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Let V be a Euclidean vector space, that is, a vector space over R with a scalar
product (x, y). Then V is a normed space with the norm ||x||2 = (x, x). We shall need
the following continuity of the dot product.

Exercise. Let x, y ∈ V and (xn) a sequence in V converging to x. Then

lim
n

(xn, y) = (x, y).

Hint: Use Cauchy Schwarz inequality.

Solution. (xn) converging to x means limn ||xn − x|| = 0.

|(xn, y)− (x, y)| = |(xn − x, y)| ≤ ||xn − x|| · ||y||

hence (xn, y) converges to (x, y).

Now assume that V is a Hilbert space, i.e. a separable and complete Euclidean
space. Let e1, e2, . . . its orthonormal basis, see the previous lecture. In particular, the
subspace U spanned by e1, e2, . . . is a dense subset.

Lemma 0.1. Bessel’s inequalty. For every v ∈ V , and every n ∈ N,

(v, e1)
2 + . . .+ (en, v)2 ≤ ||v||2.

Proof. Let

vn = (v, e1)e1 + . . .+ (v, en)en.

Then, for every i ≤ n,

(v − vn, ei) = (v, ei)− (vn, ei) = 0.

Since vn is a linear combination of ei for i ≤ n, it follows that vn and v − vn are
perpendicular. By the Pythagorean equality,

||vn||2 ≤ ||vn||2 + ||v − vn||2 = ||v||2.

The lemma follows since ||vn||2 = (v, e1)
2 + . . .+ (v, en)2. �

Now we can prove the main result in the theory of (infinite dimensional) Hilbert
spaces.

Theorem 0.2. (Riesz-Fischer) Let V be a Hilbert space, and e1, e2, . . . its orthonormal
basis. Then
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(1) Fourier series. For every v ∈ V ,

v = (v, e1)e1 + (v, e2)e2 + . . .

i.e. the series is absolutely convergent and it converges to v.
(2) Parsevals’ identity. For every v ∈ V ,

||v||2 = (v, e1)
2 + (v, e2)

2 + . . .

(3) If (x1, x2, . . .) is a sequence of real numbers such that x21 + x22 + . . . < ∞ then
the series

x1e1 + x2e2 + . . .

is absolutely convergent and it converges to an element in V .

Proof. (1) Let vn = (v, e1)e1 + . . . + (v, en)en, for n ∈ N. We need to show that
this sequence converges to v. By the Bessel’s inequality, the series

∑∞
n=0(v, en)2 is

convergent. Thus, for every ε > 0 there exists N such that∑
n>N

(v, en)2 < ε.

If m > n > N then

||vm − vn||2 = (v, en+1)
2 + . . .+ (v, em)2 < ε.

This shows that the sequence (vn) is Cauchy. Since V is complete, it has a limit
limn vn = w ∈ V . It remains to show that v = w. Observe that, using the exercise,

(w, ei) = (lim
n
vn, ei) = lim

n
(vn, ei) = (v, ei).

Hence w− v is perpendicular to all ei and to the linear span U of ei. But this space is
dense, hence w − v = 0, as we proved in the last lecture.

(2) follows form
||v||2 = lim

n
||vn||2,

since v = limn vn, and ||vn||2 = (v, e1)
2 + . . .+ (v, en)2.

(3) Let vn = x1e1 + . . .+ xnen. Then (vn) is Cauchy by the same argument as in (1)
thus the series is converging to an element in V since V is complete.

�

Corollary 0.3. Any Hilbert space V is isomorphic to `2(N).

Proof. Indeed, by the map

v 7→ ((v, e1), (v, e2), . . .),

for every v ∈ V , is a norm-preserving isomorphism from V onto `2(N). �

This is great result, for it gives a classification of Hilbert spaces. There is only one,
up to an isomorphism.


