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Abstract: Let Gy be a connected semisimple Lie group with finite
center. We fix a maximal compact subgroup Ky of Gy. Let g be
the complexified Lie algebra of Gy and K the complexification of
K. Harish-Chandra explained how the study of representations
of Gy can be reduced to the study of Harish-Chandra modules for
(g, K). Beilinson and Bernstein introduced the localization functor
from the category of Harish-Chandra modules into the category of
Harish-Chandra sheaves — K-equivariant D-modules on the flag
variety of g.

This paper is a continuation of [12], where we calculated the
cohomology of “standard” Harish-Chandra sheaves. First, using
geometric techniques, we prove a necessary and sufficient condi-
tion for the irreducibility of standard Harish-Chandra sheaves. Ir-
reducible Harish-Chandra sheaves are unique irreducible submod-
ules of standard Harish-Chandra sheaves. Under a positivity condi-
tion, global sections of irreducible Harish-Chandra sheaves are irre-
ducible Harish-Chandra modules or zero. This leads to a geometric
classification of irreducible Harish-Chandra modules. In addition,
we establish a relationship between supports of irreducible Harish-
Chandra sheaves and asymptotic behavior of matrix coefficients
of their global sections. This leads to unified geometric proofs of
classical results on classification of irreducible tempered Harish-
Chandra modules and discrete series.

Keywords: D-modules, Harish-Chandra modules, Tempered mod-
ules, Discrete series.

1. Introduction

This paper is the continuation of [12], in which we related two constructions
of representations of a connected semisimple Lie group with finite center Gj.
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We fix a maximal compact subgroup Ky in Gy, which is unique up to G-
conjugacy. We denote by K its complexification. As a matter of notation, we
write g, ¥, for the complexified Lie algebras of real Lie groups Gy, Kj.

In this paper, we give unified geometric proofs of various known, but
widely scattered results about Harish-Chandra modules of (g, K). The point
of departure is the localization construction of Beilinson and Bernstein.

Let X be the flag variety of g. For any point x € X, let b, be the
corresponding Borel subalgebra of g. Also, let n, = [b,,b,]. We denote by b
the abstract Cartan algebra of g (compare [12]). The dual b* is spanned by
the (abstract) root system X of roots. It contains a set X% of positive roots,
which specializes at each point x € X to the roots corresponding to the root
subspaces spanning n,.

To each A € h*, Beilinson and Bernstein attach a twisted sheaf of differ-
ential operators D) on the flag variety X. As discussed in [12], the maximal
ideals of the center Z(g) of the enveloping algebra U(g) of g are parametrized
by the orbits of the Weyl group W of of the root system X in h*. Let 6 be
the orbit of some A in h*. Denote by Uy the quotient of U(g) by the two-sided
ideal generated by the maximal ideal Iy in Z(g) attached to the orbit 6. Then,
we have I'(X, D)) = Uy.

For each X in h*, we can consider the category Mg.(Dy) of (quasicoher-
ent) Dy-modules on X and the category M(Up) of Up-modules. Clearly, the
functor of global sections I'(X, —) : Mg(Dy) — M(Up) has a left adjoint
functor Ay defined by A\(V) = Dy @y, V for any Up-module V. This is
the localization functor of Beilinson and Bernstein [3]. Localization functors
are an equivalence of the category M (Up) with the category of M.(D,) for
regular and antidominant A € §*.

We can consider the derived categories D*(D,) and D*(Up) of the cate-
gories My.(Dy) and M (Upy) respectively. The derived functors RI' and LAy
are adjoint functors between these categories. For regular A € h*, they are
equivalences of categories.

As discussed in [12], we can define analogous categories M, (Up, K) of
finitely generated Ug-modules and Mo, (Dy, K) of coherent Dy-modules with
compatible actions of K. We call the objects of these categories Harish-
Chandra modules and Harish-Chandra sheaves respectively. The above re-
sults extend formally to these categories. For example, localization functors
are an equivalence of the category of Harish-Chandra modules with the cate-
gory of Harish-Chandra sheaves for regular and antidominant A € h*. Harish-
Chandra sheaves are holonomic Dy-modules. Therefore, Mo, (Dy, K) is an
artinian and noetherian category. Moreover, its irreducible objects are easily
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classified. As explained in [12], they are attached on to the set of geomet-
ric data consisting of pairs (Q,7) where @ is a K-orbit in X and 7 is a
K-equivariant irreducible connection on @) compatible with the twist. The
Dy-module direct image of the connection 7 is the standard Harish-Chandra
sheaf Z(Q, T) attached to (@, 7). It has the unique irreducible Harish-Chandra
subsheaf £(Q, 7). All irreducible Harish-Chandra sheaves in M ,,(Dy, K) are
isomorphic to some £(Q, 7).

