
Proceedings of Symposia in Pure Mathematics
Volume 68, 2000

Bruhat filtrations and Whittaker vectors for real groups

William Casselman, Henryk Hecht, and Dragan Miličić

Abstract. In this paper we continue earlier work of Bruhat, Jacquet, and
Shalika on Whittaker models for smooth representations of real groups. We

prove exactness in a certain category of such smooth representations, and also

give a new proof of holomorphicity as a function of the inducing parameter of
principal series. This makes the theory of Whittaker models for real groups

almost as simple to formulate as that of p-adic groups.
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1. Introduction

Suppose G to be a real reductive Lie group of Harish-Chandra class [15], P
a minimal parabolic subgroup of G and N the unipotent radical of P . Let K be
a maximal compact subgroup of G. Denote by g0, n0 and k0 the Lie algebras of
G, N and K respectively. Let g0 = k0 ⊕ q0 be the Cartan decomposition of g0.
Denote by a0 a maximal abelian Lie subalgebra of q0. Let g, k, n and a be the
complexifications of g0, k0, n0 and a0 respectively. Let R be the (restricted) root
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system in a∗ of the pair (g, a). Then n is the direct sum of root subspaces gα for
roots α in a set R+ of positive roots in R. Denote by B the corresponding set of
simple roots in R+. Let ψ be a unitary character of N , and η its differential. Then η
is completely determined by its restrictions to the root subspaces gα corresponding
to the roots α ∈ B. The character ψ is said to be non-degenerate if all of these
restrictions are non-trivial. Denote by Cη the one-dimensional representation of N
with action given by ψ. If (π, V ) is a representation of g, a Whittaker functional
on π is an n-covariant map from V to Cη. If π is the restriction to g of a smooth
representation of G, then a Whittaker functional corresponds to an N -covariant
map to Cη as well, therefore a G-covariant map from V into the space of smooth
functions f on G such that

f(ng) = ψ(n)f(g)

for all g ∈ G, n ∈ N . Functions in the image are called Whittaker functions,
because in simple cases they essentially coincide with confluent hypergeometric
functions treated extensively in Whittaker’s classic text. They, or rather their
analogues for certain finite groups, were apparently introduced into representation
theory by I. M. Gelfand and colleagues. The most important role they play is
probably in constructing archimedean factors of L-functions associated to certain
representations of adèle groups, and in particular to automorphic forms. There
have been many interesting papers about them, notably Jacquet’s thesis [18], an
early paper by Shalika [25], a paper of Kostant [21], and the thesis of Tze-Ming
To [26]. There remain so far unanswered, however, a few interesting technical
but important questions which we propose to answer here. We will also offer new
proofs of known results, and along the way explain a fundamental result in the
representation theory which as so far been only weakly exploited, what we call the
Bruhat filtration of the smooth principal series. This is a refinement of much earlier
work of Bruhat [6].

The main results of this paper depend strongly on the Bruhat filtration, and
include (1) a proof of the exactness of what we call the Whittaker functor, (2)
uniqueness of Whittaker functionals for suitable smooth irreducible representations
of quasisplit groups, and (3) holomorphicity of Whittaker functionals for the smooth
principal series and other analytic families of induced representations. Many results
in this paper have appeared before in various work of others, but not in as useful
or as general a form as we would like (see Matumoto [22], Wallach [29]). The
Bruhat filtration can be used to give more elegant proofs of many other results
in the representation theory of G. It might serve, in fact, as the cornerstone of a
reasonably elegant exposition of the subject from its beginnings. We hope to return
to these ideas in a subsequent paper.

It is well known that Harish-Chandra was much concerned with these matters
right up to his untimely death, and we therefore think it is not inappropriate to
dedicate this paper to his memory. We would like to thank Hervé Jacquet, who
pointed out to us a long time ago that there is some truth to the claim that nearly
all of analysis reduces to integration by parts. One of us (D.M.) would also like
to thank the Department of Mathematics, Harvard University, for their support
during the period when the final draft of the paper was written.

1.1. The simplest case. The main part of this paper is tough and abstract,
and we want to explain the themes here in the simplest case, when the arguments
can be laid out in very classical terms. Let G be the group SL(2,R) of unimodular
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two-by-two real matrices, P the subgroup of upper triangular matrices and N the
unipotent radical of P .

Further, let

ψ : N → C,
[
1 x
0 1

]
7→ eηx

be a unitary character of N , with η purely imaginary. At first we shall make no
assumption on η, but eventually we shall assume η 6= 0.

For s ∈ C we define define the smooth principal series representation

Is = {f ∈ C∞(G) | f(nag) = |y|s+1f(g)}

for g ∈ G, n ∈ N , and

a =

[
y 0
0 y−1

]
.

The group G is the disjoint union of two subsets PwN and P , where

w =

[
0 −1
1 0

]
.

The space Is is that of smooth sections of a suitable real analytic line bundle on
P1(R). It contains the subspace Is,w of all sections vanishing of infinite order at∞,
and has as quotient the space Is,1 of formal sections (Taylor series) of the analytic
line bundle at ∞. For example, if s = −1 the space Is is just C∞(P1(R)), which
is non-canonically the same as the space of smooth functions on the circle, Is,w is
the subspace of functions vanishing of infinite order at∞, and the quotient may be
identified with C[[ 1

x ]]. The complement of ∞ on P1(R) is a single orbit under N ,
so that functions in Is,w may be identified with functions on N . It is elementary
in this case that this allows us to identify Is,w as an N -module with S(N), the
Schwartz space of the additive group. This is essentially a special case of the well
known observation of Laurent Schwartz that the Schwartz space of Rn may be
identified with the space of all smooth functions on the unit n-dimensional sphere
Sn vanishing of infinite order at the north pole, via stereographic projection. The
exact sequence

0→ Is,w → Is → Is,1 → 0

is what we call the Bruhat filtration of Is. The last map is surjective because of
the well known result of Émile Borel. Note that these spaces are all stable under
N and g. The dual of the space Is,1, a space of distributions with support at ∞,
may be identified with a certain Verma module over g.

For a function f ∈ Is,w, the integral

Ωψ,s(f) =

∫
N

ψ−1(n)f(wn) dn

converges absolutely, and defines a ψ-covariant functional on Is,w holomorphic in
s. The basic question we are going to investigate here is this: to what extent can
this functional be extended covariantly to one on all of Is? It turns out that the
integral defining Ωψ,s is convergent for s in a certain half-plane of C, and that it
possesses a meromorphic continuation for all s, holomorphic in the case η 6= 0. It
is the holomorphicity that we are really concerned with here.

These results can be formulated in entirely classical terms.
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1.2. Some elementary functional analysis. In this section we shall inves-
tigate some problems which have no obvious relevance to representation theory, but
in the next we shall explain the connection.

Suppose f to be in S(R), s ∈ C, η ∈ iR. The integral∫ ∞
−∞

e−
η
x |x|sf(x)dx

converges for Re(s) > −1 and defines in this region a tempered distribution on R.
As long as f vanishes of infinite order at 0 this integral is defined and analytic for
all values of s. Does it have for all s a natural extension to all of S(R)?

If η = 0 the answer is negative, but the situation is perfectly well understood.
Integration by parts gives us∫ ∞

−∞
|x|sf(x) dx = − 1

s+ 1

∫ ∞
−∞
|x|sxf ′(x) dx

and this allows us to continue the distribution at least into the region where Re(s) >
−2. If we multiply by s+ 1 and take the limit as s→ −1 we get

−
∫ ∞
−∞

sgn(x)f ′(x) dx =

∫ 0

−∞
f ′(x) dx−

∫ ∞
0

f ′(x) dx = 2f(0) .

In other words, integration by parts allows to extend the distribution meromorphi-
cally to the region Re(s) > −2, with a residue at s = −1 equal to 2δ0. Of course
we can again integrate by parts and eventually we see that we have a meromorphic
map from C to the space of tempered distributions on R, with simple poles at
−1,−3,−5, . . . and residues that are proportional to derivatives of δ0.

Now suppose that η 6= 0. Since η is purely imaginary, the function e−
η
x oscillates

wildly near 0, and it is reasonable to expect that the integral∫ ∞
−∞

e−
η
x |x|sf(x) dx

can be holomorphically extended. A different kind of integration by parts will do
the trick. The function

ϕs(x) = |x|se−
η
x

satisfies the differential equation

x2ϕ′s(x)− (sx+ η)ϕs(x) = 0

Therefore the integral becomes∫ ∞
−∞

ϕs(x)f(x) dx =
1

η

∫ ∞
−∞

x2ϕ′s(x)f(x) dx− 1

η

∫ ∞
−∞

sxϕs(x)f(x) dx

= −1

η

∫ ∞
−∞

x2ϕs(x)f ′(x) dx− 1

η

∫ ∞
−∞

(s+ 2)xϕs(x)f(x) dx

=
1

η

∫ ∞
−∞

ϕs(x)
(
−x2f ′(x)− (s+ 2)xf(x)

)
dx.

This converges for Re(s) > −2, since the function x 7−→ −x2f ′(x) − (s + 2)xf(x)
vanishes at 0. As before, we can repeat this procedure, eventually obtaining a
distribution holomorphic as a function of s.
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What is relevant for the rest of this paper is that the second argument reduces
in essence to this observation: The differential operator

f(x) 7−→ −x2f ′(x)− (s+ 2)xf(x)

induces a topologically nilpotent map of the space of formal power series C[[x]] into
itself.

1.3. Relevance to representation theory. Return to the notation of the
earlier section on SL(2,R). The group G is the disjoint union of PwN and P , and
the overlapping union of open subsets PwN and PN̄ , where N̄ is the subgroup of
lower unipotent matrices. A function in Is may therefore be expressed as a sum of
functions fw and f1, where fw has compact support modulo P on PwN and f1 has
compact support modulo P on PN̄ . In considering how to extend the functional
Ωψ,s, we may assume f = f1.

Therefore suppose now that f has support on PN̄ . How do we evaluate
Ωψ,s(f)?

We have

Ωψ,s(f) =

∫
N

ψ−1(n)f(wn) dn

and also f(pn̄) = |c|s+1f(n̄) if p ∈ P , n̄ ∈ N̄ , where the restriction of f to N̄ may
be identified with a function ϕ(y) of compact support. Here

p =

[
c x
0 c−1

]
, n̄ =

[
1 0
y 1

]
.

We can write[
0 −1
1 0

] [
1 x
0 1

]
=

[
0 −1
1 x

]
=

[
1 −x−1

0 1

] [
x−1 0

0 x

] [
1 0
x−1 1

]
and therefore the integral becomes∫ ∞

−∞
|x|−s−1ϕ(x−1)e−ηx dx = −

∫ ∞
−∞
|z|s−1e−

η
z ϕ(z) dz

which of course leads us back to the calculation in the previous section.
This is admittedly elementary, but not entirely satisfactory. The explicit calcu-

lation does not really tell us what is going on in terms of representations of SL(2,R).
So we shall now reformulate it. Consider the exact sequence

0→ Is,w → Is → Is,1 → 0

as a sequence of modules over n, where n is the Lie algebra of N . The integral
defining the functional Ωψ,s induces, as we have seen, an n-covariant map from Is,w
to Cη, or equivalently an n-covariant map from C−η to the strong dual Is,w

′ of Is,w,
or again equivalently an n-invariant element of Is,w

′ ⊗ Cη. We can now, however,
look at the long Lie algebra cohomology sequence derived from the exact sequence
above:

0→ H0(n, Is,1
′ ⊗ Cη)→ H0(n, Is

′ ⊗ Cη)→ H0(n, Is,w
′ ⊗ Cη)

→ H1(n, Is,1
′ ⊗ Cη)→ H1(n, Is

′ ⊗ Cη)→ H1(n, Is,w
′ ⊗ Cη)→ 0.

We have already remarked that Is,1
′ is a Verma module, which means that n acts

locally nilpotently on it, and this implies in turn that each nonzero element of n
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acts bijectively on Is,1
′⊗Cη, as long as ψ is not trivial. Therefore the n-cohomology

of Is,1
′ vanishes completely, and the map

H0(n, Is
′ ⊗ Cη)→ H0(n, Is,w

′ ⊗ Cη)

is an isomorphism. This guarantees the canonical extension of Ωψ,s from Is,w to
all of Is. Holomorphicity in s follows, among other reasons, from a slightly more
technical argument about various topological spaces of holomorphic functions, as
will be shown in the main part of this paper.

How does this argument relate to the simple one in the previous section? The
Lie algebra n of N is spanned by the matrix

(
0 1
0 0

)
. The action of the corresponding

differential operator on functions in Is restricted to N̄ is

−y2 d

dy
− (s+ 1)y

if we identify N̄ with R as before. The Verma module Is,1
′ corresponds to the

module of distributions with the support at 0. Therefore, the local nilpotency we
mentioned before is just the statement dual to the observation from the end of last
subsection.

1.4. What happens for more general groups. In other words, the simple
argument involving integration by parts can be interpreted, essentially, in terms
of cohomology. This is not necessary for SL(2,R), as we have seen, but already
extremely convenient for arbitrary groups of rank one. For groups of higher rank
the Bruhat filtration is indexed by elements of the Weyl group W of R, with closure
among closed N -stable subsets mirrored by a well known combinatorial ordering
of W . The filtration itself is more complicated in that the various modules in
the associated graded module are in some sense a mixture of Schwartz spaces and
Verma modules. A weak description of this associated graded module was already
known to Bruhat, of course, but using well known results originating with Whitney’s
general theory of smooth functions on singular varieties allows a stronger statement.
For these groups, it is impossible even to contemplate carrying out the calculations
necessary to reduce everything to integration by parts. Instead, we introduce a
rather complicated formal machine utilizing Lie algebra cohomology and functional
analysis. Various simple but technical results allow one to see that the n-cohomology
groups associated to non-degenerate characters of N of all of the quotients of the
associated graded module except the bottom one vanish completely, and that only
H0 of the bottom one is non-trivial.

If G is linear quasisplit then every smooth principal series has essentially a
unique Whittaker functional (in the literature, commonly called a Whittaker vec-
tor). Further cohomological arguments allow us to conclude that every irreducible
smooth Harish-Chandra representation of G (in the sense of [9]) has at most one.
This is an important fact, on which depends the local functional equation of Whit-
taker functionals. For p-adic groups, this is an elementary result and has been
known for a long time. Shalika’s results were perhaps the first to suggest the strong
statement we prove here. But for a long time the situation for real groups has
been confused by the intriguing fact that uniqueness is true only for a certain cat-
egory of smooth representations of G. For algebraic Harish-Chandra modules, the
dimension of the space of Whittaker functionals is equal to the cardinality of the
Weyl group, a result first pointed out in Kostant’s remarkable paper [21]. Already
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in the book by Jacquet and Langlands [19] uniqueness was tied to the asymptotic
growth at ∞ of certain N -covariant functions (the classical Whittaker functions,
in fact), and the impressive thesis of To [26] analyzed growth conditions of Whit-
taker functions for groups of higher rank. We believe, however that the context
in which we prove uniqueness here is the most natural one. It might also be of
historical interest for us to mention that the construction of the useful category of
smooth representations found in Casselman [9] and Wallach [28] was initiated by
investigations about uniqueness of Whittaker functionals.

