MATH 5210, HW I
SOLUTIONS

1) In this and the following problem, use d(z,y) = max(|z1 — y1|, |2 — y2|) as the distance
function on R?. Use e-§ definition of continuity to prove that the multiplication map R? — R
is continuous.

Solution: Given e > 0, we need to show that there is 6 > 0 such that |x129 — y1y2| < € if
d(z,y) < J. We can ssume that x and y are contained in a large square [—M, M]?. Then

|z122 — Y1y2| = |T122 — Y122 + Y122 — Y1Y2| < |z2l|T1 — Yi| + |Yil|z2 — Yol < 2M6
so we can take 0 = ¢/2M.

2) Let p; : R? — R be the projection on the i-th coordinate. Prove that p; is continuous. Let
(X, d) be a metric space. Let f: X — R? be a map, and write f(z) = (fi(z), f2(x)) for every
x € X. In particular we have two functions f; : X — R, ¢ = 1,2. Prove that f is continuous
if and only if f; and fo are.

Solution: If d(x,y) = max(|x; — y1|, |r2 — y2|) < € then |p;(x) — pi(y)| = |xi — yi| < €, hence
the projection maps are uniformly continuous.

Observe that f; = p; o f. If f is continuous, then f; is continuous, being a composite of
two continuous maps. Now assume that f; and fy are continuous. Observe that

FH(a,0) x (e,d)) = f1 ' ((a,b)) N fa((c, d)).

This set is open, since f; '((a,b)) and f; *((c,d)) are open, by continuity. Hence f is contin-
uous.

3) Let f: R — R given by f(z) = ™. Use the inductive definition 2™ = z-2"~! and previous
exercises to prove that f is continuous.

n—1

Solution: By induction. Assume that x — =z is continuous. Then x — z" is a composite

of two maps

z (2" Nzl

where the first is continous by exercise 2) and the second by exercise 1).

4) Let f : [a,b] — R be a continuous function such that f(x) > 0 for all x € [a,b]. Prove that
b
I

Solution: Assume f # 0, we would like to show that the integral of f is positive. It suffices
to find one positive lower sum. Let ¢ € (a,b) such that f(c) > 0. Let € = f(c)/2. Since f is
1

implies f(z) =0 for all = € [a, b].
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continuous, there exists 0 > 0 such that f(z) > € if |x — ¢| < §. Take the partition of [a, ]
that includes [c — §, c+ 0] as a subsegment. The corresponding lower sum is greater than 2de.

5) Let (X,d) be a metric space. Let (z,,) and (y,) be two Cauchy sequences in X. Prove
that (d(xn,yn)) is a Cauchy sequence in R.

Solution: By the triangle inequality,

d(.ﬁll‘n, yn) < d(.ﬁlfn, xm) + d(fcm; ym) + d(ym; yn)
and this implies that

d(xm yn) - d(xrm ym) < d(xna xm) + d(yn, ym)

By switching the roles of n and m we also get that

The two are equivalent to

|d(zm, Ym) — A(@n, yn)| < d(@n, Zm) + d(Yn, Ym)

Since {zn} and {y,} are Cauchy, for every ¢ > 0 there exists N such that d(z,,zn) < €/2
and d(Yn, ym) < €/2 for all n,m > N. Hence

|d($mu ym) - d(mnvyn” <€
if n,m > N.

6) Let K C R be a set consisting of 0 and all 1/n, n = 1,2,3,.... Prove that K is compact
directly using the definition, i.e. every open cover has a finite subcover.

Solution: Let Oy, o € S, be an open covering of K. Then there exists § € S such that
0 € Og. Since Og is open, there exists € > 0 such that (—€,e) C Og. Let N be an integer
such that 1/N < e. Then 1/n € Og for all n > N. It follows that K is covered by Og and
finitely many O, needed to cover 1/n, for n < N.

7) Let Fy O F5 D ... be a descending sequence of non-empty compact subsets. Prove that
N2, F}, is non-empty.

First solution: Pick x, € F,,. Since F} is compact, a subsequence of z,, converges to a point
x € F1. But x is in all F,,, since they are closed.

Second solution: If N>, F, is empty, then F; \ F, is an open cover of Fj that cannot be
reduced to a finite subcover, a contradiction.

8) Let (X,d) be a metric space and f, a sequence of continuous functions f, : X — R
uniformly converging to f. Let x, be a sequence of points in X such that lim, z, = = € X.
Prove that lim,, f,(z,) = f(x) .

Solution: Let € > 0. The function f is continuous, so there exists N; such that | f(z)—f(z,)| <
€/2 for all n > N;. The sequence converges uniformly to f, so there exists N such that
|f(x) — fu(x)| < €/2 for all n > N3 and all . Let N be the grater of Ny and Ny. If n > N
then

[f(@) = fulza)| < [f(2) = flzn)| +[f(2n) = fu(za)] <€/2+€/2 =€
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9) A subset R™ is convex if for any two points z,y € C, the segment [z, y] is contained in C.
Prove that C is connected.

Solution: A point of this exercise is understand how proofs are built on previous proofs. Let
E be a convex set. Assume that £ = AU B where A and B are two non-empty separating
sets. Let a € A and b € B. Let [a, b] be the straight segment connecting a and b. Since E is
convex the whole segment is contained in E. Hence AN|[a,b] and BN|[a, b] are separating sets
for [a,b]. (A limit point of AN [a,bd] is also a limit point of A, hence it is not contained in B,
since AN B =, and therefore not in B N [a,b].) But we proved that the straight segments
are connected.



