
Math 3010 § 1.
Treibergs

Second Midterm Exam Name: Practice Problems
March 7, 2018

Here are some problems soluble by methods encountered in the course. I have tried to select
problems ranging over the topics we’ve encountered. Admittedly, they were chosen because
they’re fascinating to me. As such, they may have solutions that are longer than the questions
you might expect on an exam. But some of them are samples of homework problems. Here are
a few of my references.
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1. Find the least common multiple of 3, 130, 512 and 509, 652.

By the factoring method, 3, 130, 512 = 24 · 3 · 72 · 113 and 509, 652 = 22 · 34 · 112 · 13 so
lcm(3, 130, 512, 509, 652) = 24 · 34 · 72 · 113 · 13 = 1, 098, 809, 712.

Or we may use the formula involving the greatest common denominator. gcd(3, 130, 512, 509, 652) =
22 · 3 · 112 = 1452 so

lcm(3, 130, 512, 509, 652) =
3, 130, 512 · 509, 652

1452
= 1, 098, 809, 712.

2. Use the Chinese square root algorithm to find
√

226, 576.

Note that 10002 = 1, 000, 000 is too large so seek the root in the form 100a+ 10b+ c where
a, b and c are integers from 0 to 9. Discarding the lower terms, we need the largest a so
that

226, 576 ≥ (100a)2 = 10, 000a2

For a = 4 this is 10, 000a2 = 160, 000 ≤ 226, 576 which works, but for a = 5 this is
10, 000a2 = 250, 000 > 226, 576 which is too large. Thus a = 4. Next we need the largest b
so that

226, 576 ≥ (100a+ 10b)2 = (100a)2 + 2(100a)(10b) + (10b)2 = 160, 000 + 8000b+ 100b2.
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This implies that

226, 576− 160, 000 = 66, 576 ≥ 2(100a)(10b) = 8000b

for which the largest integer is b = 8 since 66, 576 ≥ 8000b = 64, 000 but b = 9 is too large
because then 66, 576 < 8000b = 72, 000. Adding the last term we have to check that

66, 576
?
≥ 2(100a)(10b) + (10b)2.

But for b = 8 this is

2(100a)(10b) + (10b)2 = 8000b+ 100b2 = 64, 000 + 6, 400 = 70, 400

which is too big. This implies that b = 7. Now we seek the largest c so that

226, 576 ≥ (100a+ 10b+ c)2 = (100a+ 10b)2 + 2(100a+ 10b)c+ c2 = 4702 + 2 · 470c+ c2.

This implies
226, 576− 220, 900 = 5676 ≥ 470c

for which the largest solution is c = 6 because then 5675 ≥ 940c = 5640 but for c = 7,
5675 < 940c = 6540. Checking c = 6

5676
?
≥ 940c+ c2 = 5640 + 36 = 5675.

Thus 476 is the square root of 226, 576 on the nose.

3. Use the Chinese cube root algorithm to find 3
√

478, 211, 768.

Note that 10003 = 109 is too large. Thus look for a solution of the form 100a + 10b + c
where a, b, c ∈ {0, 1, . . . , 9}. We want the largest a so that

478, 211, 768 ≥ (100a)3 = 1, 000, 000a3

a = 7 works because 73 = 343 but 83 = 512 is too big. Now seek the largest b so that

478, 211, 768 ≥ (100a+ 10b)3 = (100a)3 + 3(100a)210b+ 3(100a)(10b)2 + (10b)3

or

478, 211, 768− (100a)3 = 135, 211, 768 ≥ 3(100a)210b+ 3(100a)(10b)2 + (10b)3

= b(14700000 + 210000b+ 1000b2)

The largest such b = 8 since

b(14700000 + 210000b+ 1000b2) = 131, 552, 000

but b = 9 is too large because then

b(14700000 + 210000b+ 1000b2) = 150, 039, 000.

Now seek the largest c so that

478, 211, 768 ≥ (100a+ 10b+ c)3 = (100a+ 10b)3 + 3(100a+ 10b)2c+ 3(100a+ 10b)c2 + c3

or

478, 211, 768− (100a+ 10b)3 = 3, 659, 768 ≥ 3(100a+ 10b)2c+ 3(100a+ 10b)c2 + c3

= c(1825200 + 2340c+ c2)

The largest such c = 2 when

c(1825200 + 2340c+ c2) = 3, 659, 768.

Thus 782 is the cube root of 478, 211, 768 on the nose.
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4. Let Pn and P ′n denote inscribed and circumcibed regular n-gons of a circle of radius r. Use
Liu Hui’s algorithm to compute inscribed areas A(Pn) and A(P ′n) for n = 6, 12, 24, 48 and
96. [Katz, A History of Mathematics, 2009, p. 227]

The algorithm starts with lengths cn and c′c of the sides of the inscribed and circumscribed
6 · 2n−1-gon. Assuming r = 1 these are c6 = 1 and c′6 = c6/a6 = 2/

√
3. Then we proceed

with Liu Hui’s recursion.

Using Pythagorean theorem, we can compute first an from r and cn/2 and then c2n from
an and cn/2.

an =

√
r2 −

(cn
2

)2
;

c2n =

√(cn
2

)2
+ (r − an)2.

At the same time, we get the side of the circumscribing polygon by similar triangles

c′n
r

=
cn
an
.

From these the area of the next polygon may be computed. The number of triangles times
base times height of a sector of P2n yields

A(P2n) = 2n · 1

2

cn
2
r =

1

2
ncn.

We now do the computation in a little R c©program. Of course, Liu Hui had to take square
roots the long way by hand!

c=1;

cp=2/sqrt(3);

for(i in 0:10){k=3*2^i;

print(c(2^i*6, c,k*c,cp,k*cp));

a=sqrt(1-c^2/4);

cn=sqrt(c^2/4+(1-a)^2);

cp=c/a;

3



c=cn;

ap=sqrt(1-cp^2/4);

cq=sqrt(cp^2/4+(1-ap)^2);

cp=cq}

This produces the output, (where I have added labels and edited).

n c_n A(P_2n) c_n’ A(P_2n’)

----- --------- --------- ----------- ---------

6 1.0000000 3.0000000 1.1547010 3.4641020

12 0.5176381 3.1058285 0.6058109 3.6348654

24 0.2610524 3.1326286 0.2704328 3.2451939

48 0.1308063 3.1393502 0.1319399 3.1665579

96 0.0654382 3.1410320 0.06557873 3.1477788

192 0.0327235 3.1414525 0.03274100 3.1431358

384 0.0163623 3.1415576 0.01636447 3.1419782

768 0.0081812 3.141584 0.00818148 3.141689

1536 0.0040906 3.141590 0.00409065 3.141617

3072 0.0020453 3.141592 0.00204531 3.141599

6144 0.0010226 3.141593 0.00102265 3.141594

5. Problem 17 from Chapter VII of Nine Chapters came with a solution. Explain why the given
solution works

“The price of one acre of good lane is 300 pieces of gold; the price of 7 acres of bad land is
500. One has purchased altogether 100 acres; the price was 10, 000. How much good land
was bought and how much bad?”

Solution given: “Suppose there were 20 acres of good land and 80 acres of bad. Then the
surplus is s = 1714 2

7 . If there were 10 acres of good land and 90 acres of bad, the deficiency
is d = 571 3

7 . Then the solution is

20d+ 10s

s+ d
= 12

1

2
acres of good land and 100− 12

1

2
= 87

1

2
of bad.

[Katz, A History of Mathematics, 2009, p. 210]

The system for x acres of good and y acres of bad being solved is

x+ y = 100

300x+
500

7
y = 10, 000

If one tries a couple of points that satisfy the first equation x1+y1 = 100 and x1+y1 = 100,
the second yields the surplus s and deficit d by

300x1 +
500

7
y1 = 10, 000 + s

300x2 +
500

7
y2 = 10, 000− d

Let’s look for solutions that are convex combinations of (x1, y1) and (x2, y2). That means,
if for some t,

(x, y) = [1− t](x1, y1) + t(x2, y2)
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satisfies x+ y = 100. Substituting into the second equation,

300x+
500

7
y = 10, 000 + [1− t]s− td.

We seek t0 such that [1− t0]s− t0d = 0 or s = t0(s+ d). That t0 is

t0 =
s

s+ d
.

It follows that

x = [1− t0]x1 + t0x2 =
dx1 + sx2
s+ d

as claimed.

6. Solve Problem 3 from Chapter VII of Nine Chapters. There are 9 equal pieces of gold and
11 equal pieces of silver. The two lots weigh the same. If one piece is removed from each lot
and put in the other, the lot containing mainly gold is found to contain 13 ounces less than
the lot containing mainly silver. Find the weight of each piece of gold and silver. [Burton,
The History of Mathematics 7th ed., 2007, p. 265]

Let x and y denote the weights of each piece of gold and of silver, respectively. The euqations
to be solved are

9x = 11y

8x+ y = 10y + x− 13

Rearranging

9x− 11y = 0

7x− 9y = −13

Using the Chinese method of solving simultaneous equations, subtract 7 times the first
eqution from 9 times the second

9x− 11y = 0

−4y = −117

so that back-substituting,

y =
117

4
= 29

1

4
oz.

x =
11

9
y =

1287

36
= 35

3

4
oz.

7. This is problem 8 in Li Ye’s 1259 book Old Mathematics in Nine Expanded Sections.There
is a circular pond in the middle of a square, and the area of the square outside the pond
is 3300 square pu. It is known only that the sum of the perimeters of the square and the
circle is 300 pu. Find the perimeters of the square and the circle. [Burton, The History of
Mathematics 7th ed., 2007, p. 260]

Let x be the diameter of the circular pond. The perimeter of the pond is πx, making the
perimeter of the square field 300 − πx. Its area is 1

16 (300 − πx)2. The area of the circular
pond is π

4x
2. The difference is

1

16
(300− πx)2 − π

4
x2 = 3300
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which yields the equation

π(4− π)x2 + 600πx− 37, 200 = 0.