1.5. Plan of the rest of the paper. The body of the paper is organized as
follows. In the second section we discuss the definition of Schwartz spaces and spaces
of tempered distributions in the context of vector bundles on compact analytic
manifolds. We prove some technical results about these spaces which are simple
consequences of deep results originating in the work of Whitney and  Lojasiewicz.
In our exposition these results are hidden in the formalism of subanalytic sets. In
the next section we study some natural filtrations on spaces of smooth sections of
analytic vector bundles attached to finite stratifications of the base spaces by closed
subanalytic sets. These filtrations together with the corresponding filtrations on
the spaces of distributions are of fundamental importance in our paper. Up to that
point, our discussion is quite general and devoid of any representation theoretic
context. The example critical for our representation theoretic applications is that
of a homogeneous vector bundle on a compact homogeneous manifold X for a Lie
group G and the orbit stratification corresponding to a Lie subgroup N ⊂ G acting
on X with finitely many orbits. It is discussed at the end of the third section.

In the fourth section we specialize this example even further to a reductive Lie
group G acting on its real flag manifold X. The group N is the nilpotent radical of
a minimal parabolic subgroup. The corresponding filtration of the space of sections
of a homogeneous vector bundle is the Bruhat filtration. In the fifth section we
compute Lie algebra (co)homology of twisted regular representations of a nilpotent
Lie group N on Schwartz spaces of functions on homogeneous spaces of N and their
strong duals. The calculation is based on a simple Fourier transform argument in
the abelian case, and an inductive argument using the Hochschild-Serre spectral
sequence in general. The main results of the paper are proved in the sixth and
seventh section where we study the existence of Whittaker functionals for smooth
principal series representations of reductive Lie groups and their construction as
holomorphic continuation of Jacquet integrals (which are a generalization of the
integral Ωψ,s from §1.3). Using the Bruhat filtration and some standard cohomo-
logical arguments, the existence follows from the results on Lie algebra cohomology
in the fifth section. In the eight section we reformulate our main results for arbi-
trary smooth representations. Finally, in the ninth section we specialize our results
to linear quasisplit groups.

Throughout the paper we freely use a number of results from the theory of
nuclear spaces. These results are notoriously hard to find in the literature so we
decided to include flowcharts of their proofs in two appendices at the end of the
paper.

2. Schwartz spaces and tempered distributions

Let X be a compact analytic manifold. We denote by C∞(X) the algebra of
complex valued smooth functions on X and by Diff(X) the algebra of differential



158 W. CASSELMAN, H. HECHT, AND D. MILIČIĆ

operators with smooth coefficients on X. We equip C∞(X) with the topology of
uniform convergence of functions and their derivatives on X (more precisely, this is
the locally convex topology given by seminorms pD : f 7−→ maxx∈X |(Df)(x)| for
D ∈ Diff(X)). It is well known that C∞(X) with this topology is a nuclear Fréchet
space (or an NF-space, for short)1. The strong dual C∞(X)′ of C∞(X) is the
space of distributions on X. It is a dual nuclear Fréchet space (or a DNF-space, for
short). Clearly, differential operators act as continuous transformations on C∞(X)
and C∞(X) has a natural structure of a left Diff(X)-module. For any D ∈ Diff(X),
let Dt be the adjoint endomorphism of C∞(X)′. Clearly, Dt is a continuous linear
map on C∞(X)′ and (D,T ) 7−→ DtT for D ∈ Diff(X) and T ∈ C∞(X)′, defines a
structure of a right Diff(X)-module on C∞(X)′.

More generally, let E be an analytic vector bundle on X. Denote by p : E → X
the natural projection. Let Diff(E) be the algebra of differential operators with
smooth coefficients acting on sections of E. For m ∈ Z, denote by Diffm(E) the
subspace of all differential operators of order ≤ m. Let E∗ be the dual vector
bundle. Let C∞(E) denote the space of all smooth sections of the vector bundle
E. Then, using the natural pairing C∞(E) × C∞(E∗) → C∞(X), we can define
seminorms pD,f : s 7−→ maxx∈X |f(x)((Ds)(x))| on C∞(E), for any D ∈ Diff(E)
and f ∈ C∞(E∗). They define the locally convex topology of uniform convergence
of sections and their derivatives on X. With this topology C∞(E) is an NF-space.
As above, it also has the structure of a left Diff(E)-module. Let C∞(E)′ be its
strong dual. By abuse of language, we call it the space of E-distributions on X. It
is a DNF-space and a right Diff(E)-module.

Let T be an E-distribution on X. Then there exist a finite family {(Dj , fj); 1 ≤
j ≤ k}, of Dj ∈ Diff(E) and sections fj of E∗ such that |T (s)| ≤

∑k
j=1 pDj ,fj (s)

for any s ∈ C∞(E). If the orders of differential operators Dj are ≤ p, we say that
the order of T is ≤ p. Clearly, this defines an exhaustive increasing filtration of
C∞(E)′. If D ∈ Diffs(E) and T is of order ≤ p, DtT is of order ≤ s+p. Therefore,
C∞(E)′ is a filtered Diff(E)-module.

Let U be an open subset in X. For any compact set K ⊂ U , D ∈ Diff(E) and a
smooth section f of E∗, define a seminorm pK,D,f : s 7−→ maxx∈K |f(x)((Ds)(x))|
on the space C∞(U,E) of smooth sections of E on U . Let C∞0 (U,E) be the sub-
space of all compactly supported smooth sections of E on U . Also, let C∞K (U,E)
be its subspace consisting of all sections with support in K. Clearly, as a linear
space, C∞0 (U,E) = lim−→K⊂U C

∞
K (U,E). We endow C∞K (U,E) with the locally con-

vex topology given by the family of seminorms pK,D,f where D ∈ Diff(E) and f
are smooth sections of E∗. Moreover, we endow C∞0 (U,E) with the topology of the
direct limit of locally convex spaces. The strong dual C∞0 (U,E)′ of C∞0 (U,E) is
the space of E-distributions on U . If V is an open subset of U , we have an obvious
continuous inclusion of C∞0 (V,E) −→ C∞0 (U,E). The adjoint of this inclusion is
the restriction map resU,V : C∞0 (U,E)′ −→ C∞0 (V,E)′. Clearly, this defines a sheaf
of E-distributions on X.

Let T be an E-distribution on X. The support supp(T ) of T is the complement
of the largest open set U in X such that T |U = resX,U (T ) = 0.

The following result is a simple generalization of a well known fact.

1For our terminology and notation concerning locally convex spaces see Appendix A.
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Lemma 2.1. Let T be an E-distribution of order ≤ m on X. Then T (s) = 0 for
any smooth section s of E such that Ds vanishes on supp(T ) for all D ∈ Diffm(E).

Proof. Let U be an open set in X such that E|U is trivial and U can be
covered by one coordinate chart. If the support of T is contained in U , the result
is [24, Ch. III, Th. XXVIII].

As we already remarked, if T is of order ≤ p and φ a smooth function on X,
the distribution φT is of order ≤ p. Therefore, by a partition of unity argument,
we can reduce the general situation to the above special case. �

Fix an open set U in X, and denote by Z its complement. Following [20, §3], we
call the elements of the image of resU = resX,U : C∞(E)′ −→ C∞0 (U,E)′ tempered
E-distributions on U with respect to X. The kernel ker resU of resU consists of all
E-distributions on X with the support in Z. Therefore, ker resU is a closed linear
subspace of C∞(E)′ and we have the short exact sequence

0 −→ ker resU −→ C∞(E)′ −→ im resU −→ 0

of right Diff(E)-modules. We equip the kernel ker resU with the induced topology,
and the image im resU with the quotient topology. Then ker resU and im resU are
DNF-spaces. By dualizing, we have the exact sequence

0 −→ (im resU )′ −→ C∞(E) −→ (ker resU )′ −→ 0,

where (im resU )′ = (ker resU )⊥, i.e., this is the space of all smooth global sections
of E on which the distributions supported in Z vanish.

We say that a smooth section s ∈ C∞(E) vanishes at x with all of its derivatives
of order ≤ m if (Ds)(x) = 0 for all differential operators D ∈ Diffm(E). Also, we
say that a smooth section s ∈ C∞(E) vanishes at x with all of its derivatives if
(Ds)(x) = 0 for all differential operators D ∈ Diff(E).

Let x ∈ X. As in [24, Ch. III, Th. XXXV], one can easily check that any
E-distribution supported in {x} has the form s 7−→ f((Ds)(x)) for some differential
operator D ∈ Diff(E) and a linear form f on the fiber Ex of E at x. Therefore,
a smooth section of E vanishes at x with all of its derivatives if and only if all
E-distributions with support in {x} vanish on s.

If x ∈ Z, all distributions supported in {x} vanish on sections in (im resU )′.
Therefore, this space is contained in the subspace of C∞(E) consisting of all sections
vanishing with all of their derivatives on Z. The converse follows from 2.1.

Lemma 2.2. The linear subspace of all global sections in C∞(E) vanishing with
all of their derivatives on Z is equal to (im resU )′.

We denote this space by S(U,E) and call it the (relative) Schwartz space of
sections of E on U with respect to X. It is equipped with the natural topology
induced by C∞(E). Hence, S(U,E) has a natural structure of an NF-space. Its
strong dual S(U,E)′ is the space im resU of all tempered E-distributions on U .

Example 2.3. Let X = Sn be an n-dimensional sphere, p a point in Sn and
π : Sn −→ Rn the stereographical projection of U = Sn−{p} onto Rn with respect
to the pole p. The closed subspace of the space C∞(Sn) consisting of all functions
vanishing with all of their derivatives at the pole p can be identified, via the dif-
feomorphism π, with the “classical” Schwartz space S(Rn) [24, Ch. VII, Th. II].
Also, this identifies the space of all restrictions to U of the distributions on the
sphere Sn with the space S(Rn)′ of “classical” tempered distributions on Rn. The
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kernel of the restriction map is the space of all distributions supported in p. As it
is well known [24, Ch. III, Th. XXXV], this is the space of all derivatives of the
Dirac δ-distribution in p. Therefore, it is isomorphic to the space of polynomials
C[∂1, ∂2, . . . , ∂n] in partial derivatives, equipped with the topology of the induc-
tive limit of finite-dimensional spaces of polynomials of degree ≤ p, p ∈ Z+. Its
strong dual is the space of formal power series C[[X1, X2, . . . , Xn]] with its natu-
ral topology. Therefore, the above short exact sequence corresponds to the exact
sequence

0 −→ S(Rn) −→ C∞(Sn)
TS−−→ C[[X1, X2, . . . , Xn]] −→ 0,

where TS is the Taylor series map which attaches to a smooth function on the
sphere Sn its Taylor series at the point p. The surjectivity of this map is the classic
theorem of Émile Borel.

As remarked in [20, 3.2], temperedness is a a local property. More precisely an
E-distribution T on an open set U is tempered if and only if for any point x ∈ X
there exists a neighborhood V of x and a tempered E-distribution S on V such
that T |U∩V = S|U∩V . This remark, combined with local triviality of E, implies the
following variant of the “gluing” result of [20, 3.6].

Lemma 2.4. Let U be a subanalytic open set in X, and (Ui; 1 ≤ i ≤ n) a
covering of U by subanalytic open sets. Then, an E-distribution T on U is tempered
if and only if its restrictions T |Ui are tempered for all 1 ≤ i ≤ n.

Proof. Clearly, if T is tempered, T |Ui are also tempered for 1 ≤ i ≤ n.
Assume that all T |Ui , 1 ≤ i ≤ n, are tempered. Since any point x in X has a

fundamental system of subanalytic open neighborhoods, we can pick a subanalytic
open neighborhood V such that E|V is trivial vector bundle over V . Now, T |Ui∩V
are tempered for 1 ≤ i ≤ n. By [20, 3.6], T |U∩V is a restriction of an E-distribution
on V . By the above remark, it follows that T is tempered. �

Let Y be a submanifold2 of X. Then there exists an open subset U in X
such that Y is closed in U . Let U ′ be another such open set contained in U . The
kernel of the restriction map resU,U ′ consists of distributions on U supported in the
closed subset U − U ′ of U . Therefore, this map induces a bijection of the space
of E-distributions on U with support in Y onto the space of E-distributions on
U ′ supported in Y . The inverse of this map is “the extension by zero”. Since
the restriction of a tempered distribution on U is obviously tempered distribution
on U ′, we see that the restriction map resU,U ′ induces an injection of the space
of tempered distributions on U with support in Y into the space of all tempered
distributions on U ′ with support in Y .

Assume that Y is in addition a subanalytic set in X. Let U be an open subset
of X containing Y which is subanalytic in X. We say that U is a subanalytic
neighborhood of Z in X if Z is a closed subset of U .

Lemma 2.5. Let Y be a submanifold of X which is also a subanalytic set in X.
Then Y has a subanalytic neighborhood in X.

Proof. Since the closure Ȳ of Y in X is compact, there exists a finite covering
(Ui; 1 ≤ i ≤ n) of Y consisting of subanalytic open sets in X. Since ∂Y = Ȳ − Y is

2We follow [2] in our terminology. In particular, our submanifolds are locally closed.
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a closed subanalytic subset in X, we also see that U = (
⋃n
i=1 Ui)− ∂Y is an open

subanalytic set in X. Clearly, Y is a closed subset of U . �

Subanalytic neighborhoods of Y have the following property.

Lemma 2.6. Let Y be a submanifold of X which is also a subanalytic set in X.
Let U and U ′ be two subanalytic neighborhoods of Y such that U ′ ⊂ U . Then the
restriction resU,U ′ induces an isomorphism of the space of tempered E-distributions
on U with support in Y onto the space of all tempered E-distributions on U ′ with
support in Y .

Proof. By the preceding discussion, it is enough to show that the extension
by zero of a tempered distribution on U ′ with support in Z is tempered on U . Since
U and Y are subanalytic in X, their difference U − Y is an open subanalytic set in
X. Therefore, the assertion follows from 2.4. �

If U and U ′ are two arbitrary subanalytic neighborhoods of Y in X, their in-
tersection U ∩ U ′ is also a subanalytic neighborhood of Y in X. The restriction
maps resU,U∩U ′ and resU ′,U∩U ′ induce isomorphisms of the spaces of tempered E-
distributions on U , resp. U ′, with support in Y into the space of all tempered
E-distributions on U ∩U ′ with support in Y . It follows that the spaces of tempered
E-distributions with support in Y on any subanalytic neighborhood of Y are nat-
urally isomorphic. Therefore, by abuse of language, we call these distributions the
tempered E-distributions supported in Y . We denote by T (Y,E) the space of all
tempered E-distributions supported in Y . Clearly, T (Y,E), as a closed subspace
of S(U,E)′ for an subanalytic neighborhood U of Y , has a natural structure of a
DNF-space. This structure doesn’t depend on the choice of U by the open mapping
theorem. Also, T (Y,E) is a right Diff(E)-module.

Now we want to define a natural exhaustive filtration on T (Y,E). First, fix a
subanalytic neighborhood U of Y and consider T (Y,E) as a subspace of S(U,E)′.
For p ∈ Z, letMp denote the closed subspace of S(U,E) consisting of all sections s
which vanish along Y with their derivatives of order ≤ p. Clearly, (Mp; p ∈ Z) is a
decreasing filtration of S(U,E). We put Fp T (Y,E) =M⊥p , i.e., Fp T (Y,E) consists
of all tempered E-distributions supported in Y which vanish on the sections inMp.
Then F T (Y,E) is an increasing filtration of T (Y,E) by closed subspaces.

First, we remark that this filtration is exhaustive.