Now we describe in some detail the results discussed in the paper. The
(derived) localizations LAy of Up-modules for different A € 6 are related by
the intertwining functors LI, of Beilinson and Bernstein [4]. Their construc-
tion and basic results are discussed in Section 2. In Section 3 we prove a
quantitative analogue of the main result in [4] which relates support of the
localization of an irreducible Up-module V for strongly antidominant \ with
possible weights of the Lie algebra homology Hy(n,, V') for a dense set of
reX.

Our leading principle is that information contained in the localizations
LAy (V), for some Harish-Chandra module (7, V') for specific w € W can
give more obvious information about Harish-Chandra module than the local-
ization Ay (V) for an antidominant A. A typical example is the main result in
Section 8, which gives a necessary and sufficient condition for irreducibility
of standard Harish-Chandra sheaves. Localization functors satisfy a product
formula which allows a reduction to the case of reflections with respect to
a simple root «a. By considering the fibration of the flag variety X over the
generalized flag variety X, attached to a simple root oo we can easily see that
failure of the conditions for root « implies the reducibility. The general cri-
terion for irreducibility follows from this remark and an inductive argument
using intertwining functors. This irreducibility result is a D-module analogue
of the irreducibility result of Speh and Vogan in [20]. An attempt to under-
stand this result was one of starting points of this part of our project. They
remarked that the situation is much more complicated for singular infinitesi-
mal characters. This suggested that this is naturally a result about standard
Harish-Chandra sheaves and not corresponding modules. The complications
at singular infinitesimal character are caused by the failure of equivalence of
categories in this case.

As we already remarked, the geometric classification of irreducible Harish-
Chandra sheaves is straightforward. If A\ is antidominant, the category of
Harish-Chandra modules is the quotient of the category of Harish-Chandra
sheaves by the subcategory of all Harish-Chandra sheaves with no global sec-
tions. Therefore, irreducible Harish-Chandra modules are all nonvanishing
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modules I'(X, £(Q, 7)). Hence, to have a classification of irreducible Harish-
Chandra modules, we have to characterize all £(Q,7) with nonvanishing
global sections. This is done in Section 9.

Finally, in Sections 11 and 12, we reprove in our setting the classical
results of Harish-Chandra on asymptotic of matrix coefficients of irreducible
Harish-Chandra modules. Again, assume for simplicity that Gy is a connected
semisimple Lie group with maximal compact subgroup Ky. Let Go = KgAgNg
be the Iwasawa decomposition of Gy. Then, Ny determines a set of positive
(restricted) roots. Harish-Chandra considered the Ky-finite matrix coefficients
of a Harish-Chandra module (m,V’) on the corresponding negative chamber
in Ao (for details, consult [8]). The growth of these coefficients at infinity is
determined by “leading exponents”. In [8], it is established that these linear
forms on the Lie algebra of Aj are in the set of all weights of Hy(ng, V'), where
ng is the Lie algebra of Ny. By [16, Theorem II. 2.1], they correspond precisely
to the “minimal” weights with respect to a natural ordering. This establishes
a connection between growth conditions of Ky-finite matrix coefficients and
ng-homology.

The Lie algebra ng is contained in a Borel subalgebra of g which lies
in the open orbit of K in the flag variety X. Therefore, to determine the
“leading exponents” of (m,V), we have to understand the localizations of
(m, V') supported on the full flag variety X. The main result of Section 3
implies therefore the precise estimates for possible “leading exponents” of
irreducible Harish-Chandra modules. This allows to reprove the results of
Harish-Chandra on classification of discrete series of Gy [10]. First, they ex-
ist if and only if rank g = rank K. Second, they correspond (for regular and
strongly antidominant \) to standard Harish-Chandra sheaves Z(Q,7) at-
tached to closed K-orbits ().

We also characterize tempered Harish-Chandra modules in terms of van-
ishing of a simple invariant which we call Langlands invariant. As a conse-
quence, we see that irreducible tempered Harish-Chandra modules are global
sections of specific irreducible standard Harish-Chandra sheaves Z(Q, ) for
strongly antidominant A. This explains relative simplicity of tempered spec-
trum of Gj.

If Langlands invariant of an irreducible Harish-Chandra module is not
zero, it determines the data necessary to characterize it as a Langlands repre-
sentation [13]. We shall discuss the details of this correspondence in a further
publication.
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2. Generalities on intertwining functors

Let 6 be a Weyl group orbit in h*. We consider the category M(Uy) of Up-
modules. For each A € 6 we also consider the category Mg.(Dy) of (quasico-
herent) Dy-modules. Assigning to a Dy-module V its global sections I'(X, V)
defines a functor I' : Myc(Dy) — M(Up). Its left adjoint is the localization
functor Ay : M(Up) — Mye(Dy) given by Ax(V) =Dy @y, V.

Let 3y be the set of roots integral with respect to A, i.e.,

Yy={aeX|a’ (N eZ}.