Thus, by the quadratic formula the diameter of the pond is

x =
−600π +

√
6002π2 + 4π(4− π) · 37, 200

2π(4− π)
= 19.2074 pu.

So the perimeters of the field and pond are 300− πx = 239.6582 and πx = 60.34183 pu.
Using the Chinese approximation “π = 3,” the equation is

3x2 + 1800x− 37, 200 = 0,

so x = 20 and the perimeters of the field and pond are 300− 3x = 240 and 3x = 60 pu.

8. This is a problem from Liu Hui’s 264 book Sea Island Mathematical Manual.There is a
square, walled city of unknown dimensions. A man erects two poles d feet apart in the
north-south direction east of the city and joins them with with a string at eye-level. The
southern pole is in a straight line with the southwestern and southeastern corners of the
city. By moving eastward a1 feet from the southern pole, the man’s observation with the
northeast corner of the city intersects the string at a point b feet from the southern end. He
goes again a2 feet from the pole until the northeastern corner is in line with the northern
pole. What is the length of the side of the square city? [Burton, The History of Mathematics
7th ed., 2007, p. 265]

In the diagram, the poles are located at C and G. Let I be the point on EJ such that DI
is parallel to BJ . By the similarity of 4(CGJ) and 4(DGI) it follows that

GH +HI

DG
=
GJ

CG

The the similarity of the triangles 4(BHJ) and 4(DHI) and of 4(BFH) and 4(DGH),

HJ

HI
=
BH

DH
=
BF

DG
.

Thus

x = BF =
DG ·HJ
HI

=
DG · (GJ −GH)
GJ·DG
CG −GH

=
b · (a2 − a1)

a2 · b
d
− a1

.
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9. Does the equation have an integral solution? If so, find all solutions.

132x+ 378y = 30 (1)

The equation has a solution if d | 30 where d = gcd(132, 378). Using the Euclidean algo-
rithm,

378 = 2 · 132 + 114

132 = 1 · 114 + 18

114 = 6 · 18 + 6

18 = 3 · 6 + 0

so gcd(132, 378) = 6. Since 6 | 30, the Diophantine equation is soluble. 30 = 5 · 6 so first
solve (1) with RHS= d. Working backwards, we find

6 = 114− 3 · 18

= 114− 6 · (132− 114) = 7 · 114− 6 · 132

= 7 · (378− 2 · 132)− 6 · 132 = 7 · 378− 20 · 132

Multiplying by 5 we see that

30 = 132 · (−100) + 378 · 35

so one solution is x = −100 and y = 35.

Let’s divide (1) by d = 6.
22x+ 63y = 5 (2)

Note that any solution of (1) is a solution of (2) and vice versa. Note also that gcd(22, 63) =
1. We know that x = −100 and y = 35 is one solution of (2) and so of (1). Suppose that
(x̃, ỹ) were another

22x̃+ 63ỹ = 5

Then, subtracting,
22(x− x̃) + 63(y − ỹ) = 0

Since gcd(22, 63) = 1, this says 22 | (y − ỹ) or

(y − ỹ) = 22k

for some integer k. Substituting back, this says

22(x− x̃) + 63 · 22k = 0

or
(x− x̃) + 63k = 0

We have shown that every solution of (1) has the form

x̃ = x+ 63k, ỹ = y − 22k

where (x, y) = (−100, 35) is one solution and k is any integer.

7



10. Find the smallest positive solution.

2360x ≡ 16 mod 2244

This is equivalent to solving
2244x+ 2360y = 16.

The Euclidean algorithm yields

2360 = 1 · 2244 + 116

2244 = 19 · 116 + 40

116 = 2 · 40 + 36

40 = 1 · 36 + 4

36 = 9 · 4 + 0

so d = gcd(2244, 2360). Since d | 16 the equation is soluble. Working backwards,

4 = 40− 36

= 40− (116− 2 · 40) = 3 · 40− 116

= 3 · (2244− 19 · 116)− 116 = 3 · 2244− 58 · 116

= 3 · 2244− 58 · (2360− 2244) = 61 · 2244− 58 · 2360

Multiplying by 4 gives one solution

2360(−232) + 2244 · 244 = 16.

so x = −232 and y = 244. Dividing by d gives an equivalent equation

590x+ 561y = 4

where gcd(561, 590) = 1. Thus all solutions of the Diophantine equations are

x = −232 + 561k, y = 244− 590k

where k is an integer. Thus the smallest positive solution occurs when k = 1 and x = 329.
To see that this is indeed a solution,

590 · 329 = 561 · 346 + 4.

11. Solve the simultaneous congruences using Sun Zi’s method.

x ≡ 2 mod 5

x ≡ 3 mod 7

x ≡ 4 mod 13

We seek x1 x2 and x3 so that

x1 ≡ 1 mod 5 x2 ≡ 0 mod 5 x3 ≡ 0 mod 5

x1 ≡ 0 mod 7 x2 ≡ 1 mod 7 x3 ≡ 0 mod 7

x1 ≡ 0 mod 13 x2 ≡ 0 mod 13 x3 ≡ 1 mod 13

Then a solution is x = 2x1 + 3x2 + 4x3.
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The second and third congruences imply x1 = 7 · 13j = 91j for some integer j. Then the
first congruence implies

91j + 5k = 1

which has a solution by inspection j = 1 and k = −18. Thus x1 = 91j = 91.

The first and third congruences imply x2 = 5 · 13j = 65` for some integer `. Then the
second congruence implies

65`+ 7m = 1.

By the Euclidean algorithm

65 = 9 · 7 + 2

7 = 3 · 2 + 1

2 = 2 · 1 + 0

Working backwards

1 = 7− 3 · 2 = 7− 3 · (65− 9 · 7) = 28 · 7− 3 · 65

so ` = −3 and x2 = 65` = −195.

The first and second and congruences imply x3 = 5 · 7n = 35n for some integer n. Then
the third congruence implies

35n+ 13p = 1.

By the Euclidean algorithm

35 = 2 · 13 + 9

13 = 1 · 9 + 4

9 = 2 · 4 + 1

4 = 4 · 1 + 0

Working backwards

1 = 9− 2 · 4 = 9− 2 · (13− 9) = 3 · 9− 2 · 13 = 3 · (35− 2 · 13)− 2 · 13 = 3 · 35− 8 · 13

so n = 3 and x3 = 35n = 105.

Thus an answer to the simultaneous congruences is

x = 2x1 + 3x2 + 4x3 = 2 · 91 + 3 · (−195) + 4 · 105 = 17.

To see that this is a solution, we observe that

17 = 3 · 5 + 2 = 2 · 7 + 3 = 1 · 13 + 4.
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12. Find all solutions to the simultaneous congruences.

x ≡ 1 mod 6

x ≡ 5 mod 11

x ≡ 7 mod 13

The first implies x = 6j + 1 for some integer j. The second then implies

6j + 1 ≡ 5 mod 11

or
6j ≡ 4 mod 11.

Hence
6j + 11k = 4

Because 6 · 2 + 11 · (−1) = 1 we have 6 · 8 + 11 · (−4) = 4. Hence, since gcd(6, 11) = 1, all
solutions have the form

j = 11`+ 8, k = −6`− 4

where ` is an integer. Thus x = 6j + 1 = 6(11`+ 8) + 1 = 66`+ 49. The third congruence
implies

66`+ 49 ≡ 7 mod 13

or
66` ≡ −42 mod 13.

Hence
66`+ 13m = −42.

Because 66·1+13·(−5) = 1 we have 66·(−42)+13·(210) = −42. Hence, since gcd(66, 13) = 1,
all solutions have the form

` = 13n− 42, k = −66m+ 210

where n is an integer. It follows that all solutions are of the form

x = 66`+ 49 = 66 · (13n− 42) + 49 = 858n− 2723

Note that 6 · 11 · 13 = 858 leaves zero remainder divided by 6, 11 and 13. If n = 4, x = 709.
To see that it is a solution of the simultaneous congruences

709 = 118 · 6 + 1 = 64 · 11 + 5 = 54 · 13 + 7.

13. Problem 2 of Zhu Shijie’s Jade Mirror of Four Unknowns is to find the sides of the right
triangle (a, b, c) such that

a2 − (b+ c− a) = ab

b2 + (a+ c− b) = bc

Jade Mirror suggests substituting x = a and y = b + c. Using a2 = c2 − b2 show that this
implies

b = (y − x2/y)/2

c = (y + x2/y)/2.
(3)
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Deduce that the first two equations are equivalent to

(−2− x)y2 + (2x+ 2x2)y + x3 = 0 (4)

(2− x)y2 + 2xy + x3 = 0. (5)

By subtracting one equation from the other, deduce that y = x2/2. Substitute this back and
obtain a quadratic equation for x. Then find x, a, b, c. [Stillwell, p. 91.]

Factoring
x2 = a2 = c2 − b2 = (c+ b)(c− b) = y(c− b)

implies the 2× 2 system

b− c = −x
2

y

b+ c = y

whose solution is (3)

b =
1

2

(
y − x2

y

)
; c =

1

2

(
y +

x2

y

)
.

Substituting into the first equation

x2 − (y − x) =
x

2

(
y − x2

y

)
simplifies to (4)

(−2− x)y2 + (2x+ 2x2)y + x3 = 0.

Substituting into the second,

1

4

(
y − x2

y

)2

+

(
x+

x2

y

)
=

1

4

(
y − x2

y

)(
y +

x2

y

)
.

Multiplying out
1

4

(
y2 − 2x2 +

x4

y2

)
+

(
x+

x2

y

)
=

1

4

(
y2 − x4

y2

)
which simplifies to

1

4

(
−2x2 +

x4

y2

)
+ x+

x2

y
= − x4

4y2
.

Multiplying by 2y2/x gives (5)

(2− x)y2 + 2xy + x3 = 0.

Sebtracting (4) from (5) yields
4y2 − 2x2y = 0

or

y =
1

2
x2.

