
MATH 5210, HW I

SOLUTIONS

1) In this and the following problem, use d(x, y) = max(|x1 − y1|, |x2 − y2|) as the distance
function on R2. Use ε-δ definition of continuity to prove that the multiplication map R2 → R
is continuous.

Solution: Given ε > 0, we need to show that there is δ > 0 such that |x1x2 − y1y2| < ε if
d(x, y) < δ. We can ssume that x and y are contained in a large square [−M,M ]2. Then

|x1x2 − y1y2| = |x1x2 − y1x2 + y1x2 − y1y2| < |x2||x1 − y1|+ |y1||x2 − y2| < 2Mδ

so we can take δ = ε/2M .

2) Let pi : R2 → R be the projection on the i-th coordinate. Prove that pi is continuous. Let
(X, d) be a metric space. Let f : X → R2 be a map, and write f(x) = (f1(x), f2(x)) for every
x ∈ X. In particular we have two functions fi : X → R, i = 1, 2. Prove that f is continuous
if and only if f1 and f2 are.

Solution: If d(x, y) = max(|x1 − y1|, |x2 − y2|) < ε then |pi(x)− pi(y)| = |xi − yi| < ε, hence
the projection maps are uniformly continuous.

Observe that fi = pi ◦ f . If f is continuous, then fi is continuous, being a composite of
two continuous maps. Now assume that f1 and f2 are continuous. Observe that

f−1((a, b)× (c, d)) = f−11 ((a, b)) ∩ f2((c, d)).

This set is open, since f−11 ((a, b)) and f−12 ((c, d)) are open, by continuity. Hence f is contin-
uous.

3) Let f : R→ R given by f(x) = xn. Use the inductive definition xn = x ·xn−1 and previous
exercises to prove that f is continuous.

Solution: By induction. Assume that x 7→ xn−1 is continuous. Then x 7→ xn is a composite
of two maps

x 7→ (x, xn−1) 7→ x · xn−1

where the first is continous by exercise 2) and the second by exercise 1).

4) Let f : [a, b]→ R be a continuous function such that f(x) ≥ 0 for all x ∈ [a, b]. Prove that∫ b

a
f = 0

implies f(x) = 0 for all x ∈ [a, b].

Solution: Assume f 6= 0, we would like to show that the integral of f is positive. It suffices
to find one positive lower sum. Let c ∈ (a, b) such that f(c) > 0. Let ε = f(c)/2. Since f is
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continuous, there exists δ > 0 such that f(x) > ε if |x − c| < δ. Take the partition of [a, b]
that includes [c− δ, c+ δ] as a subsegment. The corresponding lower sum is greater than 2δε.

5) Let (X, d) be a metric space. Let (xn) and (yn) be two Cauchy sequences in X. Prove
that (d(xn, yn)) is a Cauchy sequence in R.

Solution: By the triangle inequality,

d(xn, yn) ≤ d(xn, xm) + d(xm, ym) + d(ym, yn)

and this implies that

d(xn, yn)− d(xm, ym) ≤ d(xn, xm) + d(yn, ym)

By switching the roles of n and m we also get that

d(xm, ym)− d(xn, yn) ≤ d(xn, xm) + d(yn, ym)

The two are equivalent to

|d(xm, ym)− d(xn, yn)| ≤ d(xn, xm) + d(yn, ym)

Since {xn} and {yn} are Cauchy, for every ε > 0 there exists N such that d(xn, xm) < ε/2
and d(yn, ym) < ε/2 for all n,m ≥ N . Hence

|d(xm, ym)− d(xn, yn)| < ε

if n,m ≥ N .

6) Let K ⊂ R be a set consisting of 0 and all 1/n, n = 1, 2, 3, . . .. Prove that K is compact
directly using the definition, i.e. every open cover has a finite subcover.

Solution: Let Oα, α ∈ S, be an open covering of K. Then there exists β ∈ S such that
0 ∈ Oβ. Since Oβ is open, there exists ε > 0 such that (−ε, ε) ⊂ Oβ. Let N be an integer
such that 1/N < ε. Then 1/n ∈ Oβ for all n ≥ N . It follows that K is covered by Oβ and
finitely many Oα needed to cover 1/n, for n < N .

7) Let F1 ⊇ F2 ⊇ . . . be a descending sequence of non-empty compact subsets. Prove that
∩∞n=1Fn is non-empty.

First solution: Pick xn ∈ Fn. Since F1 is compact, a subsequence of xn converges to a point
x ∈ F1. But x is in all Fn, since they are closed.

Second solution: If ∩∞n=1Fn is empty, then F1 \ Fn is an open cover of F1 that cannot be
reduced to a finite subcover, a contradiction.

8) Let (X, d) be a metric space and fn a sequence of continuous functions fn : X → R
uniformly converging to f . Let xn be a sequence of points in X such that limn xn = x ∈ X.
Prove that limn fn(xn) = f(x) .

Solution: Let ε > 0. The function f is continuous, so there existsN1 such that |f(x)−f(xn)| <
ε/2 for all n > N1. The sequence converges uniformly to f , so there exists N2 such that
|f(x)− fn(x)| < ε/2 for all n > N2 and all x. Let N be the grater of N1 and N2. If n > N
then

|f(x)− fn(xn)| ≤ |f(x)− f(xn)|+ |f(xn)− fn(xn)| < ε/2 + ε/2 = ε.
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9) A subset Rn is convex if for any two points x, y ∈ C, the segment [x, y] is contained in C.
Prove that C is connected.

Solution: A point of this exercise is understand how proofs are built on previous proofs. Let
E be a convex set. Assume that E = A ∪ B where A and B are two non-empty separating
sets. Let a ∈ A and b ∈ B. Let [a, b] be the straight segment connecting a and b. Since E is
convex the whole segment is contained in E. Hence A∩ [a, b] and B∩ [a, b] are separating sets
for [a, b]. (A limit point of A∩ [a, b] is also a limit point of A, hence it is not contained in B,
since Ā ∩ B = ∅, and therefore not in B ∩ [a, b].) But we proved that the straight segments
are connected.