Then the subgroup Wy of the Weyl group W generated by the reflections
with respect to the roots from X, is equal to

Wy={weW|wr—-XeQX)},

where Q(X) is the root lattice of ¥ in h* ([7], Ch. VI, §2, Ex. 2). Let II be
the set of simple roots in the root system X attached to the set of positive
roots Zj = X3, NX*. Denote by £y : Wy — Z, the corresponding length
function.

We say that X is antidominant if o”()\) is not a strictly positive integer
for any o € 7. For arbitrary A we define

n(A) = min{ly(w) | wA is antidominant, w € W)}.

The following result was established in [4] and [11].
Theorem 2.1. Let A € h* and 0 =W - A\. Then

(i) The right cohomological dimension of I' : My(Dyx) — M(Uyp) is <
n(A).
(it) The left cohomological dimension of Ay : M(Uy) —> Mye(D)) is finite
if and only if \ is regular.
(iii) If X\ is reqular, the left cohomological dimension of Ay is < n(\).

Consider the derived category D(Uy) of complexes of Up-modules and the
derived category D(D,) of complexes of Dy-modules. By (i), there exists the
derived functor RI' : D(Dy) — D(Up). This functor also induces functors
between the corresponding full subcategories of bounded complexes. On the
other hand, for arbitrary A, there exists also the derived functor of localization
functor LAy : D~ (Uy) — D~ (D)) between derived categories of complexes
bounded from above.
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If X is regular, the left cohomological dimension of Ay is finite by (ii), and
LA, extends to the derived functor between D (D)) and D(Uy). Moreover, it
maps bounded complexes into bounded complexes.

We have the following result [4].

Theorem 2.2. Let A € h* be regular and @ = W - X\. Then RT : D*(D)) —
Db(Uy) and LAy : D*(Up) — D®(Dy) are mutually quasiinverse equivalences
of categories.

This implies, in particular, that for any two A\, u € 60, the categories
D¥(D,) and Db(D,) are equivalent. This equivalence is given by the functor
LA, o RT from D®(D,) into D?(D,,). In this section we describe a functor,
defined in geometric terms, which is (under certain conditions) isomorphic to
this functor. This is the intertwining functor of Beilinson and Bernstein [4].

Most of the following results on the intertwining functors are due to Beilin-
son and Bernstein and were announced in [4], [2]. Complete details can be
found in [15].

We start with some geometric remarks. Define the action of G = Int(g)
on X x X by

g-(z,2")=(g9-2,9-2)
for g € G and (z,2") € X x X. The G-orbits in X x X can be parametrized
in the following way. First we introduce a relation between Borel subalgebras
in g. Let b and b’ be two Borel subalgebras in g, n and n’ their nilpotent
radicals and N and N’ the corresponding subgroups of G. Let ¢ be a Cartan
subalgebra of g contained in b N b’. Denote by R the root system of (g, ¢)
in ¢* and by R the set of positive roots determined by b. This determines
a specialization of the Cartan triple (h*, X, 1) into (¢*, R, R") [12]. On the
other hand, b’ determines another set of positive roots in R, which corresponds
via this specialization to w(X) for some uniquely determined w € W. The
element w € W does not depend on the choice of ¢, and we say that b’ is in

relative position w with respect to b.
Let

Zy ={(z,2') € X x X | by is in the relative position w with respect to b, }

for w € W. Then the map w — Z,, is a bijection of W onto the set of
G-orbits in X x X, hence the sets Z,,, w € W, are smooth subvarieties of
X x X.

Denote by p; and ps the projections of Z,, onto the first and second factor
in the product X x X, respectively. The fibrations p; : Z,, — X, i = 1,2,
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are locally trivial with fibers isomorphic to ¢(w)-dimensional affine spaces.
Hence, they are affine morphisms.

Let Q7,1 x be the invertible Oz, -module of top degree relative differential
forms for the projection p; : Z, — X. Let T, be its inverse. Since the
tangent space at (z,z’) € Z,, to the fiber of p; can be identified with n,/(n,N
n,), and p — wp is the sum of roots in X N (—w(XT)), we see that

Tw = p1(O(p — wp)).

It is easy to check that
(Dur)” = (D)

([12], Appendix A). Since the morphism py : Z, — X is a surjective
submersion, the inverse image p3 is an exact functor from M,.(D,) into
Me((D2)P?). Twisting by Ty, defines an exact functor V — Ty, ®0,. p3 (V)
from M(D)) into Mgc((Dwa)?*) ([12], A.3.3.1). Therefore, we have a functor
V' — Tw®o0,, p3 (V') from D°(D,) into D*((Dy»)P*). Composing it with the
direct image functor Rpi; : D°((Dyx)P') — D(Duy), we get the functor
Jw : D(Dy) — D®(Dyy) by the formula

Ju(V') = Rp14(Tw ®o,, p3 (V)

for any V' € D?(D,). Let V € M.(D,). Since p; is an affine morphism with
{(w)-dimensional fibers, it follows that H*(J,(D(V))) vanishes for i < —{(w)
and 7 > 0. Moreover, the functor

1,(V) = R°p14(To X0y, ps(V))

from Mge(Dy) into Myc(Dypy) is right exact. This is the intertwining functor

(attached to w € W) between M.(Dy) and Mye(Dyn). One knows that J,,
is actually the left derived functor LI, of I,, ([4], [15]); moreover,

Proposition 2.3. Let w € W and X\ € b*. Then LI, = J, : D*(D)) —
D®(Dyy) is an equivalence of categories.