Substituting into (5) yields
1

4
(2− x)x4 + 2x3 = 0

or
x3(x2 − 2x− 8)

whose roots are x = 0, 4,−2. Taking the only root that is a positive length x = a = 4,

y =
1

2
x2 = 8; b =

1

2

(
y − x2

y

)
= 3, c =

1

2

(
y +

x2

y

)
= 5.
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14. Use Qin Jiuhao’s method to find a root of

x4 − 57981x2 − 5808100 = 0.

The idea is to mimic the cube root algorithm. Let

f(x) = x4 − 57981x2 − 5808100.

We have
f(1000) = 1012 = 5.7981× 1010 − 5.8081× 106 � 0

so x = 1000 is too big. Look for solutions of the form x = 100a+ 10b+ c. We have

f(200) = −725048100, f(300) = 2875901900

so a = 2. The idea is to change variables to x = 200 + y where y = 10b. This is done
by dividing f(x) by y = x − 200 to get a smaller polynomial in y. Using long division,

x3 +200x2 −17981x −3596200

x− 200
)

x4 −57981x2 −5808100

x4 −200x3

200x3 −57981x2

200x3 −40000x2

−17981x2

−17981x2 +3596200x

−3596200x −5808100

−3596200x +719240000

−725048100

Hence
f(x) = (x− 200)[x3 + 200x2 − 17981x− 3596200]− 725048100

Repeating,
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x2 +400x +62019

x− 200
)

x3 +200x2 −17981x −3596200

x3 −200x2

400x2 −17981x

400x2 −80000x

62019x −3596200

62019x −12403800

8807600

Hence

f(x) = (x− 200)
[
(x− 200)[x2 + 400x+ 62019] + 8807600

]
− 725048100

Repeating,

x +600

x− 200
)

x2 +400x +62019

x2 −200x

600x +62019

600x −120000

182019

Hence

f(x) = (x− 200)
[
(x− 200)

[
(x− 200)[x+ 600] + 182019

]
+ 8807600

]
− 725048100

= y
[
y
[
y[y + 800] + 182019

]
+ 8807600

]
− 725048100

= y4 + 800y3 + 182019y2 + 8807600y − 725048100

Let
g(y) = y4 + 800y3 + 182019y2 + 8807600y − 725048100

Note that
g(100) = 2875901900

is too big. Now we look for y = 10b. Observe that

g(40) = −27753700, g(50) = 276629400

so that b = 4. Now let look for solutions of the form y = 40 + z. As before, we divide g(y)
by z = y − 40.
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y3 +840y2 +215619y +17432360

y − 40
)

y4 +800y3 +182019y2 +8807600y −725048100

y4 −40y3

840y3 +182019y2

840y3 −33600y2

250819y2 +8807600y

215619y2 −8624760y

17432360y −725048100

17432360y −697294400

−27753700

Hence
g(y) = (y − 40)[y3 + 840y2 + 215619y + 17432360]− 27753700

Repeating,

y2 +880y +250819

y − 40
)

y3 +840y2 +215619y +17432360

y3 −40y2

880y2 +215619y

880y2 −35200y

250819y +17432360

250819y −10032760

27465120

Hence

g(y) = (y − 40)
[
(y − 40)[y2 + 880y + 250819] + 27465120

]
− 27753700

Repeating,
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y +920

y − 40
)

y2 +880y +250819

y2 −40y

920y +250819

920y −36800

287619

Hence

g(y) = (y − 40)
[
(y − 40)

[
(y − 40)[y + 920] + 287619

]
+ 27465120

]
− 27753700

= z
[
z
[
z[z + 960] + 287619

]
+ 27465120

]
− 27753700

= z4 + 960z3 + 287619z2 + 27465120z − 27753700

Let
h(z) = z4 + 960z3 + 287619z2 + 27465120z − 27753700

We notice that h(1) = 0. Thus a solution is x = 241 since f(241) = 0. Where we have used
long division, Qin Jiushao used synthetic division which he executed on a counting board.
For example, here is how the first long division above would be placed as a tableau. His
tableau would have been vertically oriented bottom-to-top instead of the modern horizontal
left-to-right orientation used for synthetic division.

−200 1 0 −57981 0 −5808100

−200 −4000 3596200 719240000

1 200 −17981 −3596200 −725048100

The computation terminated with an integral solution in this case but, in general, the
process can continued to produce as many decimal places for the solution as desired. [c.f.
Franz, pp. 214–217.]

15. Find a solution to Pell’s equation using Bhâskara II’s chakravâla (cyclic process).

x2 − 19y2 = 1

Let N = 19. If the three variables a, b and k satisfy a2 − Nb2 = k we write the triple
“(a, b, k).” Brahmagupta’s formula relating two solutions of Pell’s equation is

(x1x2 +Ny1y2)2 −N(x1y2 + x2y1)2 = (x21 −Ny21)(x22 −Ny22).

Thus if x21−Ny21 = k1 and x22−Ny22 = k2 then we get a formula that combines two solutions
to make a third solution. It may be written

B
(

(x1, y1, k1), (x2, y2, k2)
)

=
(
x1x2 +Ny1y2, x1y2 + x2y1, k1k2

)
.
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By dividing by k2 we get smaller solutions, but they may not be integral. The idea of the
chakravâla is to start from any solution with a small k and then look for another solution
whose combination can be divided. In this way we get a second solution with, hopefully,
smaller k. The procedure is repeated until the original Pell’s equation is solved. The Indian
mathematicians didn’t know if the procedure will ever be successful, but it has been proved
to work in modern times.

Using the fact that m2 − N · 12 = m2 − N we have a family of solutions (m, 1,m2 − N).
Bhâskara II chose m wisely so the combination can be divided. The combination gives

B
(

(a, b, k), (m, 1,m2 −N)
)

=
(
am+Nb, a+ bm, k(m2 −N)

)
Dividing by k2 gives the solution(

am+Nb

k
,
a+ bm

k
,
m2 −N

k

)

The number m is now chosen so that
a+ bm

k
= −n is an integer and so that

m2 −N
k

is as

small as possible. It turns out that
am+Nb

k
and

m2 −N
k

will be integral too [Stillwell, p.

80]. This means that m satisfies the Diophantine equation for m and n.

bm+ kn = −a

If we find a solution m0 and n0, then if gcd(b, k) = 1, all solutions have the form

m = m0 + kt, n = n0 − bt

for some integer t. Now t is chosen so that |m2 −N | is as small as possible.

Let us now show that a small solution can be improved by the cakravâla. By noodling
around, we notice that (a, b, k) = (13, 3,−2) is a small solution. Solving the Diophantine
equation

bm+ kn = 3m− 2n = −13 = −a

we have 3 · 1− 2 · 1 = 1 so that 3 · (−13)− 2 · (−13) = −13. Since gcd(3, 2) = 1, all solutions
have the form

m = −13 + 2t, n = −13 + 3t

for t some integer. For the values t = 2, 4, 5, 6, 7, 8, 9, 10 we havem = −7,−5,−3,−1, 1, 3, 5, 7
so m2 − N = 30, 6,−10,−18,−18,−10, 6, 30, resp., so that the minimum occurs when
t = 4, 9, m = −5, 5 and m2 −N = 6, 6. Taking m = 5 we get the solution(
am+Nb

k
,
a+ bm

k
,
m2 −N

k

)
=

(
13 · 5 + 19 · 3

−2
,

13 + 3 · 5
−2

,
52 − 19

−2

)
= (−61,−14,−3)

so (61, 14,−3) is a solution since the signs of a and b don’t matter.

Cycling again with (a, b, k) = (61, 14,−3), solving the Diophantine equation

bm+ kn = 14m− 3n = −61 = −a

we have 14 ·2−3 ·9 = 1 so 14 · (−122)−3 · (−549) = −61. Since gcd(14, 3) = 1, all solutions
have the form

m = −122 + 3t, n = −549 + 14t
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for t some integer. For the values t = 38, 39, 40, 41, 42, 43 we have m = −8,−5,−2, 1, 4, 7 so
m2 − N = 45, 6,−15,−18,−3, 30, resp., so that the minimum occurs when t = 42, m = 4
and m2 −N = −3. We get the solution(
am+Nb

k
,
a+ bm

k
,
m2 −N

k

)
=

(
61 · 4 + 19 · 14

−3
,

61 + 14 · 4
−3

,
42 − 19

−3

)
= (−170,−39, 1)

so (170, 39, 1) is a solution. Indeed

1702 − 19 · 392 = 28900− 19 · 1521 = 28900− 28899 = 1.

Brahmagupta would have probably simply noticed that

B
(

(13, 3,−2), (13, 3,−2)
)

=
(

340, 78, 4
)

which can be divided by two to get the solution (170, 39, 1).

16. The Baudhayana Sulbasutra from India about 600 bc tells how to circle the squqre and
square the circle. Determine the implicit values of π that these recipes give. [Katz, A
History of Mathematics, 2009, p. 238]

If it is desired to transform a square into a circle,
a chord of length half the diagonal of the square
is stretched from the center to the east,
a part of it lying outside the eastern side of the square.
With one third of the part lying outside
added to the remainder of the half diagonal,
the requisite circle is drawn.

To transform a circle into a square
the diameter is divided into eight parts;
one such part, after being divided into twenty-nine parts,
is reduced by twenty-eight of them
and further by a sixth of the part left
less the eight of the sixth part.
(The remainder is then the side of the required square.)

17



For the first part, let r = L(MN) be the radius of the desired circle. If the side of the

original square is s, then a chord of half the length of the diagonal ME is

√
2s

2
and one

third of the part lying outside GE has length
1

3

(√
2s− s

2

)
. Adding to the remainder of

the half the diagonal (MG) gives

r =
s

2
+

1

3

(√
2s− s

2

)
=

(
√

2 + 2)s

6

Comparing to the formula s2 = πr2,

π =
s2

r2
=

36

(
√

2 + 2)2
≈ 3.088311755.

