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We shall now revisit cyclotomic fields and compute their Galois group in full generality.
We start with the power of a prime case, so let p be a prime and ω ∈ C× a primitive root
root of order pn. Thus ω is a root of xp

n − 1 but not a root of xp
n−1 − 1, so it is a root of

Φpn(x) =
xp

n − 1

xpn−1 − 1
= (xp

n−1

)p−1 + (xp
n−1

)p−2 + . . .+ 1.

This polynomial is irreducible. This is proved using the Eisenstein criterion applied to
Φpn(x+ 1). Observe that (x+ 1)p

n−1 ≡ xp
n−1

+ 1 (mod p) hence

Φpn(x+ 1) ≡ (xp
n−1

+ 1)p − 1

xpn−1 = (xp
n−1

)p−1 + p(xp
n−1

)p−2 + . . .+ p.

Thus Q(ω) is a Galois extension of degree pn−1(p−1). Let G be its Galois group. Let σ ∈ G.
Then σ is determined by σ(ω), which has to be another primitive root. Hence σ(ω) = ωa

for a unique a ∈ (Z/pnZ)×. Hence G ∼= (Z/pnZ)×. The ring of integers is A = Z[ω], this is
similar to the case n = 1 done in class, and we have the following equality of ideals

(1− ω)p
n−1(p−1) = Ap

which is checked by substituting 1 into the cyclotomic polynomial. Other primes q 6= p
are unramified since xp

n−1 − 1 has no repeated roots modulo q, and Frq(ω) = ωq, hence it
corresponds to q ∈ (Z/pnZ)× ∼= G.

In order to deal with Q(ω) where ω is a primitive m-th root of 1, and m is not a power of
a prime, we need the following.

Lemma 0.1. Let E and F be two Galois extension of Q. Let GE and GF be the respective
Galois groups. Let K be the smallest field containing E and F . Let G be its Galois group.
If E ∩ F = Q Then

G ∼= GE ×GF .

Proof. If E and F are splitting fields of polynomials P (x) and Q(x) then K is the splitting
field of P (x)Q(x) so it is Galois, and restricting σ ∈ G to E and F gives a natural injection

G→ GE ×GF .

In particular,
|G| ≤ |GE| · |GF |.

In order to prove the lemma it suffices to show that we have equality here. Let NE and NF

be the normal subgroups of G such corresponding to E and F via the Galois theory, that is,
fixing the fields E and F . Moreover,

GE
∼= G/NE and GF

∼= G/NF .
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Hence |GE| = |G|/|NE| and |GF | = |G|/|NF |, and the above inequality is equivalent to

|NE| · |NF | ≤ |G|.
Let N be the group generated by NE and NF . In view of normality of NE and NF , the group
N , as a set is the product NE ·NF , hence |N | ≤ |NF | · |NE|. The group N is normal, and its
fixed field is E ∩ F = Q, hence G = N , and all inequalities are equalities. �

Now assume that ω is a primitive m-th root of 1, where m = paqb (for simplicity we assume

that there are only 2 different primes appearing in the factorization of m). Then ωqb and

ωpa are primitive roots of of order pa and qb, respectively. Let E = Q(ωqb), F = Q(ωpa) and
K = Q(ω). Clearly E,F ⊂ K. Moreover, since pa and qb are relatively prime, there exists
integers u, v such that

upa + vqb = 1.

This implies that K is generated by E and F (why?). Next, consider E ∩ F . Let r be a
prime that ramifies in E ∩ F . Then r ramifies in E, so r = p and r ramifies in F , so r = q,
a contradiction. Hence E ∩ F is everywhere unramified extension of Q. But there are no
such extensions, hence E ∩ F = Q. At this point the lemma applies, so the Galois group G
of Q(ω) is isomorphic to

(Z/paZ)× × (Z/qbZ)×

and hence
G ∼= (Z/mZ)×

by the Chinese reminder theorem. Of course, this isomorphism simple traces what an element
σ ∈ G does to ω. In particular, any prime r not dividing m is unramified and

Frr = r ∈ (Z/mZ)×

by the isomorphism.