Lemma 2.7. The filtration F T (Y,E) of T (Y,E) is exhaustive.

Proof. Fix a subanalytic neighborhood U of Y . Let Z = X − U . Let T be
a distribution in T (Y,E). Then it is a restriction of an E-distribution T̄ on X
supported in Y ∪ Z. Assume that the order of T̄ is ≤ p. Then T (s) = 0 for all
smooth sections s of S(U,E) such that Ds vanishes on Y for all D ∈ Diffp(E), i.e.,
for all s ∈Mp. Therefore, T is in Fp T (Y,E). �

If we consider S(U,E)′ as a filtered right Diff(E)-module with respect to the
filtration induced by the order filtration, the above result means that the natural
inclusion of T (Y,E) into S(U,E)′ is compatible with the filtrations.

Since Fp T (Y,E) are closed subspaces of T (Y,E), they are DNF-spaces with
the induced topology. Therefore, by 2.7 and the open mapping theorem, we have
the following result.

Proposition 2.8. As a locally convex space, T (Y,E) = lim−→p→∞ Fp T (Y,E).
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Let M0p be the subspace of Mp consisting of sections with compact support
contained in U .

Lemma 2.9. We have M⊥0p =M⊥p or any p ∈ Z.

Proof. Fix p ∈ Z. Obviously, M0p ⊂ Mp and we have M⊥p ⊂ M⊥0p. There-

fore, it is enough to show that M⊥0p ⊂M⊥p .
Let T be a distribution T (Y,E) which vanishes on M0p. Then there exists a

distribution T̄ on X such that T is the restriction of T̄ to U . The support of T̄ is
contained in Y ∪Z. Assume first that the support of T̄ is “small”, i.e., there exists
an open set V in X such that supp(T̄ ) ⊂ V , E|V is trivial and V can be covered
by a coordinate chart. If supp(T̄ ) ∩ Z = ∅, the support of T in U is compact and
it is clear that T is perpendicular to Mp.

Therefore, we can assume that supp(T̄ ) ∩ Z is a nonempty compact set. Let
s be a smooth section in S(U,E). Then s vanishes with all of its derivatives on
supp(T̄ ) ∩ Z. Since V can be covered by a coordinate chart, we can assume that
V is an open set in Rn. Let d be the distance function on Rn. Also, for any x in
V let d(supp(T̄ ) ∩ Z, x) be the distance of x from supp(T̄ ) ∩ Z. As in the proof of
[24, Ch. III, Th. XXXV], for small ε > 0, one can construct a smooth compactly
supported function ϕε which satisfies: ϕε(x) = 1 if d(supp(T̄ ) ∩ Z, x) < ε/2 and
ϕε(x) = 0 if d(supp(T̄ )∩Z, x) > ε, and such that ϕεs and all of its derivatives tend
to 0 uniformly on V as ε → 0. By extending ϕε by zero outside V we see that
smooth sections ϕεs converge to 0 in S(U,E) as ε → 0. Therefore, it follows that
limε→0 T̄ (ϕεs) = 0. If we put φε = 1− ϕε, we get

lim
ε→0

(φεT̄ )(s) = T (s)− lim
ε→0

T̄ (ϕεs) = T (s),

On the other hand, φεT̄ is a distribution with support contained in Y . Therefore,
its restriction Tε to U is a tempered distribution in T (Y,E) with compact support.
By the above argument Tε tends weakly to T as ε → 0. Clearly, Tε vanish on
M0p. Hence, by the first part of the proof, they are perpendicular to Mp. It
follows that T is also perpendicular to Mp. This completes the proof for T̄ with
“small” support. The general case is reduced to this situation by a partition of
unity argument. �

By a partition of unity argument, from 2.9, we conclude that T ∈ T (Y,E) is
in Fp T (Y,E) if for any y ∈ Y there exists an open neighborhood V ⊂ U of y
such that T vanishes on all sections of Mp with support in V . This immediately
implies that the filtration F T (Y,E) is independent of the choice of the subanalytic
neighborhood U .

If T is in Fp T (Y,E), we say that the transversal degree of T is ≤ p.

Lemma 2.10. The space T (Y,E) is a filtered right Diff(E)-module.

Proof. Let D ∈ Diffs(E) for s ∈ Z+. Then D(Mp+s) ⊂ Mp for any p ∈ Z.
Hence, Dt(Fp T (Y,E)) = Dt(M⊥p ) ⊂M⊥p+s = Fp+s T (Y,E) for all p ∈ Z. �

Example 2.11. Consider again the situation described in 2.3. Let Sn−1 be a
(n − 1)-dimensional sphere in Sn passing through the pole p and such that under
the stereographic projection Sn−1 − {p} corresponds to the copy Y of Rn−1 in Rn
defined by the equation xn = 0. Clearly, the restriction of smooth functions on Sn

to Sn−1 induces the restriction of Schwartz functions on Rn to Schwartz functions
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on Rn−1. The adjoint of this map is a natural inclusion of the space of tempered
distributions on Rn−1 into the space T (Y ) of tempered distributions on Rn with
support in Y . The filtration F T (Y ) is described by

Fp T (Y ) = {T ∈ S(Rn)′ | xp+1
n T = 0}

for p ∈ Z+. In particular, the space F0 T (Y ) is equal to the image of the inclusion
of S(Rn−1)′ into S(Rn)′ . Then, as it is well-known [24, Ch. III, §10], we have

T (Y ) =

∞⊕
i=0

∂in F0 T (Y ) and Fp T (Y ) =

p⊕
i=0

∂in F0 T (Y )

for any p ∈ Z.

3. Filtrations attached to a stratification

Let Z1 ⊂ Z2 ⊂ · · · ⊂ Zn ⊂ X be an increasing family of closed subanalytic sets
in X (to simplify the notation, we assume that Zp = ∅ for p ≤ 0 and Zp = X for
p > n). Let Up = X − Zp be their complements. They form a decreasing family of
open sets in X. Assume that, for each p, Zp − Zp−1 = Zp ∩ Up−1 is a submanifold
in X.

Then we can define a natural decreasing filtration FC∞(E) of C∞(E) by the
Schwartz subspaces

C∞(E) = S(X,E) ⊃ S(U1, E) ⊃ · · · ⊃ S(Un, E) ⊃ {0},

i.e., we put Fp C
∞(E) = C∞(E) for p ≤ 0, Fp C

∞(E) = S(Up, E) for 1 ≤ p ≤ n
and Fp C

∞(E) = {0} for p > n. We want to describe the graded object GrC∞(E)
corresponding to this filtration.

The orthogonals (Fp C
∞(E))⊥ to the subspaces Fp C

∞(E) in the filtration are
closed subspaces in the space C∞(E)′ of E-distributions on X. Moreover, they
form an increasing filtration of C∞(E)′, i.e.,

{0} = (F0 C
∞(E))⊥ ⊂ (F1 C

∞(E))⊥ ⊂ . . . ⊂ (Fn C
∞(E))⊥ ⊂ C∞(E)′.

Of course, the spaces (Fp C
∞(E))⊥ are just the spaces of E-distributions supported

in Zp. By our previous discussion, we have the following short exact sequences

0 −→ (Fp C
∞(E))⊥ −→ C∞(E)′ −→ S(Up, E)′ −→ 0.

By our assumption, Zp+1 − Zp are closed submanifolds in Up. Moreover, they are
subanalytic sets in X. Therefore, for each p, Up is a subanalytic neighborhood of
Zp+1 − Zp in X. Hence, the above short exact sequences give the following exact
sequences

0 −→ (Fp C
∞(E))⊥ −→ (Fp+1 C

∞(E))⊥ −→ T (Zp+1 − Zp, E) −→ 0.

Consider now short exact sequences

0 −→ Fp+1 C
∞(E) −→ Fp C

∞(E) −→ Grp C∞(E) −→ 0.

Since we have (Fp C
∞(E))′ = C∞(E)′/(Fp C

∞(E))⊥, it follows that

(Grp C∞(E))′ = (Fp+1 C
∞(X))⊥/(Fp C

∞(X))⊥ = T (Zp+1 − Zp, E)

i.e., the dual of Grp C∞(E) is the space of all tempered E-distributions supported
in Zp+1 − Zp. This establishes the following result.
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Theorem 3.1. The graded object corresponding to the filtration FC∞(E) of
C∞(E) is

GrC∞(E) =
⊕
p∈Z
T (Zp − Zp−1, E)′

as a left Diff(E)-module and an NF-space.

A typical application of this result is in the following situation. Let G be a real
Lie group. Let X be a compact analytic manifold with an analytic action of G. Let
E be a homogeneous analytic vector bundle on X. Then G acts naturally on the
space C∞(E) of all smooth sections of E. Therefore, C∞(E) is a representation
of G. Let g be the complexified Lie algebra of G and U(g) its enveloping algebra.
By differentiating the action of G on sections of E we get a homomorphism of
U(g) into Diff(E), i.e, C∞(E) has a natural structure of a U(g)-module. Moreover,
the composition of the principal antiautomorphism of U(g) with the natural homo-
morphism of U(g) into Diff(E) defines a homomorphism of U(g) into the opposite
algebra of Diff(E). Therefore, the right Diff(E)-module of E-distributions C∞(E)′

can be viewed as a left U(g)-module. The action of U(g) on this space is just the
contragredient action.

Let N be a connected closed subgroup of G. We assume in the following that N
acts on X with finitely many orbits. Therefore, the orbits of N in X are connected
submanifolds [30, 5.2.4.1], and subanalytic sets in X [5].

Lemma 3.2. Let O be an N -orbit in X. The boundary ∂O = Ō −O of O is a
union of finitely many N -orbits of dimension strictly smaller than dimO.

Proof. The closure Ō is a N -invariant subanalytic set in X. Therefore, it
is a union of finitely many N -orbits. Since ∂O = Ō − O is a subanalytic set of
dimension ≤ dimO − 1 [27, 1.16.(3)], we see that ∂O is a union of finitely many
N -orbits of dimension strictly smaller than dimO. �

For any p ∈ Z denote by Zp the union of all N -orbits of dimension < p. By
3.2, it follows that Zp are closed subanalytic sets in X. We define the filtration
of C∞(E) as in the above discussion. Clearly, the closed subspaces Fp C

∞(E) are
not G-invariant. On the other hand, they are invariant for the action of U(g).
Therefore, FC∞(E) is a decreasing filtration of C∞(E) by left U(g)-submodules.
In addition to 3.1, we have the following result.

Lemma 3.3. The space of all tempered distributions supported in Zp+1 − Zp is
equal to ⊕

dimO=p

T (O,E)

where O are N -orbits in X.

Proof. Let O1, O2,. . . , Oq be all p-dimensional N -orbits in X. Then, for any
1 ≤ i ≤ q,

Ui = X −

Zp ∪⋃
j 6=i

Oj


is an open subanalytic set in X containing Oi. Moreover, by 3.2, the orbit Oi
is closed in Ui, i.e., Ui is a subanalytic neighborhood of Oi. On the other hand,
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Ui ∩Oj = ∅ for i 6= j. Since the union Ui, 1 ≤ i ≤ q, is equal to X −Zp, by 2.4, we
see that

T (Zp+1 − Zp, E) =

q⊕
i=1

T (Oi, E).

�

Denote by J(O,E) the strong dual of T (O,E). This finally implies the following
result.

Theorem 3.4. The graded U(g)-module corresponding to C∞(E) equipped with
the filtration FC∞(E) is equal to

GrC∞(E) =
⊕
p∈Z

 ⊕
dimO=p

J(O,E)

 .

In particular, T (O,E) has a natural structure of a filtered left U(g)-module.
Finally, we have the following simple observation. We recall the definition of

the filtration by the transversal degree from §2.

Lemma 3.5. The subspaces Fq T (O,E), q ∈ Z, of T (O,E) are U(n)-invariant.

Proof. Consider the spaceMp of all smooth sections of E vanishing with their
derivatives of order ≤ p along the orbit O. Then, Mp is obviously N -invariant.
Therefore, it is invariant for the action of n. Therefore, the assertion follows from
the definition of the filtration. �

4. Bruhat filtration

Let G be a reductive Lie group of Harish-Chandra class [15]. Denote by g0 its
Lie algebra. Let K be a maximal compact subgroup of G and k0 its Lie algebra.
Let g0 = k0⊕ q0 be the corresponding Cartan decomposition. Let a0 be a maximal
abelian Lie subalgebra of q0. Let g, k and a be the complexifications of g0, k0
and a0 respectively. Let R be the system of (restricted) roots of (g, a) in a∗. Let
W = W (R) be the Weyl group of R. Fix a set of positive roots R+ in R. Let n be
the subalgebra of g spanned by the root subspaces of g corresponding to the roots
in R+. Put n0 = n∩g0. Let A be the connected abelian Lie subgroup of G with Lie
algebra a0. Let N be the connected nilpotent Lie subgroup of G with Lie algebra
n0. Then we have the Iwasawa decomposition G = KAN of G.

Let P be the minimal parabolic subgroup of G containing N and P = MAN
its Langlands decomposition. Denote by X = P\G the corresponding real flag
variety. The actions of groups P and N by the right translations on G induce the
actions on X. The orbits of these actions are identical, and by Bruhat lemma,
parametrized by the Weyl group W . The group G acts by conjugation on the set of
all minimal parabolic subgroups of G and this action is transitive. Since minimal
parabolic subgroups are their own normalizers, the map x 7−→ Sx which attaches
to a point in X its stabilizer Sx in G is a bijection of X onto the set of all minimal
parabolic subgroups in G. For w ∈ W , let nw be the Lie algebra spanned by the
root subspaces of g corresponding to the roots in w(R+). Let nw0 = nw ∩ g0. We
denote by Nw the connected nilpotent subgroup of G with Lie algebra nw0 . Then
Pw = MANw is a minimal parabolic subgroup in G which determines a point xw
in X. Let C(w) be the N -orbit of xw. It is called the Bruhat cell attached to w.
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The map W 3 w 7−→ C(w) is the bijection between W and the set of N -orbits in
X. For any p ∈ Z+, we denote by W (p) the set of all elements w ∈ W such that
dimC(w) = p. Also, as in the example of the orbit stratification in the last section,
we denote by Zp the union of all Bruhat cells C(w) for w ∈W (q), q < p ∈ Z+. Let
n = dimX.

Let E be the homogeneous vector bundle on X attached to a finite-dimensional
representation σ of P trivial on N . Then, the representation C∞(E) of G is nothing
else than the (smooth) induced representation Ind∞(σ) of G. Denote by C∞p (σ) the
space of all smooth sections of Ind∞(σ) which vanish with all of their derivatives
on Zp. As we explained in the preceding section, then

Ind∞(σ) = C∞0 (σ) ⊃ C∞1 (σ) ⊃ · · · ⊃ C∞p (σ) ⊃ · · · ⊃ C∞n+1(σ) = {0}.

is a finite decreasing filtration of Ind∞(σ) by U(g)-submodules. This filtration is
called the Bruhat filtration of Ind∞(σ).

As a specialization of 3.4, we get the following result (here we put J(w, σ) =
J(C(w), E)).

Theorem 4.1. The graded module corresponding to the Bruhat filtration of
Ind∞(σ) is the U(g)-module

⊕
p∈Z+

 ⊕
w∈W (p)

J(w, σ)

 .

More precisely, the following sequences

0→ C∞p+1(σ)→ C∞p (σ)→
⊕

w∈W (p)

J(w, σ)→ 0

are exact for p ∈ Z+.