Let D be the diameter of the circle and s the side of the desired square. D is reduced

twenty-eight twenty-ninths of one eighth D − 28D

29 · 8
, and further reduced by a sixth of the

part left less an eight of the sixth part −
(

D

6 · 29 · 8
− D

8 · 6 · 29 · 8

)
resulting in

s =

(
1− 28

29 · 8
− 1

6 · 29 · 8
+

1

8 · 6 · 29 · 8

)
D

Comparing to the formula 4s2 = πD2 ,

π =
4s2

D2
= 4

(
1− 28

29 · 8
− 1

6 · 29 · 8
+

1

8 · 6 · 29 · 8

)2

=
95746225

31002624
≈ 3.088326491.

17. Show the following transformation of solutions of certain Pell’s equations of Brahmagupta:
if u2−Nv2 = −4 then setting x = (u2+2)[ 12 (u2+1)(u3+3)−1] and y = 1

2uv(u2+1)(u2+3) we
have that x and y are integers and solve x2−Ny2 = 1. Then find a solution to x2−13y2 = 1.
[Katz, A History of Mathematics, 2009, p. 262]

Note that if u is odd then u2 + 1 is even and 1
2 (u2 + 1) is an integer so also is

x = (u2 + 2)[
1

2
(u2 + 1)(u3 + 3)− 1].

If u is even then u2 + 2 is even and 1
2 (u2 + 2) is an integer, as is x. If u or v is even, then

1
2uv is an integer, as is

y =
1

2
uv(u2 + 1)(u2 + 3).

If nether u nor v are even then u2 + 1 is even and 1
2 (u2 + 1) is integral, as is y.

Using the equation Nv2 = u2 + 4,

Ny2 =
1

4
Nu2v2(u2 + 1)2(u2 + 3)2

=
1

4
u2(u2 + 4)(u2 + 1)2(u2 + 3)2

=
1

4

{
(u2 + 2)2 − 4

}
(u2 + 1)2(u2 + 3)2

=
1

4
(u2 + 2)2(u2 + 1)2(u2 + 3)2 − (u2 + 1)2(u2 + 3)2

18



but

x2 = (u2 + 2)2
{

1

2
(u2 + 1)(u2 + 3)− 1

}2

= (u2 + 2)2
{

1

4
(u2 + 1)2(u2 + 3)2 − (u2 + 1)(u2 + 3) + 1

}
=

1

4
(u2 + 2)2(u2 + 1)2(u2 + 3)2 − (u2 + 2)2

{
(u2 + 1)(u2 + 3)− 1

}
so

x2 −Ny2 = −(u2 + 2)2
{

(u2 + 1)(u2 + 3)− 1

}
+ (u2 + 1)2(u2 + 3)2

= −(u2 + 2)2
{
u4 + 4u2 + 2

}
+ (u4 + 4u2 + 3)2

= −(u2 + 2)2
{

(u2 + 2)2 − 2

}
+
[
(u2 + 2)2 − 1

]2
= −(u2 + 2)4 +

{
2(u2 + 2)2 +

[
(u2 + 2)2 − 1

]2}
= −(u2 + 2)4 +

{
(u2 + 2)4 + 1

}
= 1.

We note that 32 − 13 · 12 = −4 so we may take N = 13, u = 3 and v = 1. Then

x = (u2 + 2)

[
1

2
(u2 + 1)(u2 + 3)− 1

]
= (32 + 2)

[
1

2
(32 + 1)(33 + 3)− 1

]
= 649,

y =
1

2
uv(u2 + 1)(u2 + 3) =

1

2
· 3 · 1 · (32 + 1)(32 + 3) = 180.

Indeed
6492 − 13 · 1802 = 421201− 13 · 32400 = 421201− 421200 = 1.

18. Among the triangles whose sides are a = 12, b = 5 and an integer c, which are rational?

The triangle inequalities, which say that the length of every side is less than the sum of the
lengths of the other sides

c ≤ a+ b, b ≤ a+ c, a ≤ b+ c

imply for a = 5 and b = 12 that

7 = |a− b| = max{b− a, a− b} ≤ c ≤ a+ b = 17.

If either equality holds, then the triangle degenerates to a line: the two shorter sides lie on
the longest side. Their area is zero so they are rational.

Thus the non-degenerate triangles correspond to those whose third side c = 8, 9, . . . , 16.
For example if c = 13 then the triangle is right and its area is 1

2ab = 30 is rational.

To compute the area in general, let us employ Heron’s formula.

A =
√
s(s− a)(s− b)(s− c), where s =

a+ b+ c

2
is the semiperimeter.
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We find for a = 5 and b = 12

16s(s− a)(s− b)(s− c) = (a+ b+ c)(b+ c− a)(a+ c− b)(a+ b− c)
= (17 + c)(c+ 7)(c− 7)(17− c) = (289− c2)(c2 − 49)

We obtain

c 289− c2 c2 − 49 (289− c2)(c2 − 49) A

8 225 = 32 · 52 15 = 3 · 5 3375 14.52369

9 208 = 22 · 3 · 17 32 = 25 6656 20.39608

10 189 = 33 · 7 51 = 3 · 17 9639 24.54460

11 168 = 23 · 3 · 7 72 = 23 · 32 12096 27.49545

12 145 = 5 · 29 95 = 5 · 19 13775 29.34174

13 120 120 14400 30.00000

14 93 = 3 · 31 147 = 3 · 72 13671 29.23076

15 64 = 26 176 = 24 · 11 11264 26.53300

16 33 = 3 · 11 207 = 32 · 23 6831 20.66247

Note that, except for c = 8 and c = 13, each (289 − c2)(c2 − 49) has at least one prime
factor to the first power, which has an irrational square root, thus an irrational area. When

c = 8, A =
15
√

15

4
which is also irrational. Thus the only rational triangle is the right one

with c = 13.

19. Aryabhata (476–570) knew the following formula. Prove it.

13 + 23 + · · ·+ n3 = (1 + 2 + · · ·+ n)2.

Let Sn = 13 + 23 + · · ·+ n3 and Tn = 1 + 2 + · · ·+ n. We first prove

Tn =
n(n+ 1)

2

Using induction, when n = 1 we have T1 = 1 =
1 · 2

2
proving the base case. Assuming the

induction hypothesis,

Tn+1 = Tn + (n+ 1) =
n(n+ 1)

2
+ (n+ 1) =

n(n+ 1) + 2(n+ 1)

2
=

(n+ 1)(n+ 2)

2
,

proving the induction case.

For the original question, using induction, when n = 1 we have S1 = 13 = (1)2 proving the
base case. Assume the formula holds for n. Then, using the induction hypothesis and the
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formula for Tn,

Sn+1 = Sn + (n+ 1)3

= T 2
n + (n+ 1)(n+ 1)2

= T 2
n + n(n+ 1)2 + (n+ 1)2

= T 2
n + 2Tn(n+ 1) + (n+ 1)2

= (Tn + (n+ 1))
2

= (Tn+1)
2
.

Combining formulas, we have also proved that

Sn =
n2(n+ 1)2

4
.

20. Solve this problem from Mahavira’s text (ad 950) which was the first book devoted entirely
to mathematics. [Katz, A History of Mathematics, 2009, p. 262]

One-third of a herd of elephants
and three times the square root
of the remaining part of the herd
were seen on a mountain slope;
and in a lake was seen a male elephant
along with three female elephants
constituting the ultimate remainder.
How many were the elephants here?

The quadratic formula was well known among Indian mathematicians at this time. Let x
denote the number of elephants in the herd. Then the verse tells us where parts of the herd
reside

1

3
x+ 3

√
x− 1

3
x+ 1 + 3 = x

so that

3

√
2

3
x =

2

3
x− 4.

Squaring

9 · 2

3
x =

(
2

3
x− 4

)2

=
4

9
x2 − 16

3
x+ 16

or
4

9
x2 − 34

3
x+ 16 = 0.

Solving for x by the quadratic formula

x =
−b±

√
b2 − 4ac

2a

=
9

8

(
34

3
±
√

342

32
− 4 · 4

9
· 16

)

=
9

8

(
34

3
±
√

100

)
=

9

8

(
34

3
± 30

3

)
= 3 · 8, 3 · 1

2
= 24,

3

2
.

The number of elephants is a whole number so x = 24 elephants.
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21. Use the half-angle formula, the addition formulas and Pythagorean theorem to compute the
missing entries in the Indian table of sines. These were certainly known to Bhaskara I. (You
do not need to use the Indian method to find square roots!) Then check using a calculator.
[Sin(α) = R sinα where R = 3438 and α is in minutes.]

Minutes Sine Sine Difference

0 0 * * *

900

1800 1719

2700

3600

4500

5400 3438

Recall that Sin(α) = R sinα is the Indian Sine.
900′

60 min. per deg.
= 15◦. The half angle

formula is

Sin
(α

2

)
= R sin

(α
2

)
= R

√
1− cosα

2

2700′ = 45◦, so Sin(2700′) = R√
2

= 2431.033 ≈ 2431. Checking, R sin(45◦) = 2431.033.

3600′ = 60◦ so Cos(60◦) = R cos 60◦ = 3438 ·
√

3

2
= 2977.395 ≈ 2977. Checking R sin 60◦ =

2977.395. Note Cos(30◦) = Sin(60◦).

Now cos(1800′) =

√
3

2
so

Sin(900′) = 3438

√√√√1−
√

3

2
2

= 889.8199 ≈ 890

Checking R sin(15◦) = 889.8199.

Finally 4500′ = 75◦. From the addition formula

Sin(4500′) = R sin(45◦ + 30◦)

= R(sin(45◦) cos(30◦) + cos(45◦) sin(30◦)

= 3438

(√
2

2
·
√

3

2
+

√
2

2
· 1

2

)
= 3320.853 ≈ 3321

Checking, R sin(75◦) = 3320.853.

The differences are current sine minus the previous sine. The completed table is
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Minutes Sine Sine Difference

0 0 * * *

900 890 890

1800 1719 829

2700 2431 712

3600 2977 546

4500 3321 344

5400 3438 117

22. Use Brahmagupta’s second order difference scheme to approximate the Indian Sin(700′).
Recall R = 3438. Use the partial table of Bhaskara.