We denote by P(X) the weight lattice of 3. For a weight v € P(X) we
denote by O(v) the corresponding homogeneous invertible O x-module. From
the construction of the intertwining functors one can easily check that they
behave nicely with respect to twists by homogeneous invertible O x-modules:

Lemma 2.4. Let w e W, A € h* and v € P(X). Then

LI,(V (v)) = LI,(V)(wv)
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for any V' € D°(D,).

Intertwining functors satisfy a natural “product formula”. To formulate
it we need some additional geometric information on G-orbits in X x X. Let
w,w’ € W. Denote by p; and py the projections of Z,, into X, and by p}
and ph the corresponding projections of Z,, into X. Let Z,, xx Z,, be the
fiber product of Z,, and Z,, with respect to the morphisms p} and p;. Denote
by ¢ : Zw Xx Zy — Zy and q : Zy Xx Zyw — Zy the corresponding
projections to the first, resp. second factor. Finally, the morphisms p) o ¢ :
Zw Xx Zyw — X and pp o q : Zy Xx Zy, — X determine a morphism
r Zy Xx Zy — X X X. Therefore, we have the following commutative
diagram.

X xX
Zw/ Xsz

/ \
Lt Ly

P’y P2

p/2 p1
X X

All morphisms in the diagram are G-equivariant. From the construction it
follows that the image of r is contained in Z,,,, and by the G-equivariance of
r it is a surjection of Z, X x Z,, onto Z,,. Assume in addition that w,w’ € W
are such that {(w'w) = (w') + l(w). Then r : Zy Xx Zy —> Zyw is an
isomorphism. Therefore, if we assume that w,w’, w” € W satisfy w” = w'w
and (w") = L(w') + (w), we can identify Z,» and Z,, X x Z,. Under this

identification the projections pf and pf of Z,» into X correspond to the maps
P} o ¢ and py o ¢q. This leads to the following result.

Proposition 2.5. Let w,w’ € W be such that {(w'w) = ((w') + {(w).
Then, for any A € b*, the functors Ll o LI, and LI, from D*(Dy) into
Db(Dw/w,\) are isomorphic; in particular the functors I o I, and Ly, from
Me(Dy) into Mye(Durwr) are isomorphic.

X



Irreducibility and classification 9

Let o € ¥, We say that A\ € h* is a-antidominant if a”(\) is not a strictly
positive integer. For any S C X1, we say that A\ € h* is S-antidominant if it
is a-antidominant for all « € S. Put

>t ={acX | wae -ST} =N (—w ' (Z1))

for any w € W. Then
Ez—l = _w(2$)7

and if w,w’ € W are such that {(w'w) = (W) + {(w),

by ([7], Ch. VI, §1, no. 6, Cor. 2. of Prop. 17). In this situation, if A\ € h* is
E;,w—antidominant, then w is Ez,—antidominant.

Since the left cohomological dimension of I, is < ¢(w), LI, extends to a
functor from D(D,) into D(D,,,) which is also an equivalence of categories.
The next result gives one of the fundamental properties of this functor.

Theorem 2.6. Let w € W and let X € h* be X} -antidominant. Then the
functors LI, o LAy and LAy from D~ (Uy) into D~ (Dy) are isomorphic.

If we also assume regularity, we get the result of Beilinson and Bernstein
we mentioned before.

Theorem 2.7. Letw € W and X € b* be X -antidominant and regular. Then
LI, is an equivalence of the category D*(Dy) with D®(Dyy), isomorphic to
LA,y o RT.

We can also give a more precise estimate of the left cohomological dimen-
sion of the intertwining functors.

Theorem 2.8. Letw € W and X € bh*. Then the left cohomological dimension
of I, is < Card(X, N Xy).

In particular, we have the following important consequence.

Corollary 2.9. Let w € W and X € b* be such that X} Ny = 0. Then
Iy : Mge(Dy) — Mge(Dyn) is an equivalence of categories and I,-1 is its
quasi-inverse, i.e., the compositions I, o I,~1 and I,-1 o I, are isomorphic
to the identity functors.

Also, for a regular A, we see from the equivalence of derived categories 2.2
and 2.7 that RI'o LI, is a functor isomorphic to RI'. By a twisting argument
on can actually remove this restriction, i.e., we have the following result.
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Theorem 2.10. Let w € W and X\ € b* be Xf-antidominant. Then the
functors RT o LI, and RT from D®(Dy,) into D(Uy) are isomorphic.