In the preceding section we described a natural increasing filtration of J(w, σ)′.
Now we want to describe the graded modules in this filtration more precisely. This
will follow from a more explicit description of T (C(w), E) which we are going to
discuss now.

First, we fix a subanalytic neighborhood of C(w). Clearly, the stabilizer of xw
in N is N ∩Nw. Let w0 be the longest element of W . Then w0(R+) = −R+. Let
Uw = Nww0 . Then the complexified Lie algebra of Uw is spanned by root subspaces
corresponding to the roots in −w(R+). Therefore C(w) is actually the orbit of xw
under the action of N ∩Uw. The map u 7−→ u · xw is a diffeomorphism of Uw onto
the Uw-orbit V w of xw which is open and dense in X. Therefore, V w is an open
subanalytic set in X. By [1, V.21.14], the isomorphism Uw −→ V w maps the closed
connected subgroup N ∩ Uw of Uw onto C(w), i.e., C(w) is a closed submanifold
in V w. Therefore, V w is a subanalytic neighborhood of the Bruhat cell C(w).

In discussion of the geometry of X = P\G we can assume without any loss of
generality that G is a group of real points of a complex reductive group G defined
over R. Then P is the group of real points of a parabolic subgroup P of G defined
over R. Therefore X is the space of real points of P\G. Let N be the unipotent
radical of P. Then its group of real points is equal to N . The group Uw is the group
of real points of a unipotent subgroup Uw of G defined over R. Let uw be the Lie
algebra of Uw. The exponential map exp : uw 7−→ Uw is an algebraic isomorphism
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of the Lie algebra uw onto the group Uw. The restriction of the exponential map
to the Lie algebra uw0 of Uw is a diffeomorphism onto Uw.

In [12, §1], Du Cloux defined the notion of the Schwartz space of functions
on the space of real points of a smooth algebraic variety defined over R. By [12,
1.3.6.(iii)], his definition of the Schwartz space for Uw agrees with the “classic” one
after the identification of Uw with uw0 under the exponential map.

Moreover, in [12, 1.2.4.(i)], he proves that the pullback by the orbit map de-
fines a topological isomorphism of the Schwartz space S(V w) in sense of Section 2
with the Schwartz space S(Uw) on Uw we just described. Therefore, the relative
Schwartz space S(V w) is isomorphic to the Schwartz space on uw0 viewed as an
euclidean space.

Let Ew be the fiber of E at xw. The stabilizer Pw of xw in G acts on Ew.
We denote by σw this representation of Pw. Let g ∈ G be an element such that
xw = g · x1. Then P = g−1Pwg. Since all Levi factors in P are N -conjugate,
without loss of generality we can assume that g normalizes the common Levi factor
MA of P and Pw. The representation σw is equivalent to Pw 3 p 7−→ σ(g−1pg).

To any section s of C∞(E) we can attach the function φs given by V w 3
u·xw 7−→ u−1s(u·xw) ∈ Ew. Clearly, φs can be viewed as a function in C∞(V w)⊗C
Ew. Actually, by [12, 2.2.4], the map s 7−→ φs is an isomorphism of the NF-space
S(V w, E) onto S(V w)⊗C Ew.

The adjoint of this map is an isomorphism of S(V w)′ ⊗C E
∗
w with S(V w, E)′.

Therefore, we get the following result.

Lemma 4.2. The space of all tempered distributions T (C(w), E) supported in
the Bruhat cell C(w) is isomorphic to the tensor product of the space of all tempered
distributions T (N ∩ Uw) on Uw with support in N ∩ Uw with E∗w.

The restriction of a Schwartz function on Uw is a Schwartz function on N ∩Uw.
This gives a natural surjection of S(Uw) onto S(N ∩ Uw). The dual map defines
an injection of S(N ∩ Uw)′ into S(Uw)′. Clearly, under the above isomorphism,
S(N ∩Uw)′⊗CE

∗
w corresponds to F0 T (C(w), E). The group MA acts on the space

E∗w by the contragredient of σw. We can extend this action to a representation of
P trivial on N . Then the above isomorphism of Gr0 T (C(w), E) = F0 T (C(w), E)
with S(C(w))′ ⊗C E

∗
w is an isomorphism of U(p)-modules.

Our final result in this section is a generalization of this module isomorphism
to Grp T (C(w), E), p ∈ Z. For a real affine space Y we denote by R(Y ) the ring of
polynomials with complex coefficients on Y . Let J denote the ideal of all polynomi-
als in R(Uw) vanishing along N ∩Uw. Then, by the above isomorphism, the multi-
plication map defines a map J⊗R(Uw) Fp T (C(w), E) −→ Fp−1 T (C(w), E) of U(p)-
modules. By iteration, we get a map Jp⊗R(Uw) Fp T (C(w), E) −→ F0 T (C(w), E).
Moreover, this map factors through

Jp/Jp+1 ⊗R(Uw) Grp T (C(w), E) = Jp/Jp+1 ⊗R(N∩Uw) Grp T (C(w), E).

Therefore, we get a U(p)-module homomorphism

Jp/Jp+1 ⊗R(N∩Uw) Grp T (C(w), E) −→ F0 T (C(w), E).

This in turn leads to a U(p)-module homomorphism

αp : Grp T (C(w), E) −→ HomR(N∩Uw)(J
p/Jp+1,F0 T (C(w), E)).
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By a result giving the description of the space of all tempered distributions on Rn
with support in Rk analogous to 2.11, we easily see that this map is an isomorphism,
i.e., we have the following result.

We put Lp(w) = HomR(C(w))(J
p/Jp+1, R(C(w))). Clearly, this is an N -

equivariant R(C(w))-module.

Lemma 4.3. For any p ∈ Z, we have a natural isomorphism

αp : Grp T (C(w), E) −→ Lp(w)⊗R(C(w)) S(C(w))′ ⊗C E
∗
w

of U(p)-modules.

Clearly, Lp(w) is a free R(C(w))-module of finite rank. We shall need also the
following observation.

Lemma 4.4. The R(C(w))-module Lp(w) has a finite increasing filtration by
N -equivariant R(C(w))-submodules FLp(w) such that the graded module is isomor-
phic, as an N -equivariant R(C(w))-module, to a direct sum of copies of R(C(w)).

Proof. If we consider N as the group of real points of an unipotent complex
algebraic group N defined over R, Sw = Uw ∩ N is the subgroup of N of real
points of an algebraic subgroup Sw of N. The homogeneous space Sw\N is an
affine variety [1, 21.14], and we can view R(C(w)) as the ring of regular functions
on Sw\N. The R(C(w))-module Lp(w) is the module of global sections of a free
OSw\N-module Vp of finite rank. This OSw\N-module is a sheaf Vp of local sections
of a N-homogeneous algebraic vector bundle Vp on Sw\N. Since Sw is unipotent,
its representation on the geometric fiber of Vp at the identity coset is unipotent.
Therefore, Vp has an increasing finite filtration by N-homogeneous algebraic vector
subbundles FVp such that Fq Vp/Fq−1 Vp are line bundles corresponding to the
trivial representation of Sw, i.e., trivial line bundles on Sw\N. The sheaves Fq Vp
of local sections of Fq Vp define an increasing filtration of the OSw\N-module Vp,
and we have the exact sequences

0 −→ Fq−1 Vp −→ Fq Vp −→ OSw\N −→ 0

of locally free coherent OSw\N-modules. Since Sw\N is affine, by Serre’s theorem,
this leads to the exact sequences of the corresponding global sections

0 −→ Γ(Sw\N,Fq−1 Vp) −→ Γ(Sw\N,Fq Vp) −→ R(C(w)) −→ 0.

As a result, the submodules Γ(Sw\N,Fq Vp) of the R(C(w))-module Lp(w) =
Γ(Sw\N,Vp) define an exhaustive increasing finite filtration FLp(w) of Lp(w) such
that

0 −→ Fp−1 Lp(w) −→ Fp Lp(w) −→ R(C(w)) −→ 0

is exact. From the construction it is evident that this is a filtration by N-equivariant
R(C(w))-submodules. �

5. Lie algebra homology of the twisted regular representation on the
Schwartz space

For any U(n)-module V we denote by Hp(n, V ) (resp. Hp(n, V )), p ∈ Z+, the
p-th Lie algebra (co)homology group with coefficients in V .

In this section we prove a vanishing theorem for the Lie algebra homology of
some twisted regular representations of nilpotent Lie groups on Schwartz spaces on
their homogeneous spaces.
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Let N be a simply connected, connected nilpotent Lie group. Let n0 be its Lie
algebra. We denote by n its complexification, and by U(n) the universal enveloping
algebra of n. Let U be a connected Lie subgroup of N . Let U\N be the right coset
space of N with respect to U . Then N acts differentiably on it by right translations.
This action defines the right regular action of N on the space C∞(U\N) of smooth
complex valued functions on U\N . This action is clearly differentiable and leads
to a U(n)-module structure on C∞(U\N). We say that a smooth function f on
U\N is a polynomial if its annihilator in U(n) contains nk for sufficiently large
k ∈ Z+. Clearly, polynomials on U\N form a subalgebra of C∞(U\N) stable
under the action of N . The action of n on U\N is given by a morphism τ of n
into the Lie algebra of tangent vector fields on U\N . Let Diff(U\N) be the algebra
of all differential operators on U\N with smooth coefficients. Let DU\N be the
subalgebra of Diff(U\N) generated by the vector fields in τ(n) and polynomials
on U\N . We call DU\N the algebra of polynomial differential operators on U\N .
Clearly, DU\N is stable under the action of N .

A Schwartz function on U\N is a smooth function f on U\N such that Df
is bounded on U\N for any polynomial differential operator D ∈ DU\N [12]. Let
S(U\N) be the space of all Schwartz functions on U\N . Then, we can equip it
with a locally convex topology given by the seminorms

f 7−→ ‖f‖D = sup
x∈U\N

|Df(x)|.

The following result is established in [12].

Lemma 5.1. (i) S(U\N) is an NF-space.
(ii) The action of N on S(U\N) defines a differentiable representation ρ of

N . The differential of this representation is given by the natural action of
n.

Continuous linear forms on S(U\N) are called tempered distributions on U\N .
Let u0 be the Lie algebra of U . Denote by u its complexification. Let c0 be a

one-dimensional central subalgebra of n0. Assume that c0 6⊂ u0. Then v0 = u0 ⊕ c0
is a Lie subalgebra of n0 and dimR v0 = dimR u0 + 1. Denote by C and V the
connected Lie subgroups corresponding to c0 and v0 respectively. Clearly, C is
isomorphic to R. Then the fibers of natural projection p : U\N → V \N are
exactly the C-orbits in U\N , i.e., V \N is the quotient of U\N under the action of
C. Therefore, the map g 7−→ g ◦ p defines a homomorphism of C∞(V \N) into the
subalgebra of C∞(U\N) of all smooth C-invariant functions on U\N .

We fix a Haar measure on C. The following results can be proved easily using
simple facts on the structure of U\N (see, for example, [30, 1.1.4.1]) or deduced
from the induction in stages result in [12, 2.1.6].

Lemma 5.2. Let f be a Schwartz function on U\N . Then

(i) The integral

f̄(x) =

∫
C

(ρ(c)f)(x) dc

is finite for any x ∈ U\N .
(ii) The function f̄ is a C-invariant smooth function on U\N .
(iii) Let fC be the unique smooth function on V \N such that f̄ = fC ◦p. Then

fC is a Schwartz function.
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Therefore, we have a natural linear map π : f 7−→ fC of S(U\N) into S(V \N).
On the other hand, let ξ be a nonzero element of c0. Then it defines a polynomial
differential operator τ(ξ) on U\N . Moreover, τ(ξ) is a linear endomorphism of
S(U\N).

Lemma 5.3.

0→ S(U\N)
τ(ξ)−−→ S(U\N)

π−→ S(V \N)→ 0

is an exact sequence in the category of smooth representations of N .

This can be interpreted in the following way. Let c be the complexification of
the Lie algebra c0.

Proposition 5.4.

Hp(c,S(U\N)) =

{
0 if p 6= 0;

S(V \N) if p = 0.

Finally, the group N is unimodular. We fix a Haar measure on N . Then, for
any Schwartz function f on N , the integral

∫
N
f(n) dn is finite. Moreover, we have

the following result.

Lemma 5.5. The map f 7−→
∫
N
f(n) dn is a tempered distribution on N .

Proof. We prove this statement by induction in dimN . If dimN = 1, N ∼= R
and the statement is obvious.

Let dimN > 1. Then we can pick a one-dimensional central Lie subalgebra c0
of n0 and denote by C the corresponding connected Lie subgroup. Then, with an
appropriate choice of a Haar measure on C\N , we have∫

N

f(n) dn =

∫
C\N

(∫
C

f(nc)dc

)
dṅ.

Hence, the statement follows from 5.2 and the induction assumption. �

Since this tempered distribution is N -invariant, it vanishes on all Schwartz
functions of the type ξ · f , ξ ∈ n, f ∈ S(N).

Let ψ be a character of N , i.e., a differentiable homomorphism of N into C∗.
Let η be the differential of ψ extended to a complex valued linear form η on n.
Since ψ is a character, η vanishes on [n, n]. The character ψ is unitary if and only
if Re η = 0.

Denote by Cη the one-dimensional U(n)-module with action η. Consider the
tensor product S(U\N)⊗C Cη. This is the tensor product of the regular represen-
tation of N on S(U\N) with the one-dimensional representation given by character
ψ. We call this representation a twisted regular representation of N . Clearly, it is a
differentiable representation of N . Therefore, it has a natural U(n)-module struc-
ture. In this section we establish the following result for the Lie algebra homology
of twisted regular representations.

Theorem 5.6. (i) Hp(n,S(U\N) ⊗C Cη) are finite-dimensional for all
p ∈ Z+.

(ii) Hp(n,S(U\N)⊗C Cη) = 0 for p > dimU .
(iii) If either Re η 6= 0 or η|u 6= 0, we have Hp(n,S(U\N) ⊗C Cη) = 0 for all

p ∈ Z+.
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First we consider the case of abelian N . In this situation, N = U ×V for some
complementary abelian Lie subgroup V . Hence, S(U\N) = S(V ) and the action of
U on this space is trivial. Let v0 be the Lie algebra of V and v its complexification.

Assume that η|u 6= 0. Then dimU > 0 and we can pick a one-dimensional
connected Lie subgroup D of U with Lie algebra d0 such that η|d0 6= 0. Let d be
the complexification of d0. Let ξ be a generator of d. Then, Hp(d,S(V )⊗C Cη) is
the cohomology of the complex

· · · → 0→ S(V )⊗C Cη
η(ξ)−−→ S(V )⊗C Cη → 0→ . . . ,

i.e., all of them vanish. By the Hochschild-Serre spectral sequence

Hp(n/d, Hq(d,S(V )⊗C Cη))⇒ Hp+q(n,S(V )⊗C Cη),

we see that Hp(n,S(U\N)⊗C Cη) = 0 for all p ∈ Z+.
Therefore, we can assume that η|u = 0. In this case, the action of U on

S(U\N)⊗C Cη is trivial, and from the standard complex of Lie algebra homology
we see that

Hp(u,S(U\N)⊗C Cη) =
∧p

u⊗C S(U\N)⊗C Cη
for p ∈ Z+. To complete the argument, we have to calculate Hp(v,S(V )⊗CCη) for
p ∈ Z+.

Lemma 5.7. (i) If Re η 6= 0, we have

Hp(v,S(V )⊗C Cη) = 0

for p ∈ Z+.
(ii) If Re η = 0, we have

Hp(v,S(V )⊗C Cη) =

{
0 for p 6= 0;

C for p = 0.

We prove this lemma by induction in dimension of V . Clearly, V = Rn. Let d0

be a one-dimensional Lie subalgebra of v0 and D the corresponding connected Lie
subgroup. Let d be the complexification of d0.

Lemma 5.8. (i) Hp(d,S(V )⊗C Cη) = 0 for p > 0.
(ii) If Re η|d 6= 0, we have

H0(d,S(V )⊗C Cη) = 0.

Proof. Without any loss of generality we can assume that D is the first coor-
dinate axis in Rn. Then the unit vector (1, 0, . . . , 0) in d acts on S(Rn) as ∂1 and
on Cη by the first coordinate η1 = η(1, 0, . . . , 0) of η. It follows that the Lie algebra
homology is the cohomology of the complex

0→ S(Rn)
∂1+η1−−−−→ S(Rn)→ 0.

If f is in the kernel of D = ∂1 + η1, it must satisfy ∂1f = −η1f . By integration
we see that f(x1, x2, . . . , xn) = e−η1x1f(0, x2, . . . , xn). Hence, f can be rapidly
decreasing if and only if f = 0. Therefore, the kernel of D is zero, and (i) follows.

It remains to study the image of D. Consider the equation Df = g where
f, g ∈ S(Rn). Define the Fourier transform

ĥ(t1, t2, . . . , tn) =
1

(2π)
n
2

∫
Rn
h(x1, x2, . . . , xn)e−i(x1t1+x2t2+···+xntn)dx1dx2 . . . dxn.
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Then the Fourier transform of our equation looks like

(it1 + η1)f̂(t1, t2, . . . , tn) = ĝ(t1, t2, . . . , tn), (t1, t2, . . . , tn) ∈ Rn.
Assume now that Re η1 6= 0. Then the function (t1, t2, . . . , tn) 7−→ 1

t1−iη1 is a

smooth function on Rn and all of its derivatives are bounded on Rn. Therefore, in
this case, since ĝ is in S(Rn), the function

f̂ : (t1, t2, . . . , tn) 7−→ −i ĝ(t1, t2, . . . , tn)

t1 − iη1

is a Schwartz function f̂ on Rn. Its inverse Fourier transform is a Schwartz function
f which satisfies Df = g. Hence, in this case, cokerD = 0. �

Assume that Re η 6= 0. Then we can pick d0 so that Re η|d0 6= 0. By the
Hochschild-Serre spectral sequence

Hp(v/d, Hq(d,S(V )⊗C Cη))⇒ Hp+q(v,S(V )⊗C Cη),

and we see that
Hp(v,S(V )⊗C Cη) = 0, for all p ∈ Z+.

Therefore, we can assume that Re η = 0. In this case, the function

(x1, x2, . . . , xn) 7−→ e−(η1x1+η2x2+···+ηnxn)

is smooth and all its partial derivatives are bounded. Hence multiplication by
this function defines a linear automorphism of S(Rn). This automorphism inter-
twines the representation on S(Rn)⊗CCη with the regular representation on S(Rn).
Therefore, to prove the statement we can assume that η = 0.

Now we can prove the rest of 5.7 by induction in the dimension of V . If
dimV = 1, the statement follows from 5.4.

Let d0 be one-dimensional Lie subalgebra in v0 and D the corresponding con-
nected closed Lie subgroup of V . Denote by d the complexification of d0. Then, by
5.4, we have

Hp(d,S(V )) =

{
0 for p 6= 0;

S(V/D) for p = 0.

By the Hochschild-Serre spectral sequence, we have

Hp(v/d, Hq(d,S(V )))⇒ Hp+q(v,S(V )).

Hence by the above result, this spectral sequence degenerates and we have

Hp(v/d,S(V/D)) = Hp(v,S(V )).

Moreover, V/D is a connected and simply connected abelian Lie group. Therefore,
the assertion of 5.7 follows from the induction assumption.

Now we go back to the proof of the theorem for abelian N . By the Hochschild-
Serre spectral sequence, we have

Hp(v,S(V )⊗C Cη)⊗C
∧q

u = Hp(v, Hq(u,S(U\N)⊗C Cη))

⇒ Hp+q(n,S(U\N)⊗C Cη).

Hence, if Re η 6= 0, by 5.7, we get Hp(n,S(U\N) ⊗C Cη) = 0 for all p ∈ Z+. If
Re η = 0, we see that

Hp(n,S(U\N)⊗C Cη) =
∧p

u

for all p ∈ Z+. This establishes 5.6 for abelian N .
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Now, we prove the theorem by a downward induction in dimN . In addition,
we can assume that N is not abelian.

Let d0 be a one-dimensional Lie subalgebra of the center of n0. Since n0 is not
abelian, we can also assume that d0 ⊂ [n0, n0]. Therefore, η|d0 = 0. Let D be the
corresponding connected Lie subgroup (which is in the center of N). Denote by d
the complexification of d0.

Assume first that D ⊂ U . Then the action of D on U\N is trivial. Hence, the
action on S(U\N) is also trivial. As before, this implies the following result.

Lemma 5.9. Assume that d ⊂ u. Then

Hp(d,S(U\N)⊗C Cη) =

{
0 for p 6= 0, 1;

S(U\N)⊗C Cη for p = 0, 1;

as a n/d-module.

Let N ′ = N/D and U ′ = U/D. Denote by n′0 and u′0 their Lie algebras, and
by n′ and u′ their complexifications. Since η|d = 0, it defines a linear form η′ on n′.
Clearly, U\N = U ′\N ′. By the Hochschild-Serre spectral sequence we have

Hp(n
′, Hq(d,S(U\N)⊗C Cη))⇒ Hp+q(n,S(U\N)⊗C Cη).

Hence, by 5.9, we see that

Hp(n
′, Hq(d,S(U\N)⊗C Cη)) = Hp(n

′,S(U ′\N ′)⊗C Cη′)

for q = 0, 1 and 0 otherwise.
If η doesn’t vanish on u, η′ doesn’t vanish on u′. Therefore, by the induction

assumption we get that the E2-term in the above spectral sequence vanishes. Hence,
the vanishing theorem follows in this case.

If Re η 6= 0, we see that Re η′ 6= 0, and by the induction assumption the E2-term
in the above spectral sequence vanishes again.

If neither of these conditions is satisfied, by the induction assumption, we see
that the E2-terms are finite-dimensional and can be nonzero only for 0 ≤ p ≤ dimU ′

and q = 0, 1. Therefore, Hp(n,S(U\N) ⊗C Cη) are finite-dimensional and must
vanish for p > dimU ′ + 1 = dimU .

This completes the induction step in this case.
Assume now that D 6⊂ U . In this case, v0 = u0 + d0 is a Lie subalgebra of n0

and u0 is a Lie subalgebra of v0 of codimension 1. Put v′0 = v0/d0. Then v′0 is a
Lie subalgebra of n′0. Denote by V ′ the corresponding connected Lie subgroup of
N ′. Also, denote by v and v′ the complexifications of v0 and v′0 respectively.

Then we have the following result.

Lemma 5.10. We have

Hp(d,S(U\N)⊗C Cη) = 0

for p > 0 and

H0(d,S(U\N)⊗C Cη) = S(V ′\N ′)⊗C Cη′ .

Proof. This is essentially 5.4, since η vanishes on d. �

Therefore, by the Hochschild-Serre spectral sequence we have

Hp(n,S(U\N)⊗ Cη) = Hp(n
′,S(V ′\N ′)⊗ Cη′).
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Clearly, if η|u 6= 0, we have η|v 6= 0 and η′|v′ 6= 0. Hence, the vanishing follows by
the induction assumption. The same applies in the case Re η 6= 0.

If neither condition is satisfied, by the induction assumption Hp(n
′,S(V ′\N ′)⊗

Cη′) are finite-dimensional and vanish for p > dimV ′. But dimV ′ = dimV − 1 =
dimU . Hence, we see that Hp(n,S(U\N)⊗C Cη) are finite-dimensional and vanish
for p > dimU .

This completes the proof of 5.6.
Let S(U\N)′ be the strong dual of S(U\N). The contragredient action to the

regular action on S(U\N) defines a natural structure of a U(n)-module on S(U\N)′.
By dualizing, 5.6 implies the following result on the Lie algebra cohomology of
S(U\N)′ ⊗C Cη. Its proof is based on the following observation.

Lemma 5.11. Let E be a U(n)-module. Assume that E is an NF-space (or a
DNF-space) and that n acts by continuous linear transformations on E. Denote by
E′ the strong dual of E equipped with the contragredient action.

(i) Assume that Hp(n, E), p ∈ Z+, are finite-dimensional. Then, the Lie
algebra cohomology spaces Hp(n, E′) are linear duals of Hp(n, E) for all
p ∈ Z+.

(ii) Assume that Hp(n, E), p ∈ Z+, are finite-dimensional. Then, the Lie
algebra homology spaces Hp(n, E

′) are linear duals of Hp(n, E) for all
p ∈ Z+.

Proof. We prove (i), the proof of (ii) is analogous. The Lie algebra homology

of E is calculated from the standard complex C·(n, E) with Cp(n, E) =
∧−p

n ⊗C
E, p ∈ Z. By our assumption, this is a complex of NF-spaces (or DNF-spaces),
its differentials are continuous and its cohomology spaces are finite-dimensional.
By A.1, the differentials in this complex are all strict. Therefore, by A.2, the
cohomology of the strong dual C·(n, E)′ is equal to H·(n, E)∗. On the other hand,
by [7, Ch. XIII, §8], the complex C·(n, E)′ is equal to the complex C ·(n, E′) with
Cp(n, E) = HomC(

∧p
n, E′), p ∈ Z, which calculates Lie algebra cohomology of

E′. �

Therefore, 5.6 and 5.11 imply the following result.

Theorem 5.12. (i) Hp(n,S(U\N)′⊗CCη) are finite-dimensional for all
p ∈ Z+.

(ii) Hp(n,S(U\N)′ ⊗C Cη) = 0 for p > dimU .
(iii) If either Re η 6= 0 or η|u 6= 0, we have Hp(n,S(U\N)′ ⊗C Cη) = 0 for all

p ∈ Z+.

Finally, we want to prove a nonvanishing result for Lie algebra homology of
twisted regular representations. Assume that U is trivial. Then, by 5.6, we have
Hp(n,S(N) ⊗C Cη) = 0 for p > 0. Moreover, H0(n,S(N) ⊗C Cη) = 0 if Re η 6= 0.
The only remaining case is treated in the following result.

Proposition 5.13. Assume that Re η = 0. Then

H0(n,S(N)⊗C Cη) = C.
This isomorphism is induced by the map

f 7−→
∫
N

f(n)ψ(n)−1dn

which is a tempered distribution on N .
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Proof. Since Re η = 0, ψ is a unitary character. Clearly, ψ is smooth and all
its partial derivatives are bounded. Hence multiplication by this function defines
a linear automorphism of S(N) with itself. This automorphism intertwines the
representation on S(N) with the representation on S(N) ⊗C Cη. Therefore, to
prove the statement we can assume that η = 0.

If dimN = 1, N is abelian and, by 5.4, we have H0(n,S(N)) = C.
Let d0 be a one-dimensional central subalgebra of n0. Denote by D the corre-

sponding connected Lie subgroup. Let d be the complexification of d0. Then, by
5.4, we have H0(d,S(N)) = S(N/D). In addition, we have H0(n/d, H0(d,S(N))) =
H0(n,S(N)). Therefore, it follows that H0(n,S(N)) = H0(n/d,S(N/D)), and by
induction in dimension of N we conclude that H0(n,S(N)) = C.

On the other hand, by 5.5, f 7−→
∫
N
f(n) dn is a tempered distribution on N ,

i.e., a continuous linear form on S(N). As we already remarked, it vanishes on
n · S(N), i.e., it factors through H0(n,S(N)). �

As before, using 5.11, we deduce from this the following result.

Corollary 5.14. Assume that Re η = 0. Then H0(n,S(N)′ ⊗C Cη) is one-
dimensional and spanned by the tempered distribution

f 7−→
∫
N

f(n)ψ(n)dn.

6. Whittaker vectors for smooth principal series

In this section we prove a generalization of a result of Kostant on the space of
Whittaker vectors for smooth principal series [21, Theorem 6.6.2].3

We return to the setting of §4. Let η : n→ C be an one-dimensional represen-
tation of n (i.e., a complex linear form which vanishes on [n, n]). Let B be the basis
of the root system R corresponding to the set of positive roots R+. Since the root
subspaces gα, α ∈ B, span a complement of [n, n], η is completely determined by
its restrictions to these subspaces. We say that η is nondegenerate if η|gα 6= 0 for
all α ∈ B.

Any η can be uniquely written as η = Re η + i Im η for some complex linear
forms Re η and Im η on n which take real values on n0.

Let σ be an irreducible finite-dimensional representation of P . Denote by
Ind∞(σ) the corresponding smooth principal series representation ofG. Let Ind∞(σ)′

be the strong dual of Ind∞(σ) equipped by the adjoint action of U(g). We say that a
distribution φ ∈ Ind∞(σ)′ is a Whittaker vector corresponding to a one-dimensional
representation η of n if ξ · φ = η(ξ)φ for ξ ∈ n.

The main result of this section is the following theorem.

Theorem 6.1. Let η be a nondegenerate one-dimensional representation of n.
Then, for arbitrary irreducible finite-dimensional representation σ of P :

(i) The space of all Whittaker vectors in Ind∞(σ)′ is zero if η is not purely
imaginary.

(ii) If η is purely imaginary, the dimension of the space of all Whittaker vec-
tors in Ind∞(σ)′ is equal to dimC(σ).

3Compare also [22].
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If we consider the tensor product Ind∞(σ)′⊗CC−η as a U(n)-module, the linear
map φ 7−→ φ ⊗ 1 is a linear isomorphism of the space of all Whittaker vectors in
Ind∞(σ)′ with the space of all n-invariants in Ind∞(σ)′ ⊗C C−η.

Therefore, 6.1 follows immediately from the following result (after replacing η
by its negative).

Theorem 6.2. Let η be a nondegenerate one-dimensional representation of n.
Then, for arbitrary irreducible finite-dimensional representation σ of P , we have:

(i) Hp(n, Ind∞(σ)′ ⊗C Cη) = 0 for all p > 0.
(ii) If η is not purely imaginary, H0(n, Ind∞(σ)′ ⊗C Cη) = 0.
(iii) If η is purely imaginary, dimCH

0(n, Ind∞(σ)′ ⊗C Cη) = dimC(σ).

Let Ind∞(σ) = C∞0 (σ) ⊃ . . . ⊃ C∞n (σ) ⊃ {0} be the Bruhat filtration of
Ind∞(σ). The last nontrivial subspace C∞n (σ) is also J(w0, σ) where w0 is the
longest element in the Weyl group W . The adjoint of the inclusion J(w0, σ) →
Ind∞(σ) is the restriction map res : Ind∞(σ)′ → J(w0, σ)′ of distributions to the
open Bruhat cell C(w0).

The main step in the proof of 6.2 is the following lemma.

