
MATH 5210, HW II

SOLUTIONS

1) A metric space X is separable if it contains a dense countable set S. Prove that any open
set V in X is a union of balls centered at points in S and with rational radii. (Since the set
of such balls is countable, it follows that any open set is a countable union of balls).

Solution: Let x ∈ V . Then there exists rational ε > 0 such that B(x, ε) ⊂ V . Since S is
dense, there exists y ∈ S contained in B(x, ε/2). Clearly x is contained in B(y, ε/2) and this
ball is contained in B(x, ε) by the triangle inequality. Hence B(y, ε/2) is contained in V .

2) Let X = [0, 1]2. Choose the distance on X wisely, and use the previous exercise to prove
that any open set in X is Lebesgue measurable.

Solution: Let S be the set of points x = (x1, x2) in X with both coordinates rational. We
let d(x, y) = sup(|x1 − y1|, |x2 − y2|). Balls for this choice of distance are rectangles, hence
elementary sets, hence measurable. By the previous exercise every open set is a countable
union of such rectangles, hence it is measurable, since the set of measurable sets is a σ-algebra.

Remark: With this exercise completed, we at last know that the circle x21 + x22 < 1, being an
open set, has a well defined area.

3) Let P = [0, 1]2. If E and F are two elementary sets such that E∪F = P then m(E∩F ) =
m(E) +m(F )− 1. Now assume E = ∪∞i=1Ei and F = ∪∞j=1Fj , disjoint unions of elementary
sets each, and E ∪ F = P . Observe that E ∩ F is the disjoint union of Ei ∩ Fj . Prove that∑

i,j

m(Ei ∩ Fj) =
∑
i

m(Ei) +
∑
j

m(Fj)− 1.

Solution: Fix n, and let An = ∪ni=1Ei and Bn = ∪nj=1Fi. Since An and Bn are elementary
sets,

m(An ∩Bn) = m(An) +m(Bn)−m(An ∪Bn)

Using this inequality, substituting m(An) =
∑n

i=1m(Ei) and m(Bn) =
∑n

j=1m(Fj), we
arrive to ∑

i,j≤n
m(Ei ∩ Fj) =

n∑
i=1

m(Ei) +

n∑
j=1

m(Fj)−m(An ∪Bn)

valid for every n. Let Cn = An∪Bn. Observe that Cn is an increasing sequence of elementary
sets whose union is P . The problem follows by passing to limit n→∞ since limnm(Cn) = 1:
Indeed, we have a disjoint union

C1 ∪ (C2 \ C1) ∪ (C3 \ C2) ∪ . . . = P

of elementary sets. It follows (the argument using compactness of P ) that limnm(Cn) = 1.
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4) Let
∑∞

n=1 xn be a series of non-negative real numbers. Show that its sum (which can be
∞) is equal to the supremum of the set of sums

∑
n∈S xn where S runs over all finite subsets

of the set of natural numbers. Conclude that any sequence of non-negative numbers can be
added in any order.

Solution: Let SN = {1, 2, . . . , N}. By the defintion,
∑∞

n=1 xn is the limit of the sequence of
partial sums

∑
n∈SN

xn as N →∞. Since xn are non-negative, the sequence of partial sums

is monotone increasing, hence
∑∞

n=1 xn is the supremum of the set of finite sums
∑

n∈SN
xn.

For any finite set S of natural numbers there exists N such that S ⊂ SN . Then∑
n∈S

xn ≤
∑
n∈SN

xn.

Hence the supremum of the set of all finite sums is equal to the supremum of the set of finite
sums taken over SN only. But the former is independent of the ordering of the sequence of
real numbers xn.

5) In the following exercises, M is a σ-algebra of a non-empty set X, that is, a family of
subsets of X closed under complements and countable unions, and µ is a σ-measure. Let
A1 ⊇ A2 ⊇ . . . be a sequence of sets inM. Let A = ∩∞i=1Ai. Prove that limi 7→∞ µ(Ai) = µ(A),
assuming that µ(X) = 1.

Solution: Ac = ∪∞i=1A
c
i , where Ac is the complement of A in X. Since Ac

1 ⊆ Ac
2 ⊆ . . . it

follows that
lim
i 7→∞

µ(Ac
i ) = µ(Ac).

Substitute µ(Ac
i ) = 1− µ(Ai), µ(Ac) = 1− µ(A), and use elementary properties of limits of

sequences.
Observe that the statement fails without assuming the measure of A1 is finite. Take, for

example, X = R and An = [n,∞) then µ(An) =∞, for all n, A = ∅ and µ(A) = 0.

6) A subset of X is called measurable if it belongs to M. Let f : X → R prove that

{x|f(x) < c}
is measurable for every c ∈ R if and only if

{x|f(x) ≤ c}
is measurable for every c ∈ R.

Solution: Equivalence of the two follows from the following set-theoretic identities:

{x|f(x) < c} = ∪n{x|f(x) ≤ c− 1

n
}

and

{x|f(x) ≤ c} = ∩n{x|f(x) < c+
1

n
}

7) Let fn : X → R be a sequence of measurable functions on X. Prove that

g(x) = inf{f1(x), f2(x), . . .} and G(x) = sup{f1(x), f2(x), . . .}
are measurable functions.
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Solution:
{x|g(x) < c} = ∪n{x|fin(x) < c}.
{x|G(x) ≤ c} = ∩n{x|fn(x) ≤ c}.

Now use the previous exercise.

8) Let f be an integrable function on X, such that f(x) ≥ 0 for all x ∈ X. Prove that∫
X f = 0 if and only if the measure of A = {x ∈ X | f(x) > 0} is 0, that is, f = 0 almost

everywhere. Hint consider the sets An = {x ∈ X | f(x) > 1/n} for n = 1, 2, . . ..

Solution: Assume that
∫
fX = 0. Let χn be the characteristic function of An multiplied by

1/n. It is a simple function whose integral is µ(An)/n. Since

0 =

∫
X

0 ≤
∫
X
χn ≤

∫
X
f = 0

it follows that µ(An) = 0. Now observe that A1 ⊆ A2 ⊆ . . . and A is the union of An. Hence
µ(A) = limn µ(An) = 0.

In the other direction, for every n, let fn =
∑∞

m=1m · χXm be the simple function where

Xm = {x ∈ X|m− 1

n
< f(x) ≤ m

n
}

Observe that µ(Xm) = 0 if m > 0. Hence
∫
X fn = 0. Moreover, fn converges uniformly to

f , hence
∫
X f = 0 from the definition of the integral. Observe that this argument gives a bit

more: a measurable function f equal 0 almost everywhere is integrable and its integral is 0.

9) Let X = (0, 1], with the usual measure, and let f(x) = 1/
√
x. Use the monotone conver-

gence theorem to prove that f is integrable and compute its integral.

Solution: Let fn be the product of f and the characteristic function of [ 1n , 1]. Then fn is

a monotone sequence with f point-wise limit. Since fn is continuous on [ 1n , 1], its Lebesgue
integral is equal to the Riemann integral which we can compute using the Fundamental
Theorem of Calculus: ∫ 1

1/n

1√
x
dx = 2(1− 1√

n
) < 2.

By the MCT f is integrable and ∫
X
f = lim

n

∫
X
fn = 2.


