
 $x=\frac{2-5y}{3}$ Yes.

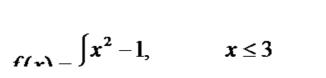
Function notation and evaluating functions

$$\int \frac{g(x)}{x} = 2x + 4$$

X	3(x)	
2	9(2) = 2.2 + 4 = 8	
4	9(4) = 2.4+4=8+4=12	
ا م	9(-3): 2.(-3)+4: -6+4=	-6
1/2	9(=)=2-=+4-1+4=5	
	J	

Evaluate function g at 2, 4, -3, 1/2

Piecewise defined functions


$$f(x) = \begin{cases} x^2 - 1, & x \leq 3 \\ x + 3, & x > 3 \end{cases} \leftarrow$$

- Evaluate f at 6, -12 and 0
- Draw a table of values for x∈ [-1, 5]

$$f(6) = 6+3=9$$

$$f(-12) = (-12)^{2} - 1 = 144 - 1 = 143$$

$$f(0) = 0^{2} - 1 = -1$$

×	f(x)										
-1	(-1)2-1=0	(-1,0)		8							
0	0-11	(0'-1)		6	10						
1	12-1=0	(0,1)		2	/ •						
2	4-1=3	(2,5) -8 -7 -6 -5	5 -4 -3 -2	-1 0 1	2 3	4 5	6	7	8	9	1
3	9-1=8	(3,8)		-4 -6							
4	443=7	(4,7)		-8 -10							
5	5+3=8	(8,8)		-12							

Find the domains of the following functions

$$g(x) = \sqrt{1-2x}$$

$$|-2 \times > 0| + 2 \times$$

$$| > 2 \times | + 2 \times$$

$$| \frac{1}{2} > \times$$

All real numbers smaller than or equal to $\frac{1}{2}$. $x \in (-\infty, \frac{1}{2}]$

Find the domains of the following functions

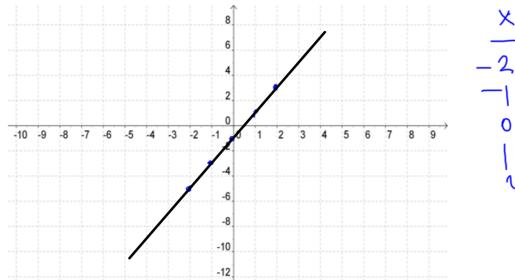
$$h(s) = \frac{s(s+3)}{(s-2)(s+4)}$$

$$5-2 \neq 0 \qquad S \neq 2$$

$$S+4 \neq 0 \qquad S \neq -4$$

$$\begin{cases} -4 & 2 \\ -\infty & -4 \end{cases} \cup (-4,2) \cup (2,\infty)$$

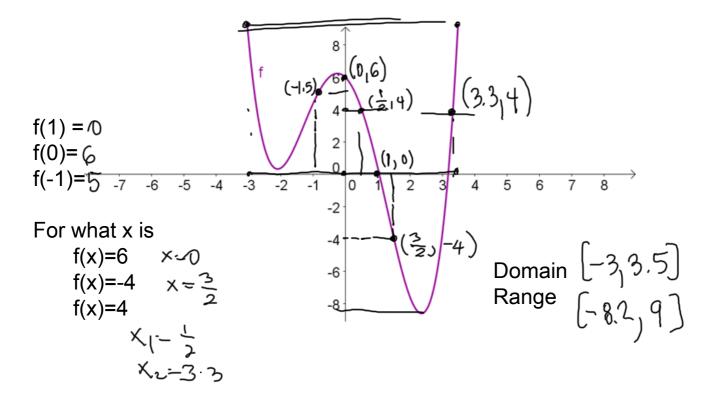
Find the domains of the following functions


$$h(x) = \sqrt[3]{1-2x}$$

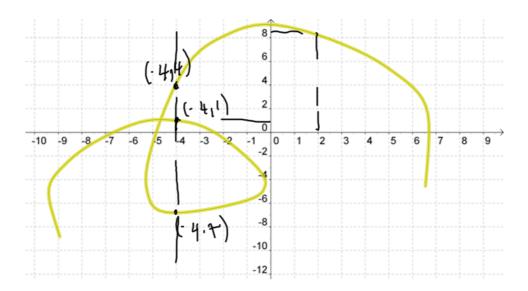
$$b = R$$

Graph of a function f is the set of all points (x, f(x)) in the coordinate plane.

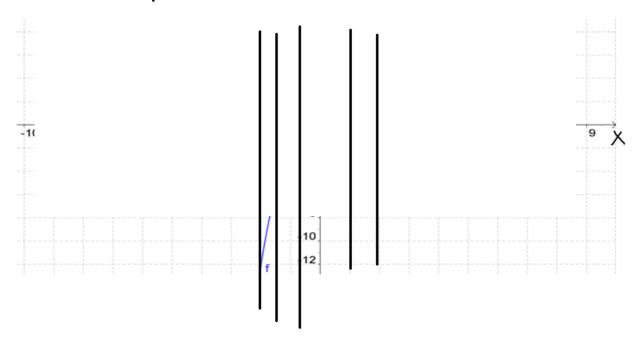
• Graph f(x) = 2x-1


What can the graph tell us?

- Can I read the value of a function at a given point?
- If I know the value of the function, can I find its origin (the value of independent variable this value corresponds to)?
- Can I read the domain and range?


What can the graph tell us?

Is this a function? Find its domain and range



Vertical line test

• A curve in the plane is a graph of a function of x only if every vertical line intersects that curve in at most one point.

Review

• Let the function f be defined by

$$f(x) = \frac{1}{\sqrt{1-x^2}}$$

- Indicate whether the following statements are true or false:
- **1.** f(x) is never positive.
- **2.** f(x) is never zero.
- **3.** 0 is in the domain of f
- **4.** All negative real numbers are in the domain of *f*
- **5.** All positive real numbers are in the domain of f
- **6.** 1 is in the domain of f
- **7.** *f* is never negative.

http://matti.usu.edu/grapher/