Lemma 6.3. The map res⊗1 : Ind∞(σ)′ ⊗ Cη → J(w0, σ)′ ⊗ Cη induces iso-
morphisms on Lie algebra cohomology, i.e.,

Hp(res⊗1) : Hp(n, Ind∞(σ)′ ⊗ Cη)→ Hp(n, J(w0, σ)′ ⊗ Cη)

for p ∈ Z+, are isomorphisms.

In particular, the restriction map on Whittaker vectors in Ind∞(σ)′ is injective,
i.e., the support of any nontrivial Whittaker vector is equal to X.

Assuming 6.3 for a moment, we can complete the proof of 6.2. Since C(w0) is
open in X, the filtration by the transversal degree on J(w0, σ)′ is trivial. Therefore,
by 4.3, U(n)-module J(w0, σ)′ is isomorphic to a direct sum of dimC(σ) copies of
S(C(w0))′. Moreover, the stabilizer in N of any point in C(w0) is trivial. Hence,
from 5.12, we first conclude that Hp(n, J(w0, σ)′ ⊗Cη) = 0 for p > 0. This implies
(i) in 6.2. Moreover, if Re η 6= 0, we have H0(n, J(w0, σ)′ ⊗ Cη) = 0 and (ii) in 6.2
holds. Finally, if Re η = 0, by 5.14, we have dimCH

0(n, J(w0, σ)′⊗Cη) = dimC(σ).
This implies (iii) in 6.2 and completes its proof.

It remains to establish 6.3. Denote by C∞p (σ)⊥ the space off all distributions
in Ind∞(σ) vanishing on C∞p (σ), i.e., the distributions supported in the union of
Bruhat cells of dimension < p. Then, we have an increasing filtration of Ind∞(σ)′

given by {0} = C∞0 (σ)⊥ ⊂ C∞1 (σ)⊥ ⊂ . . . ⊂ C∞n (σ)⊥ ⊂ Ind∞(σ)′. We have the
obvious exact sequence

0→ C∞n (σ)⊥ → Ind∞(σ)′
res−−→ C∞n (σ)′ → 0.

By tensoring with Cη we get the exact sequence

0→ C∞n (σ)⊥ ⊗ Cη → Ind∞(σ)′ ⊗ Cη
res⊗1−−−−→ C∞n (σ)′ ⊗ Cη → 0.

From the long exact sequence of the Lie algebra cohomology corresponding to this
short exact sequence of U(n)-modules we see that 6.3 follows immediately from the
following result.

Lemma 6.4. Hp(n, C∞n (σ)⊥ ⊗ Cη) = 0 for all p ∈ Z+.
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This is just a special case of the following assertion, which we are going to prove
by induction in q:

Hp(n, C∞q (σ)⊥ ⊗ Cη) = 0

for all p ∈ Z+ and 0 ≤ q ≤ n.
This statement is evident for q = 0. Assume that it holds for q, n > q ≥ 0. By

4.1 and dualizing, we have the short exact sequence

0→
⊕

w∈W (q)

J(w, σ)′ → C∞q (σ)′ → C∞q+1(σ)′ → 0.

This leads immediately to the short exact sequence

0→ C∞q (σ)⊥ → C∞q+1(σ)⊥ →
⊕

w∈W (q)

J(w, σ)′ → 0.

By tensoring with Cη we get the short exact sequence

0→ C∞q (σ)⊥ ⊗ Cη → C∞q+1(σ)⊥ ⊗ Cη →
⊕

w∈W (q)

J(w, σ)′ ⊗ Cη → 0.

In addition, we have the following vanishing result, the proof of which we postpone
for a moment.

Lemma 6.5. Assume that w ∈ W is not the longest element in W . Then
Hp(n, J(w, σ)′ ⊗ Cη) = 0 for all p ∈ Z+.

From the long exact sequence of Lie algebra cohomology corresponding to the
above short exact sequence of U(n)-modules, using the induction assumption and
6.5, we see that Hp(n, C∞q+1(σ)⊥ ⊗ Cη) = 0 for all p ∈ Z+. This proves the above
assertion and completes the proof of 6.4.

It remains to establish 6.5. The proof is based on the following elementary fact.

Lemma 6.6. Let V be a U(n)-module. Assume that FV is an increasing exhaus-
tive filtration of V by U(n)-modules such that Fp V = {0} for sufficiently negative
p ∈ Z.

Let Hq(n,GrV ) = 0 for all q ∈ Z. Then, we have Hq(n, V ) = 0 for all q ∈ Z.

Proof. First, consider the short exact sequence

0→ Fp−1 V → Fp V → Grp V → 0

of U(n)-modules. By the assumption, Hq(n,Grp V ) = 0 for all p, q ∈ Z. Hence,
from the long exact sequence of Lie algebra cohomology attached to the above short
exact sequence, we conclude that the natural map Hq(n,Fp−1 V )→ Hq(n,Fp V ) is
an isomorphism for all p, q ∈ Z. Since FpV = {0} for sufficiently negative p ∈ Z,
obviously we have Hq(n,Fp V ) = 0 for all q ∈ Z and sufficiently negative p ∈ Z. By
induction in p, we see that Hq(n,Fp V ) = 0 for all p, q ∈ Z.

We claim that the standard complex C ·(n, V ) is acyclic. The increasing fam-
ily of submodules Fp V defines an increasing exhaustive filtration of the standard
complex C ·(n, V ) by subcomplexes C ·(n,Fp V ). We just established that all these
subcomplexes are acyclic.

Let u ∈ Cq(n, V ) be such that du = 0. Then, since the filtration of the
standard complex is exhaustive, u ∈ Cq(n,Fp V ) for some large p ∈ Z. By the
above remarks, there exists v ∈ Cq−1(n,Fp V ) ⊂ Cq−1(n, V ) such that u = dv.
Therefore, Hq(n, V ) = 0. �
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As explained in §2, J(w, σ)′ has a natural increasing filtration FJ(w, σ)′ by
the transversal degree. This filtration is exhaustive by 2.7, and Fp J(w, σ)′ are
U(n)-modules for all p ∈ Z by 3.5. Therefore it induces an analogous filtration
F(J(w, σ)′ ⊗Cη) given by Fp(J(w, σ)′ ⊗Cη) = Fp J(w, σ)′ ⊗Cη for all p ∈ Z. The
corresponding graded object is GrJ(w, σ)′ ⊗ Cη.

Therefore, by 6.6, to establish 6.5, it is enough to prove the following result.

Lemma 6.7. Assume that w ∈ W is not the longest element in W . Then
Hp(n,Grq J(w, σ)′ ⊗ Cη) = 0 for all p, q ∈ Z+.

Proof. Let w be an element of the Weyl group W . If w 6= w0, the intersection
n ∩ nw is spanned by root subspaces corresponding to the roots in R+ ∩ w(R+).
Clearly, R+∩w(R+) = R+∩(−ww0(R+)), where ww0 is different from the identity
in W . Let s1s2 . . . sq, q ≥ 1, be a reduced expression of w0w

−1 = (ww0)−1 by
simple reflections in W . Let α1, α2, . . . , αq be the simple roots corresponding to the
reflections s1, s2, . . . , sq. By [3, Ch. VI, §1, no. 6, Cor. 2 of Prop. 17], −w0w

−1(αq) is
a positive root. Therefore, αq is inR+∩w(R+), i.e., the root subspace corresponding
to the simple root αq is in n ∩ nw. It follows that the restriction of η to n ∩ nw is
nonzero. Hence, by 5.12.(iii), Hp(n,S(C(w))′ ⊗ Cη) = 0 for all p ∈ Z+. Now, by
4.3 and 4.4, Grq J(w, σ)′ has a finite increasing filtration F Grq J(w, σ)′ by closed
U(n)-modules such that the corresponding graded module is a direct sum of copies
of S(C(w))′, i.e., we have exact sequences

0 −→ Fs−1 Grq J(w, σ)′ −→ Fs Grq J(w, σ)′ −→ S(C(w))′ ⊗ E∗w −→ 0

for all p ∈ Z. By the above vanishing result and the long exact sequence of Lie
algebra cohomology attached to this short exact sequence, we conclude that the
natural morphism Hp(n,Fs−1 Grq J(w, σ)′⊗Cη) −→ Hp(n,Fs Grq J(w, σ)′⊗Cη) is
an isomorphism for all p ∈ Z. Since Fs Grq J(w, σ)′ = 0 for very negative s, we see
that Hp(n,Fs Grq J(w, σ)′ ⊗Cη) = 0 for all p, s ∈ Z. Therefore, since the filtration
is finite, we have Hp(n,Grq J(w, σ)′ ⊗ Cη) = 0 for all p ∈ Z. �

7. Holomorphic continuation of Jacquet integrals

In this section we prove a variant of 6.1. It gives a description of Whittaker
vectors for smooth principal series as holomorphic continuation of certain integrals
considered by Jacquet [18].

Let P = MAN be the Langlands decomposition of P . Then M is a com-
pact group. For a linear form λ on a we denote, by abuse of notation, by λ the
one-dimensional representation a 7−→ eλ(log a). We can view it as a representation
of P by man 7−→ λ(a), for m ∈ M , a ∈ A and n ∈ N . Therefore, σ deter-
mines a holomorphic family of irreducible representations σ ⊗ λ of P on a∗. Since
X = P\G = M\K, all representations Ind∞(σ ⊗ λ) can be realized on the same
space of smooth sections C∞(σ) of the homogeneous vector bundle on X = M\K
determined by σ restricted to M . In this way, we can view Ind∞(σ ⊗ λ) as a
holomorphic family of representations. The Lie algebra g acts on C∞(σ) by first
order differential operators depending holomorphically on λ ∈ a∗. Moreover, the
continuous duals of the spaces of Ind∞(σ⊗λ) can be identified with the continuous
dual C∞(σ)′ of C∞(σ). The contragredient action of g on C∞(σ)′ is also given by
first order differential operators depending holomorphically on λ ∈ a∗.

Let U be an open set in a∗. Denote by H(U) the ring of all holomorphic
functions on U equipped with the topology of uniform convergence on compact
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sets in U . Let H(U,C∞(σ)′) be the space of all holomorphic functions on U with
values in C∞(σ)′ endowed with the topology of uniform convergence on compact
sets in U . By the results discussed in the appendix, we know that H(U,C∞(σ)′) =
H(U)⊗̂C∞(σ)′. The action of g extends by linearity to an action by differential
operators on H(U,C∞(σ)′).

Fix a nondegenerate η ∈ n∗. For each λ ∈ a∗, we denote by Wη(σ ⊗ λ) the
linear subspace of Whittaker vectors in C∞(σ)′ for the representation Ind∞(σ⊗λ).
By 6.1, Wη(σ ⊗ λ) = 0 if Re η 6= 0. Therefore, we can assume that Re η = 0 in the
following. Denote by ψ the unitary character of N with the differential η.

Finally, letWη(U, σ) be the subspace ofH(U,C∞(σ)′) consisting of all holomor-
phic maps F : U → C∞(σ)′ such that F (λ) ∈ Wη(σ ⊗ λ) for all λ ∈ U . Evidently,
Wη(U, σ) is a module over the ring H(U) of holomorphic functions on U . Moreover,
we have

Wη(U, σ) = H0(n,H(U,C∞(σ)′)⊗C C−η).

The assignment U 7−→ Wη(U, σ) defines a sheaf of modules Wη(σ) over the sheaf
of holomorphic functions H on a∗.

By a variant of an argument in the last section we are going to describe the
structure of this sheaf. The main difference is that we have to keep track of the
dependence on the parameter λ. First we have to make the above isomorphisms
more explicit. Let E0 = Ex1

be the fiber of E at the point x1 ∈ X corresponding to
the parabolic subgroup P . The spaces Ind∞(σ ⊗ λ), λ ∈ a∗, can be identified with
the spaces of smooth functions F : G −→ E0 satisfying F (pg) = σ(p)λ(p)F (g) for
all g ∈ G and p ∈ P . The restriction map F 7−→ F |K defines the isomorphism with
functions from K to E0 which correspond to the sections in C∞(σ). The inverse
map sends a function f on K to a function nak 7−→ σ(a)λ(a)f(k), n ∈ N , a ∈ A
and k ∈ K, on G. In the following, we are going to view Ind∞(σ ⊗ λ) and C∞(σ)
as these spaces of functions.

We fix representatives kw ∈ K of w ∈ W . As we described in §4, the space of
Schwartz sections of Ind∞(σ⊗λ) on V w can be identified with S(Uw)⊗E0, i,e., the
space of Schwartz functions on Uw with values in E0. This isomorphism is given
by the restriction map, i.e., it attaches to F ∈ Ind∞(σ ⊗ λ) the function u 7−→
F (kwu) on Uw. The inverse of the above map sends the function ϕ ∈ S(Uw)⊗ E0

into the function on G which is obtained by extension by zero from the function
namkwu 7−→ σ(am)λ(a)ϕ(u), n ∈ N , a ∈ A, m ∈ M and u ∈ Uw, on the open set
PwUw.

For a given λ we have the natural injective linear map

S(Uw)⊗ E0 −→ Ind∞(σ ⊗ λ) −→ C∞(σ).

These maps depend on λ but have the common image equal to the space of Schwartz
sections on V w. To see the dependence on λ explicitly, denote by h : G −→ A and
κ : G −→ K the unique analytic maps such that g ∈ Nh(g)κ(g) for g ∈ G.
Then the above map attaches to ϕ ∈ S(Uw) ⊗ E0 the function K 3 κ(kwu) 7−→
λ(h(kwukw−1))−1ϕ(u). The multiplier u 7−→ λ(h(kwukw−1)) is a function of mod-
erate growth on Uw which depends holomorphically on λ. Therefore, the above
linear maps depend holomorphically on λ.

In particular, the bottom part C∞n (σ) = J(w0, σ) in the Bruhat filtration is
naturally isomorphic to S(N)⊗E0 as a representation of N and this isomorphism
depends holomorphically on λ. Therefore, the composition with the adjoint of the
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inclusion J(w0, σ) −→ C∞(σ) induces a linear map of Wη(σ ⊗ λ) into the space of
ψ-covartiant continuous linear forms on S(N)⊗E0. By 5.13, the unique ψ-covariant
continuous linear form on S(N) is equal to f 7−→

∫
N
ψ−1(n)f(n) dn. Hence, we see

that this space is isomorphic to E∗0 . Combining this with the above discussion, it
follows that in this way we get a H-module morphism Φ of Wη(σ) into H⊗ E∗0 .

Theorem 7.1. Assume that η ∈ n∗ is nondegenerate and Re η = 0. Then, for
any irreducible representation σ of P , Φ is an isomorphism of Wη(σ) with H⊗E∗0 .

In particular, Wη(σ) is a free H-module of rank dimC(σ).

It follows that the spaceWη(a∗, σ) of global sections ofWη(σ), i.e., of holomor-
phic maps from a∗ into C∞(σ)′ with values in Whittaker vectors is a free module
over the entire functions on a∗ of rank dimC(σ). By 6.1, for an arbitrary fixed
λ ∈ a∗, a basis of Wη(a∗, σ) (as a free H(a∗)-module) evaluated at λ, forms a basis
of the space of Whittaker vectors for Ind∞(σ ⊗ λ).

Without any loss of generality, we can assume that σ is a unitary representation
on a finite-dimensional inner product space E0. Consider the linear map Ωψ,λ :
Ind∞(σ ⊗ λ) −→ E∗0 given by

Ωψ,λ(f) =

∫
N

ψ−1(n)f(kw0
n) dn.

