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In this lecture we shall prove the following fundamental result (the Hahn-Banach
Theorem) about normed spaces:

Theorem 0.1. Let V0 be a subspace of a normed space V . Let f0 : V0 → R be a
bounded linear functional i.e. there exists C ≥ 0 such that

|f0(x)| ≤ C||x||

for all x ∈ V0. Then f0 can be extended to a linear functional f : V → R satisfying the
same bound.

We shall prove this theorem assuming that V is separable i.e. it contains a dense
countable subset. This assumption lets us avoid use of Zorn’s lemma. Most “naturally”
occurring normed spaces are separable. For example, consider the space C([0, 1]) of
continuous functions on [0, 1] with the sup norm. By the theorem of Stone-Weierstrass,
the space of polynomial functions is dense. Moreover:

Exercise. Let p(x) = anx
n + . . .+a0 be a polynomial. Show that, for every ε > 0, there

exists a polynomial q(x) = bnx
n + . . .+ b0 with rational coefficients bi such that

sup
x∈[0,1]

|p(x)− q(x)| < ε.

Solution. Pick rational numbers such that |ai − bi| < ε/(n + 1), for all i = 0, . . . , n.
Then, for every x ∈ [0, 1] we have |x|i ≤ 1, for all i. Hence

|p(x)− q(x)| ≤ |an = bn|x|n + . . .+ |a0 − b0| < (n+ 1) · ε

n+ 1
= ε.

(This also implies that the supremum is less than ε, why?).

Thus the set of polynomials with rational coefficients (a countable set) is dense in
C([0, 1]), hence C([0, 1]) is separable. The space L1([0, 1]) is a also separable. Indeed,
we have shown that C([0, 1]) is dense in L1([0, 1]) and thus the set of polynomials with
rational coefficients is dense in L1([0, 1]).

We go on to prove the theorem. Observe that it suffices to construct a functional f
such that f(x) ≤ C||x|| for all x ∈ V . Indeed, the we also have f(−x) ≤ C||−x||. But
f(−x) = −f(x), since f is linear, and || − x|| = ||x||. Hence both

f(x) ≤ C||x|| and − f(x) ≤ C||x||
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hold, and this is equivalent to |f(x)| ≤ C||x||. Let z ∈ V . We shall first extend f0 to
V0 + Rz. To that end, we need the following: For every x, y ∈ V0, we have

f0(x) + f0(y) = f0(x+ y) ≤ C||x+ y|| ≤ C||x− z||+ C||y + z||,
where the second is the triangular inequality. Rearranging, we get

f0(x)− C||x− z|| ≤ −f0(y) + C||y + z||
for all x, y ∈ V0. It follows that the supremum, over all x ∈ V0, of the numbers on the
left side, is less than or equal to the infimum, over all y ∈ V0, of the numbers on the
right side. Hence there exists a real number γ such that

f0(x)− C||x− z|| ≤ γ ≤ −f0(y) + C||y + z||.
for all x, y ∈ V0.

Now we can extend f to V0+Rz. If z ∈ V0, then there is nothing to prove. Otherwise
any element in V0 + Rz can be uniquely written as v + tz for v ∈ V0 and t ∈ R. Let

f(v + tz) = f0(v) + tγ.

We need to check that

f0(v) + tγ ≤ C||v + tz||.
If t = 0, this holds by the assumption on f0. If t > 0, we shall divide this inequality
by t, if t < 0 we shall divide by u = −t. If t > 0 then

f0(v/t) + γ ≤ C||v/t+ z||
or

γ ≤ −f0(v/t) + C||v/t+ z||.
If t < 0, then

f0(v/u)− γ ≤ C||v/u− z||
or

f0(v/u)− C||v/u− z|| ≤ γ.

These inequalities hold by the choice of γ. Thus we have extended f0 to V0 + Rz.

Since we assume that V is separable, there exists a dense countable set S = {z1, z2, . . .}
in V . We define a sequence of subspaces

V1 = V0 + Rz1 ⊆ V2 = V1 + Rz2 ⊆ . . . .

Following the above procedure, one step at a time, we can extend f0 to the union
U = ∪∞n=1Vn of these spaces. Let

g : U → R
denote this extension. By construction, we have |g(x)| ≤ C||x|| for all x ∈ U . We also
know that U is dense in V . By HW 3 exercise 4), g extends to a functional f on V
satisfying the same bound.
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An important consequence of the Hahn Banach Theorem is that continuous (i.e.
bounded) functionals on a normed space V separate points:

Corollary 0.2. Let V be a normed vectors space and x 6= y two elements in V . Then
there exists a continuous functional f on V such that f(x) 6= f(y).

Proof. Let z = x− y and V0 = Rz. Let f0 : V0 → R be the linear functional defined by
f0(z) = 1. Then f0(x) 6= f0(y) and f extends to V . �


