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In this lecture we shall use torsion points on the elliptic curve E given by the equation
2y? = 23 — z to construct abelian extension of Q(i). Given any field extension of K of Q,
let E(K) be the set of solutions (z,y) of the cubic such that x and y are in K.

Exercise: Show that F(K) is a subgroup of E(C). This is the group of K-rational points.

Assume not that K is a Galois extension of K of Q(i). Let Gk be the Galos group of K
over Q(i). Let 0 € Gg. If P = (x,y) is point in E(K), then o(P) = (o(z),0(y)) € E(K).
Also, since i € K, i+ (z,y) = (—x,1y) € F(K). Since o(i) =i it is clear that ¢ and complex
multiplication commute!. This is the key observation.

Finding torsion points on £ amounts to solving equations mP = O. For a fixed m,
finding coordinates of P amounts to finding roots of rational polynomials. (Rational since,
in this particular case, the curve 2y? = 23 — z has rational coefficients) Fix a prime p. For
every integer n = 1,2, ..., let K,, be the Galois extension of Q(¢) obtained by adjoining the
coordinates of p™-torsion points. Then

KicK,c...c K=UZ2/K,

is a tower of Galois extensions. The Galois groups G, of K, over Q(i) form an inverse
system,
Gl — G2 — ...

I

Let G be the limit of this inverse system. The action of Gk on the Tate module lim, E(p")
Zz gives an injective homomorphism

@ GK — GL(Zp)
Proposition 0.1. The group Gk is commutative. More precisely, we have an injective

homomorphism
0 Gg — Zy[i]™~.

Proof. We know that any o € G commutes with the complex multiplication, i.e. the action
of i. Thus ¢(Gk) is contained in the centralizer of ¢ in GLy(Z,). Recall, from the last lecture,
that ¢ is represented by the matrix
0 —1
(V7).

It is an elementary exercise to check that the centralizer of this matrix is the set of all

[ a —b
9=\ p»
1
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where a,b € 7Z, and det(g) = a* + b* € Z,. Now g — a+ bi is an isomorphism of the
centralizer and Z,[i]*. O

This is great, however, more is true, torsion points generate ray class fields. More precisely,
let I C A be a non-zero ideal. The ray class field corresponding to I is generated by squares
of x-coordinates of points P annihilated by I. Let’s look at an example p = 2. Recall that
2 ramifies, (2) = (7)? in A = Z[i], where

T=1+41.

Let K,, be the extension of Q(i) obtained by adjoining squares of z-coordinates of points P
such that 7 - P = O. Let G, be the Galois group of K,, over Q(7). Then (note AT = 1)

G, = (A7) [ pa.
Exercise: Show that (A/7™)* /4 is trivial for m = 1,2, 3.

To work out some K, we need to compute (z',y") = 7 - (z,y) = (z,y) + (—x,iy). Let
y = Ax + B be the line through (x,y) and (—z,iy). The slope is

2z
hence - .
SRS
v 272\ * T
and ¥ = —(y + A(x — 2)). Starting with Py = O, once can find easily a sequence of

points P, such that 7 - P,, = P,,_1;. For m = 1,2,3,4 the square of z-coordinate of P,
is 0,1,—1,3 + 2v/2. Hence K, = K, = K3 = Q(i), however, K; = Q(i,v/2) is a proper
extension of Q(7).

Serge Lang’s book, Elliptic functions, is a nice introduction to elliptic curves and complex

multiplication. In particular, the book contains the construction of the ray class fields for
quadratic imaginary fields.