This theorem implies a spectral sequence, which collapses when all but
one of the derived intertwining functors of a Dy-module V vanish, either as a
consequence of 2.10, or by explicit verification:

Corollary 2.11. Suppose X € b* is ¥} -antidominant. Suppose further that
LPI,(V) =0 forp# —q € —Z. Then

HP(X7 L—QIw(V)) = Hp_q(X7 V)a p € Z+7

as Up-modules.

Let Mcon(Dy) be the category of coherent Dy-modules and DP, (D)
the corresponding bounded derived category. It is equivalent with the full
subcategory of DP(D,) consisting of complexes with coherent cohomology
([5], VI.2.11). If 6 is the Weyl group orbit of A we can also consider the
bounded derived category D?:ga/l.g) of finitely generated Up-modules. Again,
it is equivalent with the full subcategory of D°(Uy) consisting of complexes
with finitely generated cohomology. The functor RI' maps complexes from
D* . (D) into complexes from DS’C s(Up). If Xis regular, the localization functor
LA, maps complexes from D‘l} o (Up) into complexes from Db, (Dy). Hence, by
2.4 and 2.7, we see that LI, : Db, (D)) — Db, (Dyy) for arbitrary w € W
and A\ € h*. This is clearly an equivalence of categories. Now we want to
describe the quasiinverse of this functor.

First, we recall the twisted version of the D-module duality functor. Let
A € b*. It is well-known that the opposite sheaf of rings D} of D, is iso-
morphic to D_y ([12], A.2). Therefore, we can view the sheaf Homp, (V, D))
of right Dy-modules as a left D_y-module. If V is a coherent Dy-module,
Homp, (V,D,) is a coherent D_y-module. Moreover, for any complex V', we
have the duality functor

D: D, (Dy) — D, (D_))

coh coh

given by
D(V') = RHomp, (V', D(D,))[dim X].

One can check that this duality operation behaves well with respect to ten-
soring, i.e., for any weight v € P(X), the following diagram of functors is
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commutative

(Dy) —— Dl (D-y)

coh

Db

coh

-0 | |-e»

Dgoh(DAJru) T D!y, (Dox-y)

coh

Assume for a moment that A is regular antidominant. Since it is equivalent
to M4(Up), the category Mon(Dy) has enough projective objects. Moreover,
they are direct summands of DY for some p € Z,. Hence, if P is a projective
object in Mon(Dy) and = an arbitrary point in X, the stalk P, of P is a
projective D) ,-module. Since the twisting with O(v), for a weight v € P(X),
is an equivalence of My, (Dy) with Mop(Daty), we see that the category
Mon (D)) has enough projectives for arbitrary A € h*. Moreover, if P is a
projective object in Mop (D, ), its stalk P, is a projective D) z-module for
any € X. Therefore, Ext%A (P,Dy). = Ext%m (Py, Dxy) = 0 for p > 0, the
“local to global” spectral sequence

HP(X, Exth, (P,Dy)) = Ext} (P, Dy),
degenerates, and we conclude that
H?(X, Homp, (P,Dy)) =0, for p > 0;

i.e., Homp, (P, D) is acyclic for the functor of global sections I'.

Consider the functor V' —— RHomp,(V', D(D,)) from D_,(D,) into

DY (D_,) and the functor RI" from D, (D_,) into DT (Uy). Then the above
remark implies that

RT(RHomp, (V', D(D,))) = RHomp, (V', D(Dy,)).
This yields the following result.
Lemma 2.12. We have the isomorphism
RT'(D(V')) = RHomp, (V', D(D,))[dim X]
of functors from D, (Dy) into D°(Up).

coh

Let 8 be the Weyl group orbit of A\ and —6 be the orbit of —\. For
regular orbit 0, the homological dimension of the ring Uy is finite. Moreover,
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the principal antiautomorphism of ¢(g) induces an isomorphism of the ring
opposite to Uy with U_g. We define a contravariant duality functor

Daig(V') = RHomyy, (V', D(Up))

from D?cg(u@) into D?g(lxl_g).

Let V" be a complex of finitely generated Uy-modules bounded from above.
Then there exists a complex F* bounded from above, consisting of free Up-
modules of finite rank and a morphism of complexes F* — V. Therefore,

RU(D(LAL(V'))) = RO(D(AN(F))) = R Homp, (Ax(F"), D(Dy))|[dim X]
= Homp, (Ax(F"), D(Dy))[dim X] = Homy, (F", D(Up))[dim X]
— R Homy, (F", D(Us))[dim X] = Dy (V")[dim X].

Since LA} is an equivalence of DS’C s (Up) with Db (D) we get the following
result.