If this integral converges and defines a continuous linear map, ω 7−→ ω ◦ Ωψ,λ is a
linear map from E∗0 into Wη(σ ⊗ λ). Clearly, we have

‖Ωψ,λ(f)‖ ≤ C1

∫
N

‖f(kw0n)‖ dn

for some C1 > 0. Since n 7−→ kw0
nk−1

w0
is an isomorphism of N onto N̄ , we have

‖Ωψ,λ(f)‖ ≤ C1

∫
N̄

‖f(n̄kw0)‖ dn̄

= C1

∫
N̄

|λ(h(n̄))| ‖f(κ(n̄)kw0
)‖ dn̄ ≤ C1 max

k∈K
‖f(k)‖

∫
N̄

|λ(h(n̄))| dn̄

with an appropriate choice of the Haar measure on N̄ . Let ρ be the half-sum
of positive roots (counted with their multiplicities). Denote by Cρ the set of all
λ ∈ a∗ such that Reα (̌λ − ρ) > 0 for all dual roots αˇ of α ∈ R+. By the
standard arguments from the theory of intertwining operators [16, I.5], it follows
that the last integral converges for λ ∈ Cρ. Therefore, λ 7−→ Ωψ,λ is defined and
holomorphic in Cρ. Moreover, for λ ∈ Cρ, ω 7−→ ω ◦ Ωψ,λ is an isomorphism of
E∗0 onto the space Wη(σ ⊗ λ), i.e., all Whittaker vectors are given by the Jacquet
integral Ωψ,λ. Therefore, for any open set U ⊂ Cρ, Jacquet integral defines the
inverse of Φ(U) : Wη(U, σ) −→ H(U) ⊗ E∗0 . To sum up, 7.1 has the following
immediate consequence.

Theorem 7.2. The Jacquet integral λ 7−→ Ωψ,λ extends to a holomorphic map
from a∗ into Wη(a∗, σ)⊗ E0.

This result was established in [29] by a different method.
To prove 7.1 it is enough to show the following local result. Let λ be a point

in a∗. Denote by Hλ(C∞(σ)′) the space of all germs at λ of holomorphic maps
with values in C∞(σ)′. It is a module over the ring Hλ of germs of holomorphic
functions at λ. Clearly, n acts on this space by Hλ-module endomorphisms.
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Lemma 7.3. For any λ ∈ a∗, the natural morphism

Φλ : H0(n,Hλ(C∞(σ)′)⊗ Cη) −→ Hλ ⊗ E∗0
is an isomorphism.

It remains to establish 7.3.
First, let E be a DNF-space and a U(n)-module, such that n acts on E by

continuous linear transformations. Then this action defines, by linearity, a natural
structure of U(n)-module on Hλ(E).

Lemma 7.4. If the Lie algebra cohomology spaces Hp(n, E) are finite-dimen-
sional for all p ∈ Z+, we have

Hp(n,Hλ(E)) = Hλ(Hp(n, E))

for all p ∈ Z+.

Proof. The standard complex of Lie algebra cohomology C ·(n, E) is a complex
of DNF-spaces with continuous differentials. By A.1, all differentials are strict
morphisms. Therefore, their kernels and images are DNF-spaces. The assertion
follows by tensoring this complex by Hλ and using B.2. �

To establish 7.3 we again use the results about the Bruhat filtration from 4.1.
By dualizing, we get the exact sequence

0→
⊕

w∈W (p)

J(w, σ)′ → C∞p (σ)′ → C∞p+1(σ)′ → 0

for p ∈ Z+. Since these are DNF-spaces, by B.2, we get the exact sequence

0→
⊕

w∈W (p)

Hλ(J(w, σ)′)→ Hλ(C∞p (σ)′)→ Hλ(C∞p+1(σ)′)→ 0.

The proof of 7.3 is based on the following vanishing result.

Lemma 7.5. If η ∈ n∗ is nondegenerate and w ∈W different from w0, we have

Hp(n,Hλ(J(w, σ)′)⊗ Cη) = 0

for all p ∈ Z+.

By 7.5 and the long exact sequence of cohomology, we conclude that

Hq(n,Hλ(C∞p (σ)′)⊗ Cη) = Hq(n,Hλ(C∞p+1(σ)′)⊗ Cη)

for all 0 ≤ p < n and q ∈ Z+. This implies that

Hq(n,Hλ(C∞(σ)′)⊗ Cη) = Hq(n,Hλ(C∞n (σ)′)⊗ Cη)

for all q ∈ Z+. As we already remarked before, C∞n (σ) = J(w0, σ). Hence, we get
the following extension result.

Lemma 7.6. Let η ∈ n∗ be nondegenerate. Then the restriction map C∞(σ)′ →
J(w0, σ)′ induces an isomorphism

Hp(n,Hλ(C∞(σ)′)⊗ Cη)→ Hp(n,Hλ(J(w0, σ)′)⊗ Cη)

for all p ∈ Z+.
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First, we want to show that this result implies 7.3. As we already remarked,
U(n)-module J(w0, σ)′ is isomorphic to S(N)′ ⊗E∗0 and this isomorphism depends
holomorphically on λ. Hence, by 5.14 and 7.4, we immediately see that Φλ is an
isomorphism.

It remains to establish 7.5. As we explained in §4, J(w, σ)′ has a natural
filtration by closed linear subspaces Fp J(w, σ)′, p ∈ Z. Clearly, Fp J(w, σ)′ are
DNF-spaces for all p ∈ Z, and J(w, σ)′ = lim−→p∈Z+

Fp J(w, σ)′ by 2.8. By B.3, we

have
Hλ(J(w, σ)′) = lim−→

k∈Z+

Hλ(Fk J(w, σ)′).

Moreover, by exactness of tensoring, Hλ(Fk J(w, σ)′) are closed subspaces in the
space Hλ(J(w, σ)′), i.e., Hλ(F J(w, σ)′) is an exhaustive increasing filtration of
Hλ(J(w, σ)′) by closed U(n)-modules. On the other hand, by B.2, from the short
exact sequences

0 −→ Fp−1 J(w, σ)′ −→ Fp J(w, σ)′ −→ Grp J(w, σ)′ −→ 0

we get the short exact sequences

0 −→ Hλ(Fp−1 J(w, σ)′) −→ Hλ(Fp J(w, σ)′) −→ Hλ(Grp J(w, σ)′) −→ 0.

Therefore, we have GrpHλ(J(w, σ)′) = Hλ(Grp J(w, σ)′) for all p ∈ Z+.
Now, by the discussion from the beginning of this section and 4.3, the action of

n on Grp J(w, σ)′ is isomorphic to the natural action on Lp(w)⊗R(C(w))S(C(w))′⊗C
E∗w and this isomorphism depends holomorphically on λ. Hence, by 7.4 and 6.7,
we have

Hq(n,GrpHλ(J(w, σ)′)⊗ Cη) = Hq(n,Hλ(Grp J(w, σ)′)⊗ Cη) = 0

for all p, q ∈ Z+. Finally, by 6.6, this completes the proof of 7.5.

8. The Whittaker functor

Let V be a n-module and η a nondegenerate linear form on n. Denote by Cη
the one-dimensional n-module with action η. Then we define the functor V 7−→
Ψη(V ) = H0(n, V ⊗Cη) from the category of n-modules into the category of complex
linear spaces. We call Ψη the Whittaker functor corresponding to n and η. This
functor is right exact.

The following fact is evident, since the tensoring by Cη is an equivalence of
categories.

Lemma 8.1. (i) The left cohomological dimension of the functor Ψη is
≤ dimC n.

(ii) The left derived functors L−pΨη, p ∈ Z+, of Ψη are given by L−pΨη(V ) =
Hp(n, V ⊗ Cη).

Let M(g,K) be the abelian category of Harish-Chandra modules for G and
M∞(G) the corresponding abelian category of smooth representations of moderate
growth and finite length in the sense of [9]. Denote by V 7−→ V∞ the corre-
sponding completion functor fromM(g,K) intoM∞(G). By [9] this functor is an
equivalence of categories and its quasiinverse is the functor of K-finite vectors.

We want to establish the following result.

Theorem 8.2. (i) The functor Ψη is nonzero on the categoryM∞(G) if
and only if Re η = 0.
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(ii) For any V in M∞(G), Ψη(V ) is finite-dimensional.
(iii) The functor Ψη is exact on M∞(G).

Since V is a smooth representation, Ψη(V ) is the cokernel of the continuous
map of the NF-space V ⊗ n into the NF-space V . By A.1, we see that the kernel of
the map V → Ψη(V ) is closed, and we have the following obvious consequence.

Let V be an object in M∞(G). A continuous linear form δ on V is called a
Whittaker vector (with respect to n and η) if δ spans a one-dimensional invariant
subspace for the contragredient representation of n with the action given by η.

Corollary 8.3. For any V in M∞(G), the dimension of the space of Whit-
taker vectors with respect to n and η is equal to dimC Ψη(V ).

The proof of 8.2 is by reduction to the case of smooth principal series.
We start with the following observation.

Lemma 8.4. Assume that any object V in M∞(G) is a subobject of an object
W satisfying:

(i) W is acyclic for Ψη;
(ii) Ψη(W ) is finite-dimensional.

Then the functor Ψη is exact on M∞(G) and Ψη(V ) is finite-dimensional.

Proof. By our assumption, we have a short exact sequence

0→ V →W → Q→ 0

where Q is the quotient of W by V . From the long exact sequence of derived
functors of Ψη it follows that Lp−1Ψη(Q) ∼= LpΨη(V ) for p ≤ −1. Since, by 8.1,
the left cohomological dimension of Ψη is ≤ dimC n, LqΨη(Q) = 0 for q < −dimC n.
By upward induction in p we see that LpΨη(V ) = 0 for all p < 0 and V inM∞(G).
It follows that the sequence

0→ Ψη(V )→ Ψη(W )→ Ψη(Q)→ 0

is exact. Therefore dimC Ψη(V ) ≤ dimC Ψη(W ) <∞. �

Let V be an object inM∞(G) and U the corresponding Harish-Chandra mod-
ule of K-finite vectors. Then U∞ ∼= V . Let P be the minimal parabolic subgroup
of G containing N . Let σ be a finite-dimensional representation of P . We denote
by Ind∞(σ) the (smooth) induced representation of G defined by σ. Let Ind(σ) be
the corresponding Harish-Chandra module. Then, by [10, 8.21], there exist σ and a
monomorphism U → Ind(σ). By the exactness of the completion functor, we have
a monomorphism V ∼= U∞ → Ind(σ)∞ = Ind∞(σ). If σ is irreducible, Ind∞(σ) is
a smooth principal series representation of G.

Lemma 8.5. Let σ be an irreducible finite-dimensional representation of P and
Ind∞(σ) the corresponding smooth principal series representation. Then

(i) LpΨη(Ind∞(σ)) = 0 for p < 0;
(ii) Ψη(Ind∞(σ)) = 0 if Re η 6= 0;
(iii) dimC Ψη(Ind∞(σ)) = dimC(σ) for Re η = 0.

Proof. As we remarked in 8.1, L−pΨη(Ind∞(σ)) = Hp(n, Ind∞(σ) ⊗ Cη) for
p ∈ Z+. Clearly, the topological dual of Ind∞(σ)⊗ Cη is equal to Ind∞(σ)′ ⊗ C−η
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as a U(n)-module. By 6.2, Hp(n, Ind∞(σ)′ ⊗ C−η), p ∈ Z+, are finite-dimensional.
Therefore, by 5.11, we have

Hp(n, Ind∞(σ)⊗ Cη)∗ = Hp(n, (Ind∞(σ)′ ⊗ C−η)′)∗ = Hp(n, Ind∞(σ)′ ⊗ C−η)

for all p ∈ Z+. Now, the statement follows immediately from 6.2. �

Now, we claim that then the statements of this lemma hold for arbitrary finite-
dimensional representations σ of P . We prove this by induction in the length of σ.
Let

0→ σ′ → σ → σ′′ → 0

be a short exact sequence of finite-dimensional representations of P . Assume that
σ′′ is irreducible. Then length(σ′) < length(σ). Moreover, by exactness of smooth
induction we have an exact sequence

0→ Ind∞(σ′)→ Ind∞(σ)→ Ind∞(σ′′)→ 0.

By 8.5 and the induction assumption, we have LpΨη(Ind∞(σ′)) = LpΨη(Ind∞(σ′′))
= 0 for p < 0. Therefore, from the long exact sequence of derived functors of Ψη

we conclude that LpΨη(Ind∞(σ)) = 0 for all p < 0. Moreover, we have an exact
sequence

0→ Ψη(Ind∞(σ′))→ Ψη(Ind∞(σ))→ Ψη(Ind∞(σ′′))→ 0.

This clearly implies the vanishing of Ψη(Ind∞(σ)) if Re η 6= 0. If Re η = 0, we have

dimC Ψη(Ind∞(σ)) = dimC Ψη(Ind∞(σ′)) + dimC Ψη(Ind∞(σ′′))

= dimC(σ′) + dimC(σ′′) = dimC(σ).

Therefore, it follows that 8.5 implies that Ind∞(σ) satisfy the conditions (i)
and (ii) in 8.4. Hence, the functor Ψη is exact on M∞(G) and Ψη(V ) is finite-
dimensional for any object V in M∞(G). Moreover, if Re η 6= 0, Ψη(Ind∞(σ)) = 0
for any finite-dimensional representation σ of P . Since any object in M∞(G) is a
subobject of some Ind∞(σ), this in turn implies that Ψη vanishes onM∞(G). This
completes the proof of 8.2.

9. Linear quasisplit groups

As we remarked in the introduction, from the point of view of applications to
automorphic forms the most important case is of the group G of real points of a
connected complex reductive algebraic group G defined over R which is quasisplit,
i.e., such that G contains a Borel subgroup defined over R. This was the situation
originally considered by Kostant.

For such group G, the Lie algebra n is the nilpotent radical of a Borel subal-
gebra of g. The group of real points of the corresponding Borel subgroup of G is
the minimal parabolic subgroup P containing N . If P = MAN is the Langlands
decomposition of P , we conclude that M is commutative. Hence, all irreducible
finite-dimensional representations of P are one-dimensional. For purely imaginary
η, 6.1 implies that the space of Whittaker vectors is one-dimensional. More pre-
cisely, by combining this observation with 7.1 and 7.2, we have the following result.

Theorem 9.1. Let ψ be a nondegenerate unitary character of N . Then, for
arbitrary one-dimensional representation σ of P , the space of all Whittaker vectors
in Ind∞(σ)′ is one-dimensional. It is spanned by the holomorphic continuation of
the Jacquet integral.
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In addition to this, as we remarked in the last section, any irreducible smooth
representation V ofG is a subrepresentation of some smooth principal series Ind∞(σ).
Hence, we have dimC Ψη(V ) ≤ dimC Ψη(Ind∞(σ)) = 1. Therefore, we have the fol-
lowing immediate consequence.

Theorem 9.2. Let η be a nondegenerate one-dimensional representation of n.
Then, Ψη(V ) is either zero or one-dimensional for any irreducible smooth repre-
sentation V in M∞(G).

Appendix A. Some results on nuclear spaces

In this section we include some results on nuclear spaces we use in the main
text. Most of them are well known to the experts, but for some we were not able
to find a suitable reference. We thank Joe Taylor for his expert tutorial on this
subject.