Minutes Sine Sine Difference

0 0 * * *

225 225 225

450 449 224

675 671 222

900 890 219

1025 1105 215

1250 1315 210

Let 700′ = 675′+x. In general, for 0 ≤ x ≤ 225, Brahmagupta’s formula amounts to finding
the parabola p(675′ + x) that fits the points p(450) = 449, p(675) = 671 and p(900) = 890
and then evaluating p(700). Let us give a modern derivation of Brahmagupta’s interpolation
formula. Because the step d = 225′ is constant, we may write

p(675 + x) = c0 + c1x+ c2x
2

We get a 3× 3 system for the coefficients

449 = y1 = p(450) = p(675− d) = c0 − c1d+ c2d
2

671 = y2 = p(675) = p(675− 0) = c0

890 = y3 = p(900) = p(675 + d) = c0 + c1d+ c2d
2
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Solving we get c0 = y2, y3 − y1 = 2c1d and y3 + y1 = 2c0 + 2c2d
2 so

c0 = y2,

c1 =
y3 − y1

2d
=

(y3 − y2) + (y2 − y1)

2d
,

c2 =
y3 − 2y2 + y1

2d2
=

(y3 − y2)− (y2 − y1)

2d2

Note that the coefficients are expressible in terms of the sine differences. Hence

p(675 + x) = y2 +
(y3 − y2) + (y2 − y1)

2d
x+

(y3 − y2)− (y2 − y1)

2d2
x2

In the present case, 700′ = 675′ + 25′ so

p(675 + 25) = 671 +
219 + 222

2 · 225
· 25 +

119− 222

2(225)2
· 252 = 694.8642 ≈ 695 .

In fact R sin 700′ = 695.224.

23. Show that Bhaskara I’s rational approximation formula approximates Sin(α) with an error of
no more than 1%. Find the values that are most in error. [Katz, A History of Mathematics,
2009, p. 263]

Sin(x) ≈ ρ(α) =
4Rα(180− α)

40, 500− α(180− α)
, where R = 3438.

The historian R. C. Gupta has given the following suggestion on how this formula was
derived [Ganita Bharati 8, (1986).] Both the functions

P (α) =
Rα(180− α)

90 · 90

F (α) =
α(180− α) Sin(α)

90 · 90
=

Sin(α)P (α)

R

have the single-peaked, symmetric about α = 90 shape of Sin(α) and agree with it at the

angles α = 0, 90, 180. At α0 = 30, 150, Sin(α0) =
1

2
R whereas

P (α0) =
R · 30(180− 30)

90 · 90
=

5

9
R; F (α0) =

30(180− 30) Sin(α0)

90 · 90
=

5

18
R

Thus, requiring that the rational function of P (α) and F (α) give the correct values also at
α = α0 we have

P (α0)− Sin(α0)

F (α0)− Sin(α0)
=

5

9
R− 1

2
R

5

18
R− 1

2
R

= −1

4

Solving for Sin(α0),

P (α0)− Sin(α0) = −1

4
Sin(α0)

(
P (α0)

R
− 1

)
or

Sin(α0) =
4P (α0)

5− P (α0)

R

=
4Rα0(180− α0)

40500− α0(180− α0)
= ρ(α0)
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At α0 the rational function is also correct.

ρ(α0) =
4R · 30(180− 30)

40500− 30(180− 30)
=

1

2
R.

Let us look at the error
E(x) = Sin(x)− ρ(x).

Its derivative is

E′(x) =
Rπ

180
cos
( πx

180

)
− 16200R(180− 2x)

[40500− x(180− x)]2

It equals zero at x = 11.543829 and x = 51.345846 at the minimum and maximum of
E(x). At these points E(11.54382879) = −5.610008 and E(51.34584599) = 4.619629, the
points were the maximum discrepancy occurs. At worst, |E(x) − ρ(x)| ≤ 5.61. To get the
percentage error, we consider the ratio

R(x) = 100
Sin(x)− ρ(x)

Sin(x)
.
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The worst percentage error occurs at z = 0◦ and x = 180◦. We find the value using
L’Hopital’s rule.

lim
x→0+

R(x) = lim
x→0+

100E(x)

Sin(x)
lim
x→0+

= lim
x→0+

100 d
dxE(x)

d
dxSin(x)

= 100 lim
x→0+

Rπ

180
cos
( πx

180

)
− 16200R(180− 2x)

[40500− x(180− x)]2

Rπ

180
cos
( πx

180

)
= 100

π

180
− 16200 · 180

405002
π

180

= −1.859164

We observe that R(10) = −0.9269054. Thus Bhaskara I’s approximation makes less than
2% error for values close to 0◦ and 180◦ and less than 1% error if 10◦ ≤ x ≤ 170◦.

24. Al-Kwarizmi gives the following rule for solving bx+ c = x2:

Halve the number of roots.
Multiply this by itself.
Add this square to the number.
Extract the square root.
Add this to half the number of roots.
That is the solution.

Translate this rule into a formula. Give a geometric argument for its validity using the
figure, where x = AB, b = HC, c is represented by the rectangle ABRH, and G is the
midpoint of HC. [Katz, A History of Mathematics, 2009, p. 318]

The number of roots x is b. The number is c. Thus the verse tells us

x =

√
b

2
· b

2
+ c+

b

2
.

Of course this is just the quadratic formula applied to x2 − bx− c = 0, namely,

x =
−(−b)±

√
(−b)2 − 4a(−c)
2a

=
b±
√
b2 + 4c

2
=
b

2
+

√(
b

2

)2

+ c
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where we take “+” since negative numbers were not recognized.

In the figure, ABDC is a square of side x. On the one hand, the total square has area
x2 which equals the sum of the areas of rectangle HRDC, which is bx, and the rectangle
ABRH which is c, giving the equation.

On the other hand, let us express x in terms of lengths. Since G is the midpoint of HC,

the lengths of HG and GC are
b

2
. On the segment RH, mark off distances RN and KH

also equal to
b

2
. Thus the length NK, which is x− b

2
− b

2
= x− b is the same as the length

of AH. Thus the rectangles MBRN and KNLT have the same area. It follows that the

square AMLB has area equal to the area of the square HKTG, which is
b

2
· b

2
plus the

sum of the areas of the two rectangles AMNH and KNLT which equals the sum of the
areas of the rectangles AMNH and MBRN which add to c. In other words, the area of

the square AMLG is
b

2
· b

2
+ c. The length of a side of this square, AG is thus

√
b

2
· b

2
+ c.

Finally, the total length of AC, namely x, is the sum of the lengths of AG and GC, namely

x =

√
b

2
· b

2
+ c+

b

2
, as to be proved.

25. Solve the following problem of Al-Kwarizmi:

I have 10 divided into two parts,
and have divided the first by the second,
and the second by the first
and the sum of the quotients is 2 1

6 .
Find the solution.

[Katz, A History of Mathematics, 2009, p. 318]

Let x and 10− x be the parts. The problem tells us that

x

10− x
+

10− x
x

=
13

6
.

Multiplying the equation by x(10− x) yields

x2 + (10− x)2 =
13

6
x(10− x)

which simplifies to
6x2 + 600− 120x+ 6x2 = 130x− 13x2

or
25x2 − 250x+ 600 = 0.

Dividing by 25,
x2 − 10x+ 24 = 0.

By the quadratic formula,

x =
−b±

√
b2 − 4ac

2a
=

10±
√

100− 96

2
= 5± 1.

Thus the parts are 4 and 6.
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26. Here is a problem from the Egyption mathematician Abu Kamil ibn Aslam (850–930):

x < y < z, x2 + y2 = z2, xz = y2, xy = 10

Put y =
10

x
and z =

100

x3
and substitute

x2 +
100

x2
=

1002

x6

Clearing fractions
x8 + 100x4 − 1002 = 0

Solving for x4,

x4 =
−b±

√
b2 − 4ac

2a
=
−100±

√
1002 + 4 · 1002

2
= −50± 50

√
5.

The positive root corresponds to

x4 = −50 + 50
√

5

so

x =

√√
−50 + 50

√
5, .

27. Give a combinatorial argument for Ibn al-Banna’s (1256–13210) formula for combinations
Cnk , the number of subsets of size k taken from n things, where order is not important

Cnk =
n− (k − 1)

k
Cnk−1.

To each subset of k − 1 elements, pick one of the remaining n − (k − 1) elements not in
the subset to make up a k element subset. There are [n − (k − 1)]Cnk−1 ways to do this.
However, this scheme results in some duplications. The resulting k element subset could
have occurred with any k − 1 of these k elements taken first, and the remaining element
chosen last, in other words Ckk−1 = k duplications. Hence we must divide by the number of
duplications to yield

Cnk =
n− (k − 1)

Ckk−1
Cnk−1 =

n− (k − 1)

k
Cnk−1.

For example

Cn2 =
n− 1

2
Cn1 =

n(n− 1)

2
, Cn3 =

n− 2

3
Cn2 =

n(n− 1)(n− 2)

3 · 2
.

Continuing in this fashion (or by induction)

Cnk =
n(n− 1) · · · (n− k + 1)

k!
.
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28. Here is a question like those considered by Ahmad al-Abdari ibn Munim (1199–1213) of
Marrakech. How many 11 letter words can be made from an alphabet of 28 letters such that
three letters occur once, one letter occurs twice and two letters occur three times?

There are C28
2 = 378 choices for the two letters that appears three times. The lesser of

these letters may occur in several places in the word. The number of places corresponds
to the number of subsets of size three taken from 11, which is C11

3 = 11 · 10 · 9/3! = 165.
Then greater of these letters may occur in any three places among the remaining 8 letters,
of C8

3 = 8 ·7 ·6/3! = 56 times. Note that we didn’t pick the first letter occurring three times
and its positions and then the second and its positions because the same configuration
occurs twice, once when a letter is chosen first with its positions, or when the letter is
chosen second, with the same positions. There are 26 remaining letter choices for the letter
that occurs twice. It may occur in any of two places among the remaining five places, or
C5

2 = 5 ·4/2 = 10 times. There are 25 remaining choices for the first letter that occurs once,
24 then are left for the second letter that occurs once, and 23 unpicked letters for the last
letter that occurs once. The product is the number of words

n = 378 · 165 · 56 · 26 · 10 · 25 · 24 · 23 = 12, 531, 879, 360, 000.