Lemma 2.13. Let A € h* be regular, then the following diagram of functor
commutes

Db, (Dy)  —— Db, (D-y)

coh

[ar

D?‘g(u") D?‘g(u—e)

Dgig[dim X]

Let o be a simple root. If A is a-antidominant, by 2.10, we have
RT'(V') = RI'(LI, (V).
Hence, we have

RI'(D(V)) = Dgg(RT'(V'))[dim X]
— Duy(RT(LL,, (V'))[dim X] = RI(D(LL,, (V).

Here D(V') is in D%, (D_)) and D(LI,, (V")) is in Db, (D_s.»). Since —s,A

coh coh
is a-antidominant, applying again 2.10, it follows that

RT(D(V')) = RT(LI, D(LI,, (V).
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Since D(V') and LI, D(LI,, (V7)) are in D°, (D_,) and RI is an equivalence

coh
of categories, we have

D(V') = LI, (D(LI5, (V')))-

Therefore,
LI, o(Do Ll oD)=id
on D%, (D_y). Because all of these functors commute with twists, it follows

that this relation holds for arbitrary A.
This implies that in general

LI,o(Do Ll,~10D)=id.

Therefore, we proved the following result.

Theorem 2.14. The functor

Do LI, 10D: Db, (Dyy) — Db, (Dy)

coh coh

is a quasiinverse of the intertwining functor L1, : D%, (D)) — D2, (Dyy).

Finally, we want to discuss the behavior of global sections of Dy-modules
for (not necessarily regular) antidominant A € h*. Since the localization func-
tor Ay is the left adjoint of I', we have the adjunction morphisms Ayol' — id
of functors on M(Up) and id — I' o A of functors on M(D,). By (i), I is
exact in this situation and the functor I"o A is right exact. Moreover, by [3],

(I'o Ax)(Up) = T'(X, Dy) = Up.
Hence, from the exact sequence
ué‘]) —>U§I) —V—0
we get the commutative diagram

Uy —— Uy —— 14 — 0

H H l

U —— uP —— T(X,A\V) —— 0

We conclude that the morphism V. — I'(X,Ax(V)) is an isomorphism.
Therefore, the adjunction morphism id — I' o Ay is an isomorphism of
functors.
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Lemma 2.15. Let A € b* be antidominant and 6 =W - . Then:

(i) for any irreducible Dy-module V, either I'(X,V) is an irreducible Uy-
module or it is equal to zero;

(ii) for an irreducible Up-module V' there exists a unique irreducible Dy -
module V such that V =T(X,V).

Proof. Let V be an irreducible Dy-module. Then the Dy-submodule of V gen-
erated by I'(X, V) can be either 0 or V. Obviously, the first case corresponds
to T'(X,V) =0.

Assume now that I'(X,V) # 0. Then the adjunction morphism from
A\(T(X,V)) to V is an epimorphism. Let K be the kernel of this morphism.
Applying I" to the corresponding short exact sequence

00— K— AT(X, V) —V—0
we get
0 —T(X,K) —T(X,A\T(X,V) — T(X,V) — 0,

and since I' o Ay 2 id, we see that I'(X,K) = 0. Let C be any quasico-
herent submodule of Ay(I'(X,V)). Then either C C K and I'(X,C) = 0, or
the morphism of C into V is surjective. Since I' is exact, the natural map
I'(X,C) — I'(X, V) is an isomorphism in the latter case.

Assume now that U is a nonzero quotient of I'(X,V). Then Ay(U) is
a quotient of Ay(I'(X,V)). Let W be the kernel of this epimorphism. By
the preceding remark, either I'(X, V) = 0 or I'(X, W) — ['(X,V) is an
isomorphism. The latter case is ruled out since U # 0, hence I'(X, W) = 0
and U = I'(X, V). Therefore, I'(X, V) is irreducible. This completes the proof
of (i).

Let V be an irreducible Up-module. Then Ay (V') is a coherent Dy-module.
Let W be a maximal coherent Dy-submodule and V the quotient of Ay (V)
by W. Then we have the exact sequence

0 — T(X, W) — T(X, A\(V)) — (X, V) — 0.

Since I'(X, A\(V)) =V, either I'(X, W) =V or I'(X, V) = V. Since Ax(V)
is, by definition, generated by its global sections, the first possibility is ruled
out. It follows that I'(X, W) = 0 and I'(X, V) = V. This proves the existence
part in (ii).

Let S be the family of all quasicoherent Dy-submodules U of Ay (I'(X,V))
ordered by inclusion. Since the functor I' is exact, S has the largest element.
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Hence, we conclude that W is the largest coherent Dy-submodule and V is
the unique irreducible quotient of Ax(V'). Let U be another irreducible Dy-
module with I'(X,U/) = V. Then, by the proof of (i), U is a quotient of Ay (V).
Therefore, U = V. O

This reduces the problem of classification of irreducible Uy-modules to
the problem of classification of irreducible Dy-modules and the problem of
describing all irreducible Dy-modules with no global sections. Now we prove
several simple results useful in studying the second problem (a more detailed
discussion can be found in [15]).

