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Let [F': Q] = n be a number field, and let A be the ring of all algebraic integers in F. Let
A be the discriminant of A. The Dedekind zeta function attached to F' is
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ICA

where the sum is taken over all non-zero ideals in A. Observe that (gp(s) is the Riemann
zeta function. The series (p(s) converges absolutely on the half plane R(s) > 1 and has a

factorization
1
(o) =] 7——

PCA N(P)s

where the product is over maximal (non-zero prime) ideals in A. If S C N is a set of primes,
consider the partial product
1
rs(s)= | ——

PlpesS N(P)*

In words, this is a product over P appearing in factorizations of p € S. The Dedekind zeta
function has a meromorphic continuation on the half-plane R(s) > 1 — 1/n, with a simple
pole at s = 1. We shall use this fact to prove a number of results on distribution of primes.
If f(s) and g(s) are two meromorphic functions, we shall write f(s) ~ g(s) if f(s)/g(s)
is holomorphic and non-zero at s = 1. In particular, since the factors 1/(1 — ﬁ) are
holomorphic and non-zero at s = 1, for any S containing almost all primes we have

Cr(s) = (rs(s).

As a warm-up, in order to illustrate main ideas, let’s prove the following case of primes in
progression result.

Proposition 0.1. There are infinitely many primes p = 1 (mod 4) and infinitely many
primes p = 3 (mod 4).

Proof. 0

Let FF = Q(v/—1). The proof is based on the fact that an odd prime p splits in this
quadratic extension if p =1 (mod 4) and is inert (stays prime) if p =3 (mod 4). Let S be
the set of primes p =1 (mod 4) and let T" be the set of primes p =3 (mod 4). We have

Cr(s) = Crs(s)Crr(s).
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If pe S, then (p) = PP where P # P are two prime ideals such that N(P) = N(P) = p.

Hence )
Crs(s) = H @-

peES
If pe T, then (p) is prime and N((p)) = p*. Hence

1
¢r(s) =1 -1y

peT p3s

Notice that these are the factors of the Riemann zeta function at s (squared) and at 2s,
respectively.

Now we can prove that S and T are both infinite. If S is finite, then T contain almost all
primes, hence (pr(s) = (g(2s), and

Cr(s) = Ca(2s).
The left hand side has a pole at s = 1, while the right hand side is holomorphic, a con-
tradiction. On the other hand, if T is finite, then S contain almost all primes, hence

Crs(s) = (g(s)? and

Cr(s) = Cols)*.
The left hand side has a pole at s = 1, while the right hand side has a double pole, a
contradiction.

Let’s do this more conceptually. We say that a set S C N of primes has polar density %
if (o.5(5)? has a pole of order m at s = 1. For example, if S is a set of almost all primes p,
then its polar density is 1. On the other hand, if S is finite, then its polar density is 0. Let

F' be a quadratic extension of Q, and let S be the set of all primes p that split completely,
i.e. (p) = PP, where P, and P, are two prime ideals with norm p. Then

1
Crs(s) = || 713 = Cas(s)”
S };A[g(l—]?) Q,S

Let T be the set of all primes p that stay inert, i.e. (p) is a prime ideal in A with norm p?.
Then

Cor(s) = [] 1 = Cor(2)

peT (1 o PQS)

For s > 1, real, we have the following obvious inequalities:
1 < Gor(25) < Gal2s).
Thus (rr(s) has neither zero nor a pole at s = 1. Hence
Cr(5) = Crs(s)Crr(s) = Cas(s)™.

It follows that the polar density of the set of primes that split in a quadratic extension is
1/2.

We now push this idea a step further. Assume that [F' : Q] = n is Galois. Let p be
an unramified prime, so we have a factorization (p) = P --- P, in A where Py,..., P, are
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prime ideals such that A/P, = ... =2 A/P, =2 F,, and n = fg. The prime p is said to split
completely if f =1 and g = n.

Exercise: Prove that the polar density of the set of primes that split completely in F is 1/n.



