K-TYPES OF MINIMAL REPRESENTATIONS
(p-ADIC CASE)

GORDAN SAVIN

ABSTRACT. Let F be a p-adic field. Let G be a split simple simply connected group over F' of
type Dn, (n > 4), or Ey, (n =6,7,8). Let K be a hyperspecial maximal compact subgroup
of G. In this article we describe K-types of the minimal representation of G.

1. MINIMAL REPRESENTATION

It will be convinient for us to think of G as the group of F-points of a Chevalley group
G. Let R be the ring of integers of F'. Then K is simply the group of R-points of G. Let
w be a uniformizing element of R and R/wR = F, the residue field of F.

Let K be the first principal congruence subgroup. Then K/K; = G is the finite group
of F,-points of G. Let I, K; C I C K be an Iwahori subgroup of G. Then I/K; = B, a
Borel subgroup of G. Let H be the Hecke algebra of [-biinvariant compactly supported
functions on G. The space of I-fixed vectors of a smooth representaton of G is naturally
an H-module. It is a well known result of Borel [1] that this correspondence defines an
equivalence between the category of representations of G generated by its I-fixed vectors
and the category of representations of H.

The algebra H can be described as follows. Let A = {ag,...a,} be a set of simple
roots. Let —ag be the maximal root and let A = AU {ag}. Let <,> be a Killing form
normalized so that < «;, a; >= 2 for all i. Then H is generated by T;, i = 0, . ..n satisfying
the following relations:

;T = T57T; if < a4, 05 >=0;
TIT = T;TT;  if <og o >=—1;
and (T, —q)(T; + 1) = 0.
Define an irreducible H-module E by (see [7])

E =} Ce;
with the action of H given by
—e; if o; = oy
Tie; = q qej + q%ei if <oy, >=—1;
qe; it <oy,a5 >=0.
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Definition 1.1. The minimal representation is the unique irreducible representation Viin
such that the space of I-fixed vectors in Viyin s tsomorphic to E, as an H-module.

Repeating previous constructions with A (instead of A) gives H, the Hecke algebra of
B-biinvariant functions on G and an H-module E which corresponds to V., the rep-
resentation of G with the minimal dimension (see [3]). It is interesting to note that by
setting ¢ = 1, H becomes the group algebra of the Weyl group of G and E its reflection
representation.

Let hy,...,h, and x,, a € ® (P is the root system) be a Chevalley basis of g as in [6].
Let gz be Z-span of the Chevalley basis of g. Let

gi = 9z Q7 o' R.

Let vp be an evaluation on F' normalized so that vp(w) = 1. If vp(p) < p — 1 then
the exponential map is well defined on g;, and it preserves Haar measures. The groups
K; = exp(g;), i = 1,2... are the principal congruence subgroups. If ve(p) < 1/3(p — 1)
then the multiplication in K4 can be defined using the Campbell-Hausdorff formula [9],
LG 5.19.

The Killing form <, >, normalized by < h;, h; >= 2 for all 7, is unimodular on gg if p
is prime to the determinant of the Cartan matrix (which is 4, 3, 2 and 1 for D,,, Eg, E7
and FEjg respectively). Note that vp(p) < 1/3(p — 1) implies that p # 2,3, hence we can
assume that the Killing form is unimodular on gg.

Let f; be the characteristic function of g;. Let 1 be a non-trivial additive character
of F' with conductor R. Let f be a locally constant compactly supported function on g.
Define the Fourier transform f of f by

flz) = / Flyb(< 2,y >)dy

g
where the Haar measure dy is normalized so that

fi _ |w|idimgf_i‘
Let (m, V) be an irreducible representation of G. It defines a distribution ©, as follows.
Let f be a locally constant function supported in g;. Then

O.(f) = tr/w(expx)f(a:)dx.

g
A result of Howe and Harish-Chandra [4] says that there is a positive integer ny and

numbers ¢o such that
0:() =Y co [ fuo
(@]

for every locally constant function f supported in g,,, . Here the sum is taken over nilpotent

orbits and pe is a G-invariant measure on O constructed as follows. Let z € O and let
B.(y,2) =< z,y, z] >

be a bilinear form on g. It induces a non-degenerate symplectic form on Tp ., the tangent

space of O at . Then pep(z) = | A4 B,| (we shall see on the example of the minimal orbit
how this works).
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Remark 1.2. One expects that ny = 1 for representations generated by its I-fized vectors.
Indeed, Waldspurger has shown this to be true for classical groups [11].

Let D = max, 0 5 dimO. It follows from the character expansion (see [8]) that the
dimension of the space of K;-fixed vectors in V grows as ¢"°.