We need some preparation. Let F' be a finite-dimensional g-module. Then
the sheaf 7 = Ox ®c F has a natural structure of a sheaf of U(g)-modules.
Fix a base point g € X. Let 0 = Fy C F; C --- C F,,, = F be a maximal
b,,-invariant flag in F'. Then n, F; C F;_; for 1 < i < m. Therefore, by, /n,,
acts naturally on F;/F;_1, and this action induces, by specialization, an action
of the Cartan algebra h on F;/F;_; given by a weight v; € P(X). The sheaf
F is the sheaf of local sections of the trivial homogeneous vector bundle
X x F'— X. Hence, the flag induces a filtration of F by the sheaves of local
sections F; of homogeneous vector subbundles with fibers F;, 1 < i < m,
at the base point xg. They are locally free coherent Ox-modules and also
U(g)-modules. On the other hand, F;/F;_1 = O(v;) as a U(g)-module, i.e.,
Fi/Fi—1 is naturally a D,, _ p~-module. Let V be a quasicoherent Dy-module on
X. Then the Ox-module ¥V ®p, F has a natural structure of a U (g)-module
given by

fres)=vRs+vREs

for £ € g, and local sections v and s of V and F, respectively. We can define its
U(g)-module filtration F(V ®p, F) by the submodules V®p, Fi, 1 <i < m.
By the previous discussion, the corresponding graded module is Gr(V ®o,
F) = @2, V(v;). Therefore, for any ¢ € Z(g), the product [];<;<,,(& —
Xatw; (€)) annihilates V ®o, F. Hence, ¥V @0, F decomposes into the direct
sum of its generalized Z(g)-eigensheaves.

Let U be a U(g)-module and p € h*. Denote by U, the generalized
Z(g)-eigensheaf of U corresponding to x,. Then

1% Koy F = @(V Roy ]:)[)\—i-l/]7

where the sum is taken over the weights v of I’ which represent the different
Weyl group orbits W - (A 4 v).

We also need to recall some standard constructions from the theory of
derived categories. Let A be an abelian category and D°(A) the corresponding
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derived category of bounded complexes. Let D : A — D?(A) be the natural
functor which attaches to an object A the complex D(A) such that D(A)" =0
for n # 0 and D(A)? = A. Then D is fully faithful.

Also, for any s € Z, we define the truncation functors 7>, and 7<5 on
Db(A) : if A is a complex, 754(A’) is a complex which is zero in degrees
less than s, 7>5(A)* = cokerd®*™! and 754(A)? = A? for ¢ > s, with the
differentials induced by the differentials of A". On the other hand, 7<4(A")
is a complex which is zero in degrees greater than s, 7<s(A)* = kerd® and
T<s(A)? = A7 for ¢ < s, with the differentials induced by the differentials
of A'. The natural morphisms 7<4(A) — A and A" — 7>4(A4") induce
isomorphisms on cohomology in degrees < s and > s respectively. Moreover,
for any complex A" we have the distinguished triangle:

T>s+1 (A)

TSS(A') A

in D*(A).

We return to the analysis of irreducible Dy-modules. Let o € 1. Then,
by 2.8, the left cohomological dimension of the intertwining functor I is
<1

Lemma 2.16. Let A € b*, o € Tl and p = —a’(\) € Z. Let V be an
irreducible Dy-module. Then either

(i) I, (V) =0 and L~ I, (V) = V(pa); or
(ii) L7 1, (V) = 0. In this case, we have the ezact sequence

0—C— I, (V) — V(pa) — 0

where C the largest proper coherent D, x-submodule of I (V). In addi-
tion, I,,(C) = 0 and L7111, (C) = C(pa).

Proof. By 2.4, we can first assume that X is antidominant and regular. Since
the left cohomological dimension of LI, is < 1, the complex LI; (D(V))
can have nontrivial cohomology modules only in degrees —1 and 0. By the
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truncation construction for s = —1, we get the distinguished triangle

AN

Applying to it the functor RI" leads to the distinguished triangle

RI(D(Is, (V)))

RT(D(L™1,, (V)))[1] RI (LI, (D(V)))

By 2.10, we conclude that that RI'(LI, (D(V))) = RI'(D(V)) = D(I'(X, V)).
In addition, since \ is antidominant and regular, we see that n(s,A) = 1. By
2.1.(i), it follows that HP(X,W) = 0 for p > 1 for any quasicoherent Dy, \-
module W. Hence, from the long exact sequence of cohomology attached
to the above distinguished triangle, we conclude that T'(X, L=, (V)) = 0,
HY(X, I, (V)) =0 and

0— HYX,L7'I, (V) — T(X,V) — T'(X,I, (V) — 0

is exact. Since Up-module I'(X, V) is irreducible, either H'(X, L1, _(V)) =0
or ['(X, I, (V)) = 0. Therefore, we have either RT'(D(L™1I,, (V))) = 0 or
RI(D(I,(V))) = 0. By the equivalence of derived categories this implies
that either I, (V) =0or L1, (V) = 0.