Let E be a Fréchet space. Then it is a bornological space [4, Ch. III, §2,
Prop. 2]. Therefore, its strong dual E′ is complete [4, Ch. III, §3, no. 8, Cor. 1 of
Prop. 12]. Moreover, E is barreled [4, Ch. III, §4, no. 1, Cor. of Prop. 2].

A nuclear Fréchet space E is called an NF-space for short. Since, by [14, Ch. II,
§2, no. 1, Cor. 1 of Lemma 3], any bounded set in E is relatively compact, we see
that E is a Montel space. Therefore, E is reflexive [4, Ch. IV, §2, no. 3, Th. 2]. Its
strong dual E′ is a DNF-space. By the above remarks, E′ is complete and reflexive.
It is bornological and barreled [4, Ch. IV, §3, no. 4, Cor. of Prop. 4]. Also, it is a
Montel space [4, Ch. IV, §2, no. 5, Prop. 9],. Moreover, it is nuclear by [14, Ch. II,
§2, no. 1, Th. 7].

By [23, Ch. IV, §8, Examples 1 and 2], NF-spaces and DNF-spaces are Ptak.
Therefore, if E and F are either NF-spaces or DNF-spaces, a surjective continuous
linear map T : E → F is open [23, Ch. IV, §8, Cor. 1 of Th. 3].

Let T : E −→ F be a continuous linear map between two hausdorff locally
convex spaces. Then kerT is a closed linear subspace of E. Let p : E −→ E/ kerT
be the canonical projection. The image imT is a locally convex space with the
topology induced by the topology of F . Denote by i : imT → F the canonical
inclusion. The map T factors as

E
p−→ E/ kerT

τ−→ imT
i−→ F,

where τ is continuous linear isomorphism. We say that T is a strict morphism if τ
is a homeomorphism.

Let E and F be NF-spaces, resp. DNF-spaces, and T : E −→ F a continuous
linear map. Let T t : F ′ −→ E′ be the adjoint linear map between the strong duals.
Then T t is continuous [4, Ch. IV, §1, no. 3, Cor. of Prop. 5].

Let E be a nuclear space. Then its subspaces and hausdorff quotient spaces
of E are nuclear [14, Ch. II, §2, no. 2, Th. 9]. Therefore, closed subspaces and
hausdorff quotient spaces of NF-spaces are NF-spaces.

Now we prove that closed subspaces and hausdorff quotient spaces of DNF-
spaces are DNF-spaces. Let E be a DNF-space. Let F be a closed subspace of
E. Then F and E/F are nuclear spaces. Clearly, E = G′ for some NF-space G.
Therefore, E′ = G′′ = G is an NF-space. Let F⊥ be the closed subspace of all
linear forms in E′ vanishing on F . Then we have the exact sequence

0→ F⊥
α−→ E′

β−→ E′/F⊥ → 0.
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of NF-spaces. By dualizing we get the exact sequence of strong duals

0→ (E′/F⊥)′
βt−→ E′′

αt−→ (F⊥)′ → 0.

The injectivity of βt is evident, the surjectivity of αt follows from the Hahn-Banach
theorem. If f ∈ E′′ is in the kernel of αt, this means that its restriction to F⊥

vanishes. But then it defines a continuous linear form on E′/F⊥, i.e., it is in the
image of βt. Therefore, we have the following commutative diagram with exact
rows:

0 −−−−→ F −−−−→ E −−−−→ E/F −−−−→ 0y y y
0 −−−−→ (E′/F⊥)′ −−−−→

βt
E′′ −−−−→

αt
(F⊥)′ −−−−→ 0

.

The vertical arrows are the obvious natural maps. Since E is reflexive, the middle
vertical arrow is an isomorphism, and imβt corresponds to elements u ∈ E which
are in the kernels of all linear forms in F⊥, i.e, u ∈ F . Hence the first vertical
arrow is an isomorphism. Therefore, all vertical arrows are isomorphisms of linear
spaces. On the other hand, as we remarked above, NF-spaces are Montel spaces.
Hence, by [4, Ch. IV, §4, no. 2, Cor. 3 of Th.1], αt and βt are strict morphisms.
This immediately implies that all vertical arrows are isomorphisms of topological
linear spaces. In particular, F and E/F are DNF-spaces.

Let E and F be either NF-spaces or DNF-spaces and T : E → F a continuous
linear map. Then, by the above discussion, T a strict morphism if and only if it
has closed image. If T is strict, imT = E/ kerT is complete, and therefore closed
in F . Conversely, if imT is closed, τ is a homeomorphism by the open mapping
theorem.

The following simple sufficient criterion for strictness is critical in our applica-
tions.

Lemma A.1. Assume that E and F are either NF-spaces or DNF-spaces. Let
T : E → F be a continuous linear map. Assume that the image imT is of finite
codimension in F . Then T is a strict morphism.

Proof. By replacing E with E/ kerT we can assume that T is injective.
Let H be a finite-dimensional direct complement of imT in F . Then, the

natural map i : H → F is continuous. Therefore, T ⊕ i : E ⊕ H → F is a
continuous bijective linear map. By the open mapping theorem, this map is also
open. Therefore, it is an isomorphism of topological vector spaces. This implies
that imT is closed in W . �

Moreover, the next result follows easily from the above observations by reduc-
tion to short exact sequences.

Lemma A.2. Assume that (C ·, d) is a complex such that

(i) all Cp, p ∈ Z, are NF-spaces (or DNF-spaces);
(ii) all differentials are strict morphisms.

Then the dual complex (C ′
·
, dt) is a complex with differentials which are strict

morphisms and

Hp(C ′
·
) = H−p(C ·)′.
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For two locally convex spaces E and F , we equip the tensor product E ⊗ F
with the finest locally convex topology such that the bilinear map E ×F → E ⊗F
is continuous. If E and F are hausdorff, this topology on E ⊗ F is also hausdorff.
We denote by E⊗̂F completion of E⊗F with respect to this topology. The locally
convex space E⊗̂F is the (projective) topological tensor product of E and F .

If E and F are nuclear spaces, E⊗̂F is nuclear [14, Ch. II, §, no. 1, Th. 9]. If E
and F are both NF-spaces (resp. DNF-spaces), E⊗̂F is an NF-space (resp. DNF-
space) [14, Ch. I, §1, no. 3, Prop. 5]. Let E and F be NF-spaces (or DNF-spaces).
Then we have a natural linear map E′ ⊗ F ′ → (E⊗̂F )′. This map induces an
isomorphism E′⊗̂F ′ → (E⊗̂F )′ of locally convex spaces [14, Ch. II, §3, no. 2,
Th. 12].

Let F be an NF-space (resp. DNF-space). Then, E 7−→ E⊗̂F is an exact
functor on the category of NF-spaces (resp. DNF-spaces). By the above remarks it
is enough to establish the following result.

Lemma A.3. Let

0→ E1
i−→ E2

p−→ E3 → 0

be a short exact sequence of NF-spaces. Let F be an NF-space. Then

0→ E1⊗̂F
i⊗1F−−−→ E2⊗̂F

p⊗1F−−−→ E3⊗̂F → 0

is also a short exact sequence.

Proof. By [14, Ch. I, §1, no. 2, Prop. 3] the map i ⊗ 1F is injective and
the map p ⊗ 1F is surjective. Moreover, the kernel of p ⊗ 1F is the closure of the
subspace ker p ⊗ F = im i ⊗ F . Since i is strict, by [14, Ch. II, §3, no. 1, Cor. of
Prop. 10], the map i⊗ 1F is a strict morphism. Therefore, its image is closed and
it is an isomorphism of E1⊗̂F onto the closure of im i⊗ F . �

A projective limit of nuclear spaces is nuclear [14, Ch. II, §2, no. 2, Th. 9].
Therefore, the projective limit of a countable projective system of NF-spaces is an
NF-space.

Let (Ei; i ∈ I) be an inductive system of nuclear spaces and E = lim−→i∈I Ei the

inductive limit in the category of locally convex spaces. If I is countable and E is
hausdorff, it is nuclear by [14, Ch. II, §2, no. 2, Cor. 1 of Th. 9]. Moreover, if Ei
are DNF-spaces, E is a DNF-space [13, Ch. I, no. 4, Cor. of Th. 9].

Lemma A.4. Let (Ei; i ∈ I) be an inductive system of DNF-spaces. Assume
that I is countable and E = lim−→i∈I Ei is hausdorff. Let F be a DNF-space. Then

E⊗̂F = lim−→i∈I(Ei⊗̂F ).

Proof. Clearly, (Ei⊗̂F ; i ∈ I) is an inductive system of DNF-spaces. We
denote by αij : Ei → Ej for i ≤ j in I, and αi : Ei → E for i ∈ I, the corresponding
canonical maps. Now consider the inductive system (Ei⊗̂F ; i ∈ I) with the maps
βij : Ei⊗̂F → Ej⊗̂F which are the tensor products of αij with the identity map
on F . Denote by βi the canonical continuous linear maps Ei⊗̂F → lim−→i∈I(Ei⊗̂F ).

The continuous linear maps γi, i ∈ I, which are the tensor products of αi with
the identity on F define a family of maps from the inductive system (Ei⊗̂F ; i ∈ I)
into E⊗̂F . Therefore, they define a continuous linear map γ : lim−→i∈I(Ei⊗̂F ) →
E⊗̂F .
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We claim that γ is injective. Assume that v ∈ lim−→i∈I(Ei⊗̂F ) is such that γ(v) =

0. Then, v = βi(w) for some w ∈ Ei⊗̂F . Moreover, we have γi(w) = γ(βi(w)) = 0.
By [14, Ch. I, §1, no. 2, Prop. 3], this implies that w is in the closure of the subspace
kerαi ⊗ F in Ei⊗̂F . Since kerαi is the union of kerαij for j > i, we see that w is
in the union of closures of kerαij ⊗ F . Therefore, w ∈ kerβij for some j > i. This
implies that v = 0 and γ is injective. Therefore, lim−→i∈I(Ei⊗̂F ) is hausdorff. By the

above remark, it follows that lim−→i∈I(Ei⊗̂F ) is a DNF-space. Hence, it is complete.

By [14, Ch. I, §4, no. 3, Cor. of Prop. 6], γ is a homeomorphism of lim−→i∈I(Ei⊗̂F )

onto its image in E⊗̂F . Therefore, the image of γ must be closed in E⊗̂F . On the
other hand, it is evident that the image of γ is dense in E⊗̂F . �

If M is a compact manifold and E a vector bundle over M , we denote by
C∞(E) the space of all smooth sections of E equipped with the topology of uniform
convergence of sections and their derivatives. In this way, C∞(E) becomes an NF-
space [14, Ch. II, §2, no. 3, Th. 10]. Therefore, its strong dual C∞(E)′ is a
DNF-space.

Appendix B. Holomorphic vector valued functions

In this section we prove some technical results on holomorphic functions with
values in DNF-spaces.

Let M be a complex manifold. Denote by H the sheaf of holomorphic func-
tions on M . For any open set U in M , we denote by H(U) the ring of holomorphic
functions on U . We equip H(U) with the locally convex topology of uniform con-
vergence on compact subsets of U . In this way H(U) becomes an NF-space [14,
Ch. II, §2, no. 3, Cor. of Th. 10]. If V is an open subset of U , the restriction map
from H(U) into H(V ) is continuous. If K is a compact subset of M , we define
H(K) as the inductive limit of H(U) over the family of all open sets U containing
K. In this way, H(K) becomes a locally convex space. By [13, §1, no. 4, Exemple
b], H(K) is a DNF-space.

If m is a point in M , we can put K = {m}. In this way, the space Hm of germs
of holomorphic functions at m becomes a DNF-space.

Let E be a complete locally convex space. Analogously, we denote by H(E) the
sheaf of all holomorphic functions on M with values in E. In particular, for an open
set U in M , we denote by H(U,E) the space of all holomorphic functions on U with
values in E. By [14, Ch. II, §3, no. 3, Exemples], we know thatH(U,E) = H(U)⊗̂E.

For a compact set K in M , we define H(K,E) = lim−→U⊃K H(U,E) where the

inductive limit is taken over the directed system of all open sets U containing K.
In particular, for a point m ∈M , we denote by Hm(E) the space of all germs at m
of holomorphic maps with values in E.

Let U be an open set in M and K a compact set in U . Then we have a natural
continuous linear map H(U) → H(K). This induces a natural continuous linear
map H(U)⊗̂E → H(K)⊗̂E.

On the other hand, if V is an open set in M contained in K, by the definition
of H(K) we have a continuous linear map H(K) → H(V ) given as the inductive
limit of restrictions H(U) → H(V ) over the directed system of open sets U ⊃ K.
It induces a continuous linear map H(K)⊗̂E → H(V )⊗̂E.
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Let (Un;n ∈ N) be a decreasing family of open neighborhoods of a compact set
K in M which is cofinal in the family of all open sets containing K, satisfying the
following conditions:

(i) Un are relatively compact;
(ii) the closure Ūn is contained in Un−1 for n > 1;
(iii) the intersection of all Un, n ∈ N, is equal to K.

Also, let (Kn;n ∈ N) be a family of compact sets such that Un ⊃ Kn ⊃ Un+1.
Consider two inductive systems (H(Un)⊗̂E;n ∈ N) and (H(Kn)⊗̂E;n ∈ N). As
we remarked above, we have natural continuous linear maps αn : H(Un)⊗̂E →
H(Kn)⊗̂E and βn : H(Kn)⊗̂E → H(Un+1)⊗̂E for n ∈ N. Clearly, these maps de-
fine the maps of corresponding inductive systems, Therefore, they induce continuous
linear maps α : lim−→n→∞(H(Un)⊗̂E) → lim−→n→∞(H(Kn)⊗̂E) and β :

lim−→n→∞(H(Kn)⊗̂E) → lim−→n→∞(H(Un)⊗̂E) such that the compositions α ◦ β and

β ◦ α are identities. Therefore, we have

H(K,E) = lim−→
U⊃K

H(U,E) = lim−→
U⊃K

(H(U)⊗̂E)

= lim−→
n→∞

(H(Un)⊗̂E) = lim−→
n→∞

(H(Kn)⊗̂E).

In particular, for E = C, we see that H(K) = lim−→n→∞H(Kn). By A.4, this implies

that

H(K,E) = lim−→
n→∞

(H(Kn)⊗̂E) = ( lim−→
n→∞

H(Kn))⊗̂E = H(K)⊗̂E.

Therefore, we proved the following result.

Lemma B.1. If E is a DNF-space, we have H(K,E) = H(K)⊗̂E for any
compact subset K in M .

In particular, for any m ∈M , we have Hm(E) = Hm⊗̂E.

This, in combination with A.4, has the following consequences.

Corollary B.2. Let

0 −→ E1 −→ E2 −→ E3 −→ 0

be a short exact sequence of DNF-spaces. Then, for any compact set K in M ,

0 −→ H(K,E1) −→ H(K,E2) −→ H(K,E3) −→ 0

is exact.
In particular, for any m ∈M ,

0 −→ Hm(E1) −→ Hm(E2) −→ Hm(E3) −→ 0

is exact.

Corollary B.3. Let (Ei; i ∈ I) be a countable inductive system of DNF-
spaces. Assume that E = lim−→i∈I Ei is hausdorff. Then, for any compact set K in

M we have H(K,E) = lim−→i∈I H(K,Ei).

In particular, for any m ∈M , we have Hm(E) = lim−→i∈I Hm(Ei).
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