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Let [F : Q] = n be a number field, and let A be the ring of all algebraic integers in F . Let
∆ be the discriminant of A. The Dedekind zeta function attached to F is

ζF (s) =
∑
I⊆A

1

N(I)s

where the sum is taken over all non-zero ideals in A. Observe that ζQ(s) is the Riemann
zeta function. The series ζF (s) converges absolutely on the half plane <(s) > 1 and has a
factorization

ζF (s) =
∏
P⊂A

1

1− 1
N(P )s

where the product is over maximal (non-zero prime) ideals in A. If S ⊂ N is a set of primes,
consider the partial product

ζF,S(s) =
∏

P |p∈S

1

1− 1
N(P )s

.

In words, this is a product over P appearing in factorizations of p ∈ S. The Dedekind zeta
function has a meromorphic continuation on the half-plane <(s) > 1 − 1/n, with a simple
pole at s = 1. We shall use this fact to prove a number of results on distribution of primes.
If f(s) and g(s) are two meromorphic functions, we shall write f(s) ≈ g(s) if f(s)/g(s)
is holomorphic and non-zero at s = 1. In particular, since the factors 1/(1 − 1

N(P )s
) are

holomorphic and non-zero at s = 1, for any S containing almost all primes we have

ζF (s) ≈ ζF,S(s).

As a warm-up, in order to illustrate main ideas, let’s prove the following case of primes in
progression result.

Proposition 0.1. There are infinitely many primes p ≡ 1 (mod 4) and infinitely many
primes p ≡ 3 (mod 4).

Proof. �

Let F = Q(
√
−1). The proof is based on the fact that an odd prime p splits in this

quadratic extension if p ≡ 1 (mod 4) and is inert (stays prime) if p ≡ 3 (mod 4). Let S be
the set of primes p ≡ 1 (mod 4) and let T be the set of primes p ≡ 3 (mod 4). We have

ζF (s) ≈ ζF,S(s)ζF,T (s).
1



2 GORDAN SAVIN

If p ∈ S, then (p) = PP̄ where P 6= P̄ are two prime ideals such that N(P ) = N(P̄ ) = p.
Hence

ζF,S(s) =
∏
p∈S

1

(1− 1
ps

)2
.

If p ∈ T , then (p) is prime and N((p)) = p2. Hence

ζF,T (s) =
∏
p∈T

1

(1− 1
p2s

)
.

Notice that these are the factors of the Riemann zeta function at s (squared) and at 2s,
respectively.

Now we can prove that S and T are both infinite. If S is finite, then T contain almost all
primes, hence ζF,T (s) ≈ ζQ(2s), and

ζF (s) ≈ ζQ(2s).

The left hand side has a pole at s = 1, while the right hand side is holomorphic, a con-
tradiction. On the other hand, if T is finite, then S contain almost all primes, hence
ζF,S(s) ≈ ζQ(s)2 and

ζF (s) ≈ ζQ(s)2.

The left hand side has a pole at s = 1, while the right hand side has a double pole, a
contradiction.

Let’s do this more conceptually. We say that a set S ⊂ N of primes has polar density m
d

if ζQ,S(s)d has a pole of order m at s = 1. For example, if S is a set of almost all primes p,
then its polar density is 1. On the other hand, if S is finite, then its polar density is 0. Let

F be a quadratic extension of Q, and let S be the set of all primes p that split completely,
i.e. (p) = P1P2 where P1 and P2 are two prime ideals with norm p. Then

ζF,S(s) =
∏
p∈S

1

(1− 1
ps

)2
= ζQ,S(s)2.

Let T be the set of all primes p that stay inert, i.e. (p) is a prime ideal in A with norm p2.
Then

ζF,T (s) =
∏
p∈T

1

(1− 1
p2s

)
= ζQ,T (2s).

For s > 1, real, we have the following obvious inequalities:

1 < ζQ,T (2s) < ζQ(2s).

Thus ζF,T (s) has neither zero nor a pole at s = 1. Hence

ζF (s) ≈ ζF,S(s)ζF,T (s) ≈ ζQ,S(s)2.

It follows that the polar density of the set of primes that split in a quadratic extension is
1/2.

We now push this idea a step further. Assume that [F : Q] = n is Galois. Let p be
an unramified prime, so we have a factorization (p) = P1 · · ·Pg in A where P1, . . . , Pg are
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prime ideals such that A/P1
∼= . . . ∼= A/Pg

∼= Fpf , and n = fg. The prime p is said to split
completely if f = 1 and g = n.

Exercise: Prove that the polar density of the set of primes that split completely in F is 1/n.