The minimal non-trivial nilpotent orbit O, is the orbit of z_,,. Let O, be the
character of Vi,i,. Theorem 2.1 in [8] says that

Omin(f) :/flubomin +C/fl~bo~

Hence the growth of dim VX! is the slowest possible, justifying the name “minimal”.

min
2. K-TYPES

The main result is the following.

Proposition 2.1. Assume that vp(p) < 1/3(p —1) and ny,,, = 1. Then

%)
Vmin ‘ K = EBZ‘:()‘/;

where V; are irreducible representations of K such that yEi-tg V; = Vi Here Ky = K,

K;, i > 1, are principal congruence subgroups and Vrﬁl s the space of K;-fized vectors.
Furthermore Vo = C (the trivial representation of K) and Vi = Vi, the minimal repre-
sentation of G, pulled back to K. We also describe V; for i > 1 explicitely.

Proof. We first describe K-types contained in Vﬁ; Let B be a Borel subgroup of G. Since
G = BK and Vi, C indg x for some unramified character y, it follows that
VEL C C(B\G)

min

and
I
Vrnin

K

C C(B\G/B).

Hence the K-types contained in V_.! are obtained by restricting the H-module F to H.

Since F|g = C @ E the claim follows.
To continue we need to describe Opin. Write ag = miaq + ... + mpa,,. Let hg =

mihy + ...+ mphy. Then (x4,, ho, T—a,) is an sl(2)-triple. Let

(i) = {z € g | [ho, 2] = ix}.

Then g = ®_2<i<29(7). Assume that oy is the unique simple root such that < ag, a; ># 0.
Then p = @;>09(¢) is the maximal parabolic subalgebra corresponding to a; (see the
diagrams on the end of this section). The unipotent radical of p is g(1) @ g(2). It is a
Heisenberg Lie algebra with center g(2), spanned by z_,,. Let

s = [9(0), 8(0)] @ 8(1) @ g(2)-

It is the centralizer of z_,,. Let S be the centralizer of z_,, in G and let S C G the
corresponding finite group.
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Lemma 2.2. Let g = #G/S and d = 1/2dim Oy (d=2n-3,11,17 and 29, respectively).
If i > 2 then

dim anfl; — dim Vfi;’l = gq¥=2).
Proof. Let xi(x) = |ew| "™ fy(wz). Then P; = m(x;) is a projection on Vi Since
dim VEi = tr(P;) and ¥;(z) = f_i(z), it follows that

dim Vi — dim Vit = / (f=i = f=it1) HOmin-

Write Opin = xgao. Since G = K B, it follows that Oy, = Uwix{(ao. Hence

Omin N (g—z \ g—i—l—l) = w_ixl_{ao-

Let O; = w_ixl_(ao. Then O; breaks into g Ki-orbits
O; = Ul_,0i;.

Assume that O, ; is the K;-orbit of z_,,. Hence
dim VHIl(lvil - dim Vrﬁ;‘;l = g/ Nomin *
Oin

To compute the volume of O; 1 we need to describe precisely the normalization of po,,,
at @ 'r_4,. Let s’ be the span of hg, g(—2) and g(—1). Then g = s ® ¢’ and the tanget
space of Opmin at T_,, can naturally be identified with s’. Note that g(—1) @ g(—2) is a
Heisenberg Lie algebra with center g(—2), spanned by x,,. Let {e1,...eq—1, f1,... fa—1}
be the part of the Chevalley basis contained in g(—1) labeled so that [ej, fx] = J;kZa,
(0,5 = 1if j = k and 0 otherwise). We complete it to a basis of s’ by adding eq = x4,
and fg = %ho.

Let 5%[1/2] be Z[1/2]-span of {e1,...eq, f1,... fa}. Let gzp/2) and sz(1/9) be Z[1/2]-span
of the Chevalley basis and of its part contained in s respectively. Since m; = 2, and 2 is
invertible in Z[1/2],

9z[1/2) = Sz[1/2] D 52[1/2]-

Let .
s; = Sy1/2] Qz[1/2] @' R.

and let S! =expsl, i =1,2.... Define analogously s; and S;. Also, since p is odd
9 = 02 Oz @R = gr1/2 Dz[1/2) @ R.

Hence g, = s, @ s;, K; = 5,5/, i =1,2... and we have a sequence of measure-preserving
bijections:
~Y !~
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Since s/ is the R-span of we; and wf; j =1,...d, and

|Boio_.., (@ej, @ fi)| = 8;0q" )

d(i-2)

it follows that the volume of O, ; is ¢ The lemma is proved.