29. Here is a problem published by Umar ibn Ibrahim al-Khayyami (1048–1131). Find a point
G on the circle ABCD such that the tangent to the circle at G meets the vertical through
the center E at the point I in such a way that

AE

GH
=
EH

BH

Let us assign some dimensions to the circle and get an equation for the pointG. al-Khayyami
chose EH = 10 and GH = x. hence GE2 = x2 + 100.

Now since the line IG is tangent to the circle, ∠EGI = 90◦ is a right angle. Thus the
triangles 4EGI is similar to 4IHG is similar to 4GHE. It follows that

EG

EI
=
EH

EG

of EG2 = EH · EI. Dividing by 10,

GE2

10
=
x2

10
+ 10 =

EH · EI
10

= EI.
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Using the assumption AE · BH = EH · GH we see from AE = EG, HB = EB − EH =
EG− EH, the Pythagorean Theorem that

GH

EG
=
BH

EH
=
EG− EH

EH
=

EG2 − EH2

EH(EG+ EH)
=

GH2

EH(EG+ EH)

which implies
EG+ EH

EG
=
GH

EH
. (6)

Now using similarith of 4IHG and 4GHE so HI/GH = GH/EH, the assumption
EG/GH = EH/BH and (6)

EI = EB +BI

= EG+ (HI −BH)

= EG+

(
GH2

EH
− EH ·GH

EG

)
= EG+GH

(
GH

EH
− EH

EG

)
= EG+GH.

Returning to the equation

x2

10
+ 10 =

EH · EI
10

= EG+GH = EG+ x.

Therefore

100 + x2 = EG2 =

(
x2

10
− x+ 10

)2

=
x4

100
+ x2 + 100− x3

5
+ 2x2 − 20x

which simplifies to

x3 + 200x = 20x2 + 2000 (7)

The solution is realized as the intersection of the hyperbola and the semicircle

xy =
√

20, 000

x2 − 30x+ y2 −
√

800y + 400 = 0

The latter is equivalent to

(x− 15)2 + (y −
√

200)2 = x2 − 30x+ 225 + y2 −
√

800y + 200 = −400 + 225 + 200 = 25,

a circle of radius 5 and center (10
√

2, 15). The hyperbola intersects the circle in two points.
If (x, y) is a solution then from the first equation

y =

√
20, 000

x
.

Substituting into the second

x2 − 30x+
20, 000

x2
− 4000

x
+ 400 = 0
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or

0 = x4 − 30x3 − 400x2 − 4000x+ 20, 000 = (x− 10)(x3 − 20x2 + 200x− 2000)

One of the solutions of the geometric problem is x = 10 and y =
√

200. However this x
does not satisfy the desired cubic equation (7). Hence the other intersection point solves
al-Khayyami’s problem.

30. This is an exercise in spherical trigonometry, following Abu al-Wafa (940–998). On the
unit sphere, suppose 4ABC and 4ADE are two spherical triangles with right angles at B
and D. Then (writing modern sines),

sinBC

sinCA
=

sinDE

sinEA
(8)

which is called the the rule of four quantities. [Katz, A History of Mathematics, 2009,
p. 311]

We give a modern proof using spherical coordinates and a rotation of space. To start,
suppose that A = (0, 0, 1) is the north pole and AB is on the great circle y = 0. If c and b
measure the spherical distance from the north pole and β = ∠BAC then the R3 coordinates
of B and C are

B =


sin c

0

cos c

 , C =


sin b cosβ

sin b sinβ

cos b

 .

Let us rotate space so that the great circle y = 0 stays fixed but the point B moves to
A. This is accomplished by multiplying by the rotations matrix which preserves angles,
distances in space and spherical distances.

R =


cos c 0 − sin c

0 1 0

sin c 0 cos c

 .
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The points A, B and C get moved to

RA =


− sin c

0

cos c

 , RB =


0

0

1

 , RC =


sin b sin c cosβ − cos b sin c

sin b sinβ

sin b sin c cosβ + cos b cos c


Since ∠ABC = 90◦ is a right angle, the rotated point is in the x = 0 great circle, namely

RC =


0

sin a

cos a

 .

Equating the components of the two ways we computed RC we deduce

sin a = sin b sinβ

cos a = sin b sin c cosβ + cos b cos c

These are special cases of the sine law and the cosine law for spherical triangles. If we now
consider two other points D on the ray AB and E on the ray AC where c′ is the length of
AD, b′ is the length AE and ∠ADE = 90◦ is also a right angle. Then the sine law could
have just as well been applied. As the triangles 4BAC and 4DAE share an angle at the
vertex, we deduce from the sine law

sin b

sin a
=

1

sinβ
=

sin b′

sin a′
(9)

which is (8), as desired.

31. Following Abu al-Wafa, using the Rule of Four Quantities, deduce the spherical sine law.
Let 4ABC be a triangle in the unit sphere. Let a, b and c denote the lengths of the sides
opposite the corners, and A, B and C denote the angles at the corners, then

sin a

sinA
=

sin b

sinB
=

sin c

sinC
.

[Katz, A History of Mathematics, 2009, p. 311]

The argument in the previous problem could have been used, with a general angle in place
of the right angles at RB. Starting from the triangle 4ABC, Abu al-Wafa drew the great
circle CD where D is on the great circle through AB such that ∠ADC = 90◦ is a right
angle. Extend the arcs AB to include E and H, AC to include Z and BC to include T
such that the distances AE and AZ are half the distance form A to its antipodal point.
Thus EZ is on the equator if A were the north pole and the angles ∠AEZ and ∠AZE are
right angles. Similarly, suppose that H and T are on the equator for the pole B such that
∠BHT and ∠BTH are right angles.
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The triangles 4ADC and 4AEZ are spherical right triangles with common angle at A and
triangles 4BDC and 4BHT are spherical right triangles with common angle at B. By
the rule of four quantities,

sinDC

sinCA
=

sinEZ

sinZA
sinDC

sinCB
=

sinHT

sinTB

Because the arc EZ is on the equator for the pole A, its length equals the angle ∠BAC =
EZ. Similarly, because the arc HT is on the equator for the pole b, its length equals the
angle ∠ABC = HT . Moreover, the distance from pole to equator AZ and TB is π

2 radians.
Using a = BC and b = CA we obtain

sinDC

sin b
=

sinA

1
sinDC

sin a
=

sinB

1

from which sinA sin b = sinB sin a follows, the first equation in (11). The second equation
using follows by the same argument replacing the points ABC by BCA.

32. The qibla is the direction toward Mecca for prayers. If you are at point P , Mecca is at
point M and the north pole is at point N , then the qibla is the angle at P of the spherical
triangle 4NPM . Use the cosine law and the sine law to find the qibla for Rome. (Rome
has latitude 41◦53′ N, longitude 12◦30′ E. Mecca has latitude 21◦45′ N, longitude 39◦49′ E.)
[Katz, A History of Mathematics, 2009, p. 320]

The side NP has length 90◦ − 41◦53′ = 48◦07′. The side NM has length 90◦ − 21◦45′ =
68◦15′. The difference in longitudes is the angle N = 39◦49′ − 12◦30′ = 27◦19′. The cosine
law gives the length of the side PM

cosPM = cosNP cosNM + sinNP sinNM cosN

= cos(48◦07′) cos(68◦15′) + sin(48◦07′) sin(68◦15′) cos(27◦19′)

= 0.8617802

so PM = 30◦29′. By the sine law

sinP =
sinNM sinN

sinPM
=

sin(68◦15′) sin(27◦19′)

sin(30◦29′)
= 0.8402392.

Since Mecca is southeast of Rome, we must take arcsine in the range 90◦ < P < 180◦ so
that the qibla is P = 122◦50′.
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33. Show that if t is a root of x3 = cx+ d then

r = −t, t

2
±
√
c− 3t2

4

are roots of x3 + d = cx. Use this to solve x3 + 3 = 8x. [Katz, A History of Mathematics,
2009, p. 419]

x = −t solves −x3 = −cx+ d. Cubing r and using t3 = ct+ d,

r3 =
t3

8
± 3t2

4

√
c− 3t2

4
+

3t

2

(
c− 3t2

4

)
±
(
c− 3t2

4

) 3
2

= −t3 +
3ct

2
±
{

3t2

4
+ c− 3t2

4

}√
c− 3t2

4

= −ct− d+
3ct

2
± c
√
c− 3t2

4

= −d+ c

(
t

2
±
√
c− 3t2

4

)
= −d+ cr.

The equation x3 = 8x+ 3 has the root t = 3. Thus

r =
t

2
±
√
c− 3t2

4
=

3

2
±
√

8− 3 · 32
4

=
3±
√

5

2

are roots of x3 + 3 = 8x. Indeed

r3 = 9± 4
√

5 = 8

(
3±
√

5

2

)
− 3 = 8r − 3.

34. Use Cardano’s method to solve the cubic equation and check your answer.

y3 = 5y + 8

Cardano’s trick is to assume y = u+ v. Then substituting in the equation

u3 + v3 + 3uvy = u3 + 3uv(u+ v) + v3 = u3 + 3u2v + 3uv2 + v3 = (u+ v)3 = y3 = 5y + 8

one solves the system

3uv = 5

u3 + v3 = 8.

Letting v =
5

3u
we get

u3 +

(
5

3u

)3

= 8

or

(u3)2 − 8u3 +
53

33
= 0
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By the quadratic formula

u3, v3 =
8

2
±
√

82

4
− 53

33
= 4±

√
16− 125

27
= 4±

√
307

27

Thus one solution is

y =
3

√
4 +

√
307

27
+

3

√
4−

√
307

27
= 2.802589

since u3 + v3 = 8 and

u3v3 = 16− 307

27
=

125

27
=

(
5

3

)3

.

35. Using Cardano’s method, find a solution. Then find all solutions.

x3 − 2x2 − 5x+ 10 = 0.

The first step is to make a change of variables x = y − a to get rid of the squared term.
Substituting

(y3 − 3ay2 + 3a2y − a3)− 2(y2 − 2ay + a2)− 5(y − a) + 10 = 0

We choose a to eliminate the y2 term

−3a− 2 = 0

or a = −2

3
. The equation becomes

y3 +

(
4

3
− 8

3
− 5

)
y +

(
8

27
− 8

9
− 10

3
+ 10

)
= 0

which may be written

y3 =
19

3
y − 164

27
.

Cardano’s trick is to write y = u+ v. Then substituting,

u3 +v3 +3uvy = u3 +3uv(u+v)+v3 = u3 +3u2v+3uv2 +v3 = (u+v)3 = y3 =
19

3
y− 164

27
,

we see it solves the equation if u and v solve the system

3uv =
19

3

u3 + v3 = −164

27
.

Letting v =
19

9u
we get

u3 +

(
19

9u

)3

= −164

27

or

(u3)2 +
164

27
u3 +

193

93
= 0

35



By the quadratic formula

u3, v3 = −82

27
±
√

1642

4 · 272
− 193

93
= −82

27
±
√

822

36
− 193

36
=
−82±

√
135i

27
(10)

The formula asks for the square root of a negative number, so we use complex numbers
where i2 = −1. Thus we have to find cube roots of complex numbers to get to u and v.
Writing a complex number in polar coordinates a + ib = reiθ = r cos θ + ir sin θ where

r = |a+ ib| =
√
a2 + b2 and θ = Atan

(
b

a

)
. The norms are

|u|6 = |v|6 =
822 + 135

272
=

(
19

9

)3

The directions are
u3

|u|3
,
v3

|v|3
= e±iθ =

−82±
√

135i√
822 + 135

so θ = 3.000835. It follows that

u, v =

√
19

3
e±

1
3 θi =

√
19

3

(
cos

(
θ

3

)
± sin

(
θ

3

)
i

)
= 0.7847007± 1.222847 i

Thus one solution is

y = u+ v =
3

√
−82 +

√
135 i

27
+

3

√
−82−

√
135 i

27
= 1.569401.

It follows that

x = y − a = 1.569401 +
2

3
= 2.236068 =

√
5

One checks that x =
√

5 solves the equation.

It is usually impossible to see what surd a given decimal fraction equals. Let us check that
we can explicitly write the cube roots by figuring out a good candidates for u and v, and

checking that their cubes are the ones given by (10). We know that y =
√

5− 2

3
so the real

part of u, v = a ± bi is a =

√
5

2
− 1

3
. We also know that |u| =

√
19

3
. Solving for the other

b leg in a right triangle whose base is a =

√
5

2
− 1

3
and whose hypotenuse is

√
19

3
gives the

complex numbers,

a± ib =

√
5

2
− 1

3
± i

√
3

4
+

√
5

3

whose sum is
√

5 is real. Its cube is the given by (10) since

(a+ ib)3 = a3 − 3ab2 + i(3a2b− b3)

=
−82

27
+

(15− 6
√

5)
√

27 + 12
√

5

27
i

= −−82

27
+

√
135

27
i

because

(15− 6
√

5)2(27 + 12
√

5) = 15 · (27− 12
√

5)(27 + 12
√

5) = 15(272 − 5 · 122) = 135.
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Now that we know that x =
√

5 is a root, by long division we see that

x3 − 2x2 − 5x+ 10 = (x−
√

5)
(
x2 + (

√
5− 2)x− 2

√
5
)

The other roots may be found using the quadratic formula on the quadratic factor

x =
−b±

√
b2 − 4ac

2
=
−
√

5 + 2±
√

9− 4
√

5 + 8
√

5

2
=
−
√

5 + 2± (
√

5 + 2)

2
= 2,−

√
5.

36. Solve using Cardano’s formula. [Burton, The History of Mathematics, 2011, p. 326]

x3 + 24x = 16.

Using Cardano’s trick, assume x = u− v. Then

u3 − v3 − 3uvx = u3 − 3u2v + 3uv3 − v3 = (u− v)3 = −24x+ 16

The equation is satisfied if

3uv = 24

u3 − v3 = 16

Solve these equtions slightly differently than in the text. Cube the first and square the
second.

4u3v3 = 4 · 83

u6 − 2u3v3 + v6 = (u3 − v3)2 = 162

Adding, we get

(u3 + v3)2 = u6 + 2u3v3 + v6 = 162 + 4 · 83 = 28 + 211 = 28 · 9

whose square root gives the second equation of

u3 − v3 = 16

u3 + v3 = 48

whose solution is

u3 = 32

v3 = 16.

Hence a root of the equation is

x = u− v =
3
√

32− 3
√

16 = 0.65496

which is a root of x3 + 24x = 16.

37. Use Viète’s method to find a root of the equation.

x3 − 7x+ 2 = 0

The idea is to change variables so that the left side becomes 4y3−3y and use trig substitution.
Thus, if x = ky, the equation becomes

k3y3 − 7ky = −2.
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We let k =

√
4 · 7

3
so that

4 · 7
3
y3 − 7y = −2 ·

√
3

4 · 7

so, multiplying by
3

7
,

4y3 − 3y = −2 · 3
7

√
3

4 · 7
= −3

√
3

7
√

7
.

Substituting y = cos θ we find

cos 3θ = cos(θ + 2θ) = cos θ cos 2θ − sin θ sin 2θ

= cos θ
(
cos2 θ − sin2 θ

)
− 2 sin2 θ cos θ

= cos θ
(
2 cos2 θ − 1

)
− 2

(
1− cos2 θ

)
cos θ

= 4 cos3 θ − 3 cos θ

which is why Viète made the first substitution. Hence

cos 3θ = 4 cos3 θ − 3 cos θ = −3
√

3

7
√

7
.

It follows that

θ =
1

3
arccos

(
−3
√

3

7
√

7

)
so

x = ky =
2
√

7√
3

cos

{
1

3
arccos

(
−3
√

3

7
√

7

)}
= 2.489289

One checks that this is a zero of x3 − 7x+ 2.

38. Using Ludovico Ferrari’s method, find one solution.

x4 − 4x3 + 3x2 + 4x− 5 = 0

The first step is to eliminate the cubic term. Substitute x = y + a gives

y4 + 4ay3 + 6a2y2 + 4a3y + a4 − 4(y3 + 3ay2 + 3a2y + a3)

+3(y2 + 2ay + a2) + 4(y + a)− 5 = 0

so
4a− 4 = 0

or a = 1. The resulting equation is

y4 + (6− 12 + 3)y2 + (4− 12 + 6 + 4)y + (1− 4 + 3 + 4− 5) = y4 − 3y2 + 2y − 1 = 0

Next Ferrari tries to make the right side a perfect square by choosing good constant b.

(y2 + b)2 = y4 + 2by2 + b2 = 3y2 − 2y + 1 + 2by2 + b2 = (3 + 2b)y2 − 2y + (1 + b2)

The right side is a square provided it has a single double root, or 0 = B2 − 4AC, which is

0 = 4− 4(3 + 2b)(1 + b2) = −8b3 − 12b2 − 8b− 8

38



or

b3 +
3

2
b2 + b+ 1 = 0.

Substituting b = z + c,

z3 + 3cz2 + 3c2z + c3 +
3

2
(z2 + 2cz + c2) + (z + c) + 1 = 0

we get the z2 term to vanish if 3c+
3

2
= 0 or c = −1

2
. With this c we get

z3 +

(
3

4
− 3

2
+ 1

)
z − 1

8
+

3

8
− 1

2
+ 1 = z3 +

1

4
z +

3

4
= 0

Solving by Cardano’s method, setting z = u+ v we get

u3 + v3 + 3uvz = (u+ v)3 = −1

4
z − 3

4
.

Cardano’s trick is x is a solution if u and v satisfy

u3 + v3 = −3

4

3uv = −1

4
.

Substituting v = − 1

12u
we find

u3 −
(

1

12u

)3

= −3

4

which is quadratic in u3

(u3)2 +
3

4
u3 − 1

123
= 0

Thus, the quadratic formula gives

u3, v3 = −3

8
±
√

32

82
+

1

123
=
−81± 6

√
183

216

Hence

z =
3
√
−81 + 6

√
183− 3

√
81 + 6

√
183

6
so

b = z + c =
3
√
−81 + 6

√
183− 3

√
81 + 6

√
183

6
− 1

2
= −1.317183

One checks that b is a zero of b3 +
3

2
b2 + b+ 1.

It follows that

(y2 + b)2 = (3 + 2b)y2 − 2y + (1 + b2) =
(√

3 + 2by −
√

1 + b2
)2

which implies

y2 + b = ±
(√

3 + 2by −
√

1 + b2
)
.
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The “+” equation

y2 −
√

3 + 2by + b+
√

1 + b2 = 0

has negative discriminant, so has complex roots. This is a manifestation of the fact that
the graph of y4 − 3y2 + 2y − 1 crosses the y-axis at only two, not four points. The “−”
equation

y2 +
√

3 + 2by + b−
√

1 + b2 = 0

has the roots

y =
−
√

3 + 2b±
√

3 + 2b− 4
(
b−
√

1 + b2
)

2
= 1.447623,−2.052300

One checks that these are zeros of y4 − 3y2 + 2y − 1 = 0. Thus

x = y + 1 = 2.447623,−1.052300

which check as roots of x4 − 4x3 + 3x2 + 4x− 5 = 0.

39. Use Nicole Oresme’s trick to sum the following series.

S = 1 +
3

21
+

5

22
+

7

23
+

9

24
+ · · · =

∞∑
k=1

2k − 1

2k−1

Note that the numerators are odd numbers. Using Zeno’s sum

2 = 1 +
1

2
+

1

22
+

1

23
+

1

24
+ · · ·

we get

S + 2 · 2 = 1 +
3

2
+

5

22
+

7

23
+

9

24
+ · · ·

+ 2

(
1 +

1

2
+

1

22
+

1

23
+

1

24
+ · · ·

)
=

(
3 +

5

2
+

7

22
+

9

23
+

11

24
+ · · ·

)
= 2

(
3

2
+

5

22
+

7

23
+

9

24
+ · · ·

)
= 2(S − 1)

so S = 2 · 2 + 2 = 6.

