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Let V be Euclidean space, that is, a vector space with a scalar product (-, ) : VXV —
R. Two vectors z,y € V are said to be orthogonal (perpendicular) if (x,y) = 0.

Exercise. (Pythagora) If  and y are orthogonal, then
[l + yl* = [l + [ly].

Solution:
lz+y|]> = (z+y,z+y) = (z,2)+(z,9)+ (v, 2)+ (v, y) = (z,2)+ (v, y) = ||=]]*+]|y]|*.

Henceforth we assume that V' is infinite dimensional and separable, i.e. it contains
a dense countable set S. We order S in any way:

S1,89,...

We perform the following sieve process to S: Cross s, if it is linear combination of
S1,82,...,8,—1. In other words, we cross out s; if it is 0, s, if it is a multiple of sq, etc.
We arrive to a linearly independent sub-sequence

Uy, U, . ..

of S. Let U C V be the linear span of uy,us,.... This space contains S, hence it is
dense in V. Thus U is a countably dimensional dense subspace of V. Conversely, if U
is a dense, countably dimensional vector subspace of V' with a basis uy, us, ... then the
set of linear combinations

ajuy + asug + ...

where a1, as ... € Q and almost all a; = 0, is a countable dense subset S of V. Thus
for Euclidean spaces, and more generally normed spaces, a more convenient way to
define separability is via a dense, countably dimensional subspace. For example, if
V' = L*([0,1]) then the space of polynomial functions is a dense, countable dimensional
subspace. We shall need the following lemma:

Lemma 0.1. Let V' be a Euclidean space and U a dense countably dimensional sub-
space. Let v € V such that (v,u) =0 for allu € U. Then v = 0.

Proof. Since U is dense, there exists a convergent sequence (v,,) in U such that lim,, v,, =
v. By the Cauchy-Schwarz inequality,

(v = o, 0)| <o = wnl] - [[0]]
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Since (v,,v) = 0, as v, are in U thus perpendicular to v, the left hand side is the

constant ||[v||?. Since lim,, v, = v, lim, ||v, —v|| = 0, and the right hand side goes to
0. Hence |[v|| =0, so v = 0. O
Let U be a dense countably dimensional subspace of V', and uq, us, ... a basis of U.
We can perform the Gramm-Schmidt orthogonalization procedure to uy, us, . . .,
i = w
fo = wa— R
_ _ (us,fi) o (us,fo)
f3 = us (fl,fl)fl (f27f2)f2
followed by normalization
o — Ji
1£ill

to get an ortho-normal basis eq, e, ... of U, that its (e;,e;) =01if i # j and 1 if ¢ = j.
Our main goal is to write any v € V' as a series
V= aqa1e1 + asey + ...

where the right hand side is defined as the limit of the sequence of partial sums.
Working formally, and multiplying both sides by e;, we get that a; = (v, ¢;) for all i.
In the next lecture we shall prove that the series

(v,e1)er + (v, ea)es + ...

is absolutely converging and, assuming that V' is complete, the series converges to v.
Complete, separable Euclidean spaces are called Hilbert spaces. A set ej,es,... of
orthonormal vectors spanning a dense subset is called a basis of the Hilbert space.
An example of a Hilbert space is L?([a, b]). Proof of completeness is similar to the
one for L'([a,b]), so we shall omit it. Furthermore, L?*([a,b]) is separable, since the
subspace of polynomial functions is a dense countable dimensional subspace, just as it
is in L'([a,d]). In the special case [a, b] = [—1, 1] the orthogonalization process applied
to the basis 1,z,2?%, ... gives (multiples) of Legendre polynomials P,(z). Legendre
polynomials are normalized so that P,(1) = 1. Clearly Pi(x) =1 and P(z) = .

Exercise. Compute the third Legendre polynomial Ps(z).
Solution. P3(z) = 1(32? —1).