Recall [5], Lemma 1.2, that irreducible representations of K;/K,; are parametrized by
Ki-orbits in g_;/g_1. To describe the corespondence, recall that the Fourier transform
defines an isomorphism between the spaces of functions C(g;/g;) and C(g_;/g—1). Let
O be a Kj-orbit in g_;/g_1 and Ep the corresponding irreducible representation of Kj.
Then

(1) the character of Fp, pulled back to g; via log, is the Fourier transform of the
characteristic function of @ divided by #0/2.

(2) dim Ep = #O/2; this is a consequence of (1).

Let O;; C O;, (i > 2) be a Kq-orbit. Then O;ﬂj =0, +9g_1isa Kq-orbit in g_;/g_;.
Since O;ﬂj are K-conjugated and #0; 1 = #K1/51K;_1 = ¢24=2) it follows that

(1) dim Bp, - = ¢%0=2).

(2) Eo, ; is a summand of Viyin.
From this and Lemma 2.2 we conclude that

VE =Vt ® (@9, Fo; ).

min min

Let So = SN K. Obviously, Sp preserves Eo;  C VEi | TLet

V; = ind§ g, Eor -
Since

‘/7:|K1 = EB?:IEO;’J
it follows from the Mackey’s irreducibility criterion ([10] Prop. 23) that V; is irreducible.
Also, by the Frobenius reciprocity V; C Viuin. The proposition is proved.

We proceed to write down V;, the irreducible representations of K/K;. Let 1; be a
character of g defined by ¥;(z) = ¥(< 2, @ "w_o, >). If j <i < 2j then K;/K; = g;/g;
(this follows from the Campbell-Hausdorff formula). Hence 1); defines a character of K; /K.
We first describe Eo: . We have two cases.

(1) iis even. Write i = 2j. Then 1); defines a character of K;/K;. Note that ¢;|s, = 1.
Therefore, since S; centralizes 1;, we can extend v; to S1K; by 1;|s, = 1. Then

_ s Ky )
EO;,l = mdlej ;.

(2) i is odd. Write ¢ = 2j 4+ 1. Then ¢); defines a character of K;;,/K;. As in the
even case extend v; to S1K;41. Then S;1K;/ker; is a Heisenberg group. Let p;
be the corresponding irreducible representation such that the center acts via the
character ;. Then

Eog’l = indé(llKj Pi-
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We know apriori that Eo: —extends to So. Since [S,S] = S the extension is unique in

B

view of the following lemma (take A = SyK; and B = K3).
Lemma 2.3. Let A be a group and B a normal subgroup. Let C = A/B. Assume that

[C,C] = C. Let p be an irreducible finite-dimensional representation of B. If p extends to
A then it extends uniquely.

Proof. Let p; and ps be two extensions. By the Schur Lemma, for any a € A there
exists a scalar x(a) such that pi(a) = x(a)p2(a). Obviously, x is a character of C. Since
[C, C] = C, it must be trivial. The lemma is proved.

We now give precise definitions of V;, ¢ =2,3.... Again we have two cases.

(1) i is even. Write ¢ = 2j. Then 1); defines a character of K;/K;. Extend v, to SoK;
by ¥i|s, = 1. Then
V; = indg, g, ¥s.

(2) i is odd. Write ¢ = 2j + 1. Then ; defines a character of K, 1/K;. Extend 1;
to S1Kj41 by v4|s, = 1. Then S; K;/ker); is a Heisenberg group. Let p; be the
corresponding irreducible representation such that the center acts via the character
;. It extends to Sy via the usual Weil representation argument. Then

K
Vi = indg, g, pi-

We conclude this paper by giving some explicit data. Recall that the extended Dynkin
diagram for G is a graph obtained from the set of roots A by connecting «; and «; if and
only if < «;, Q5 >= —1:

The black vertex in each diagram corresponds to the root ag.
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Recall that o is the unique simple root such that < ag,a; >= —1. Since S is a semi-
direct product of a Heisenberg group of order ¢2¢~!, and a semi-simple, simply connected
group with the Dynkin diagram obtained by removing «; from the Dynkin diagram of G,
one can compute g = #G/S using formulas in [2], page 75. The answers are:

(" —=D)(@ =) (¢* 2 —1)

P @ - D(@2-1)
B (¢®* —1)(¢° —1)(¢"? - 1)
(¢® = 1)(¢* — 1)
B (¢ = 1)(¢" =1)(¢"* = 1)
(¢* —1)(¢° - 1)
5 (¢ = 1)(¢** —1)(¢*° — 1)
8

(¢° =1 =1)

Finally, we note that

dimein = QQ/<qd+1 - 1)

d =1/2dim Oypin, and it is 2n — 3, 11, 17 and 29 respectively.
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