40. Here is a problem in Arithmetica Integra by the German Cossist, “master of the unknown,”
Michael Stifel (1487–1567) of Wittenberg. In the sequence of odd numbers the first odd
number is 15. After skipping one number, the sum of the next four numbers 5 + 7 + 9 +
11 = 25. After skipping the next three numbers, the sum of the following nine numbers
19 + 21 + 23 + 25 + 27 + 29 + 31 + 33 + 35 = 35. At each successive stage, one skips the
next triangular number of odd integers. Formulate this power rule in modern notation and
prove it by induction.

The triangular numbers are given by the recursion T1 = 1 and Tn = Tn−1 + n for n ≥ 1. It

follows that Tn =
(n+ 1)n

2
, as can be seen by induction. For n = 1,

(1 + 1) · 1
2

= 1 which

is T1. Assuming it’s true for n, by the recursion

Tn+1 = Tn + (n+ 1) =
(n+ 1)n

2
+ (n+ 1) =

(n+ 1)n

2
+

2(n+ 1)

2
=

(n+ 1)(n+ 2)

2
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proving the induction.

At the nth stage, n2 odd numbers are taken starting from the Snth odd number. After
which, Tn odd numbers are skipped, which means we have he recursion

S1 = 1; Sn+1 = Sn + n2 + Tn

So the second stage starts with the S2 = S1 + 12 + T1 = 1 + 1 + 1 = 3rd odd number which
is 5. Then third stage starts at the S3 = S2 + 22 + T2 = 3 + 4 + 3 = 10th odd number,
which is 19. The fourth stage starts with the S4 = S3 + 32 + T3 = 10 + 9 + 5 = 25th odd
number which is 49. The formula is for n ≥ 1

Sn = 1 +

n−1∑
k=0

(
n2 +

n(n+ 1)

2

)
= 1 +

n−1∑
k=0

(
3

2
n2 +

1

2
n

)
since at n = 1 the sum is 1 = S1 and for n ≥ 1,

Sn+1 − Sn = n2 +
n(n+ 1)

2
= n2 + Tn.

We use the fact that

n∑
k=0

k =
n(n+ 1)

2
;

n∑
k=0

k2 =
n(n+ 1)(2n+ 1)

6

so

Sn = 1 +
(n− 1)n(2n− 1)

4
+

(n− 1)n

4
= 1 +

(n− 1)n2

2

Finally, the sum of the first m odd numbers is

m∑
k=1

(2k − 1) = m2.

Thus the sum of n2 odd numbers starting at Sn is

Sn+n
2−1∑

k=Sn

(2k − 1) =

Sn+n
2−1∑

k=1

(2k − 1)−
Sn−1∑
k=1

(2k − 1)

= (Sn + n2 − 1)2 − (Sn − 1)2

= (Sn + n2 − 1 + Sn − 1)(Sn + n2 − 1− Sn + 1)

= (2Sn + n2 − 2)n2

= (2 + (n− 1)n2 + n2 − 2)n2

= n3 · n2

= n5

where we have used A2 −B2 = (A+B)(A−B). The proof is complete.

41. The Fibonacci numbers F1 = 1, F2 = 1, F3 = 2, F4 = 5 and so on with Fn+1 = Fn + Fn−1
for n ≥ 2 have some interesting identities. Show that

F1 + F2 + · · ·+ Fn = Fn+2 − 1.
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Write the recursion relation for each n.

F1 = F3 − F2

F2 = F4 − F3

F3 = F5 − F4

...
...

Fn−1 = Fn+1 − Fn
Fn = Fn+2 − Fn+1.

Adding, the left side gives the sum and the right side telescopes.

F1 + F2 + · · ·+ Fn = Fn+2 − F2 = Fn+2 − 1.

42. From Leonardo of Pisa’s Practica geometriae: Given a quadrilateral inscribed in a circle
with ab = ag = 10 and bg = 12, find the diameter ad of the circle. [Katz, A History of
Mathematics, 2009, p. 359]

As triangle 4abg is iscoceles, the diameter through a bisects the angle at a, hence 4abd
and 4agd are congruent right triangles. It follows that bh = hg = 6. By the Pythagorean
theorem ah2 = ab2 − bh2 = 102 − 62 = 82. Also 4ahb is similar to 4bhd so that

dh

bh
=
bh

ah
so

dh =
bh2

ah
=

62

8
=

9

2

Thus the diameter is ad = ah+ dh = 8 +
9

2
=

25

2
.

43. Solve the problem from Regiomontanus De Triangulis Omnimodis: In triangle 4ABC sup-

pose that the ratio
∠A
∠B

=
10

7
and the ratio

∠B
∠C

=
7

3
. Find the three angles and the ratio of

the sides. [Katz, A History of Mathematics, 2009, p. 462]

We know that the angles add up to 180◦. Writing α = ∠A and β = ∠B so that 180◦−α−β =
∠C, the equations on angles are

7α− 10β = 0

3β − 7(180− α− β) = 0.
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In other words

7α− 10β = 0

7α+ 10β = 7 · 180,

whose solution is α = 90◦ and β = 63◦ so γ = 180◦ − α− β = 27◦. By the sine law,

AB

BC
=

sin γ

sinα
=

sin 27◦

sin 90◦
= 0.4539905

BC

AC
=

sinα

sinβ
=

sin 90◦

sin 63◦
= 1.122326

AC

AB
=

sinβ

sin γ
=

sin 63◦

sin 27◦
= 1.962611.

44. Solve another problem from De Triangulis Omnimodis: In the unit-spherical triangle4ABC,
suppose the angles are ∠A = 90◦, ∠B = 70◦ and ∠C = 50◦. Find the lengths of the sides.
[Katz, A History of Mathematics, 2009, p. 462]

Observe that the sum of the angles is more than 180◦. This is because in the sphere, the
sides of a triangle bulge out compared to the plane. Let angles α = ∠A, β = ∠B and
γ = ∠C, and let x, y and z denote the lengths of the sides BC, AC and AB, respectively.
By the spherical sine law

sinx

sinα
=

sin y

sinβ
=

sin z

sin γ
.

Thus
sin y = sinβ sinx, sin z = sin γ sinx (11)

The spherical cosine law is

cosx = cos y cos z + sin y sin z cosα

Taking advantage of α = 90◦ so cosα = 0 we find by squaring

1−sin2 x = cos2 x = cos2 y cos2 z = (1−sin2 y)(1−sin2 z) = 1−sin2 y−sin2 z+sin2 y sin2 z

which gives an equation for sin2 x using (11)

sin2 x = (sin2 β + sin2 γ) sin2 x− sin2 β sin2 γ sin4 x

or, since sin2 x = 0 is not a solution,

sin2 x =
sin2 β + sin2 γ − 1

sin2 β sin2 γ
=

sin2 70◦ + sin2 50◦ − 1

sin2 70◦ sin2 50◦

Hence, by (11)

x = arcsin

√ sin2 70◦ + sin2 50◦ − 1

sin2 70◦ sin2 50◦

 = 1.260430

y = arcsin

√ sin2 70◦ + sin2 50◦ − 1

sin2 50◦

 = 1.107974

z = arcsin

√ sin2 70◦ + sin2 50◦ − 1

sin2 70◦

 = 0.8175091.
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45. This problem illustrates on of Decartes’ machines. GL is a (blue) ruler pivoting at G. It
is linked at L to a (red) device CKLN that slides up and down AB, always keeping KN
parralel to itself. The intersection C of the two moving lines GL and KN determine a
(green) curve E. Decartes stated, without proof, that the curve is a hyperbola. Show that
he was correct. [Katz, A History of Mathematics, 2009, p. 503.]

Let y = CB and x = AB, and the constants a = GA, b = KL, c = NL. First we shall find
BK, BL and AL in terms of x, y, a, b, and c. Triangles 4KBC is similar to 4KLN so

BK

CB
=
KL

NL
=⇒ BK =

CB ·KL
NL

=
by

c
.

Hence

BL = BK −KL =
by

c
− b

and

AL = AB +BL = x+
by

c
− b.

Second, triangles 4LAG is similar to 4LBC so

CB

BL
=
GA

AL
=⇒ CB ·AL = BL ·GA =⇒ xy +

by2

c
− by =

aby

c
− ab

or
by2 + cxy − b(a+ c)y = −abc.

The quadratic form Ax2 + Bxy + Cy2 has A = 0, B = c and C = b with discriminant
D = B2 − 4AC = c2 > 0 so that the conic section is a hyperbola. Or you can see that
the quadratic form has two null directions y = 0 and by + cx = 0 which are the asymptote
directions. This only happens for the hyperbolas.
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46. Here is a problem from Copernicus De revolutionibus. Given three sides of an isosceles
triangle, to find the angles. Circumscribe a circle about the triangle and draw another circle
with center A and radius AD = 1

2AB. Then show that each of the equal sides is to the
base as the radius is to the chord subtending the vertex angle. All three angles are then
determined. Perform the calculation with AB = AC = 10 and BC = 6.

The sides AD = AE = 1
2AB are equal so that 4ADE is also isosceles. Its vertex A has

the same angle for both triangles, so the angles at D and E equal the angles at B and C.
It follows that 4ADE is similar to 4ABC so that

AB

BC
=
AC

BC
=
AD

DE
.

If we call 2α the angle at A then

DE

2
= AD sinα.

Thus we get

2α = 2 arcsin

(
DE

2AD

)
= 2 arcsin

(
BC

2AB

)
Hence, using the given lengths,

2α = 2 arcsin

(
BC

2AB

)
= 2 arcsin

(
6

2 · 10

)
= 34.91521◦

Using the sum of the angles of a triangle is 180◦, the other two angles are

1

2
(180◦ − 2α) = 72.54239◦.
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