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Fix a natural number m. For every integer 0 < a < m consider the arithmetic sequence
a,a+m,a+2m,.... This sequence can contain primes only if @ and m are relatively prime.
There are ¢(m) such sequences where ¢(m) is the Euler’s function. The theorem of Dircihlet
says that primes are equally distributed amongst these sequence. More precisely, the set
of primes contained in any sequence has Dirichlet’s density 1/¢(m). We shall prove this
theorem in the case m = ¢ a prime.

This theorem is proved using the cyclotomic extension Q(w) where w = €2™/* is the (-
th root of one. Recall that w is root of ®, = (z* — 1)/(x — 1), and the ring of integers is
A = Z]x]/(®,). Hence a prime p splits completely in A iff the polynomial &, splits completely
mod p, concretely, there exists a primitive root of order £ in F . Since F is a cyclic group of
order p — 1, it contains a primitive root of order £ if and only if ¢ divides p — 1 i.e. p belongs
to the sequence 1,1+ ¢,1+ 2/,.... But we already know that the set of primes that split
completely in Q(w) has density 1/¢ — 1. This proves the density in one case. We shall now
prove the general case. (In a later lecture we shall relate to splitting of primes in Q(w).)

Let x : (Z/lZ)* — C* be a non-trivial character. For convenience, we extend y to
all integers by x(n) = 0 if ¢ divides n. Then ¢ is a periodic function on Z satisfying
x(mn) = x(n)x(m) (check it). Let
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be the Dirichlet’s L-function attached to y. This series is clearly absolutely convergent for

R(s) > 1.

Exercise: Prove that we have a factorization
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Exercise: Prove that )", a; = O(1) (bounded).

It follows that L(x, s) has a holomorphic continuation on half-plane £(s) > 0, if x # 1. A
key point, for us, is the factorization

Cow)(s) = Cals) [ L(x. 8)

where the product is taken over all non-trivial characters x of (Z/¢Z)*. (You should think
Co(s) as the L-function attached y = 1.) This is a special case of a more general factorization

of the Dedekind zeta functions in terms of Artin L-functions. Proof of this general fact is
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quite easy, and we shall do it in a later lecture. The Dedekind zeta function has a pole of
order 1, and so does the Riemann zeta function that appears on the right, thus it follows
that

L(x,1) #0
for all non-trivial characters x. This non-vanishing is the most difficult part in proofs found
in literature.

Lemma 0.1. Recall that X is the set of all prime numbers. Let x be a non-trivial character

of (ZJUZ)*. Then
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Proof. Since L(x,1) # 0,
. log L(x; )
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In the previous lecture we proved

1
log Cals) = 3" = + e(s)
peX p
where e(s) is holomorphic at s = 1. Similarly, we have

08 Lic.s) = 30 X e, )

where e, (s) is also holomorphic at s = 1. The lemma is now an easy combination of the

above facts.
O

Remark: Since x takes complex values, we need to pick a branch of log specified by
log(1) = 0. Then locally, around 1, log(zy) = log z + log y.