Again, by 2.4, we can assume that A is antidominant and a”(A) = 0.
Moreover, we can assume that 37°(\), for 8 € ©F — {a}, are “very large”
integers. Let U be a Dy-module. Let pu be a “small” dominant weight and F
the corresponding irreducible finite dimensional g-module. Let F = Ox ®¢ F
be the sheaf of sections of the corresponding trivial vector bundle. As we
discussed before, this sheaf has a natural finite increasing filtration, which
induces the filtration F(U ®p, F) with the graded module Gr(U ®op, F) =
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@, U(v). The center Z(g) acts on U(r) with infinitesimal character Xy,
Consider the graded components U(v) on which the action is given by xxu-
In these cases, we have w(A 4+ v) = A + p for some w € W. This implies that
wA—=A=p—wr € Q(X) and w € W). Since u is “small” and wv is another
weight of F', wA — X is also “small”. This implies that either w = 1 or w = s,.
Hence, the induced filtration of the sheaf (U ®oy F)r4y) is two-step, and the
corresponding graded sheaf is U () @ U(sqp). Since p is the highest weight
of F', we see that we have the following short exact sequence

0 —U(p) — (U R0, ./—")[)\4_#] — U(sap) — 0.

Under our assumptions, A + s, is regular and antidominant. Assume that

(X, U) = 0. Then
HP (X, (UR0xF)pu) = HY (X, UR0x F)) ) = (HP(X,U)RcF ) agy) = 0.

Hence, from the long exact sequence of cohomology corresponding to this
short exact sequence, we see that I'(X,U(n)) = 0 and T'(X,U(sap)) =
HY(X,U(u)). Therefore, RT'(D(U(sap))) = RT(DU(p))[1]). On the other
hand,

RI(DU(sap))) = RU(LIs, (DU(sap))))
by 2.10. By the equivalence of derived categories, it follows that

LI (DU (sap))) = DU(p))[1].

By 2.4, we conclude that LI, (D(U)) = DU)[1].
When this discussion is applied to V, we see that I'(X, V) = 0 implies (i).
Conversely, if (i) holds, by 2.10,

D(I'(X,V)) = RT(D(V))
= RI(LL, (D(V))) = RE(D(V)[1] = D(I'(X, V))[1],

and I'(X, V) = 0.

Therefore, if (i) does not hold, V' =T'(X,V) # 0. By 2.15 and its proof,
V' is irreducible and V is the unique irreducible quotient of Ay(V'). Hence,
by 2.6, I, (V) is a quotient of I (Ax(V)) = Ax(V). Since I, (V) # 0, V
is the unique irreducible quotient of I5 (V). Let C be the largest coherent
D;, x-submodule of I (V). Then we have the exact sequence

0—C— I, (V) —V—0.
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By applying I" to it we see that I'(X,C) = 0. By the above result, it follows
L7, (C) =C. O

Assume that A is antidominant and a € IIy such that a”(\) = 0. Let
VY be an irreducible Dy-module. Then, as we have shown in the preceding
argument, I, (V) = 0 implies that I'(X, V) = 0. The converse also holds:

Proposition 2.17. Let A\ € b* be antidominant, 0 = W -\ and S = {« € 11 |
a’(N) = 0}. Let V be an irreducible Dx-module. Then the following conditions
are equivalent:

(i) T(X,V) =0;
(it) there exists a € S such that I, (V) = 0.

Proof. As we remarked above, we just need to prove that (i) implies (ii). Let
W () be the stabilizer of A in W. Then W (\) is generated by reflections
with respect to 3(A\) = {a € ¥ | a”(A) = 0}. The root subsystem X(\) is
contained in ¥y. Since A is antidominant, any positive root in ¥(\) is a sum
of roots from S, i.e., S is a basis of X(A). It follows that W (\) is generated
by reflections with respect to S. Therefore, the length function on W () is
the restriction of £j.

Assume that I (V) # 0 for all @ € S. Let v be a regular antidominant
weight. We claim that I'(X, V(wr)) # 0 for all w € W (). The proof is by
induction in fy(w). If {x(w) = 0, w = 1, A + v is regular antidominant and
['(X,V(v)) # 0. Assume that the assertion holds for v € W(\), £x(v) < k for
some k > 0. Let £,(w) = k. Then w = s,w’ with a € S and w’ € W(\) such
that fy(w') = k — 1. Then, w' "o € £} (see, for example, [7], Ch. VI, §1,
no. 6, Cor. 1 of Prop. 17.). This implies, by the antidominance of v,

p=aA+uwr)=a (W)= o)WV e -Z,,

and A+ w'v is a-antidominant. By the induction assumption, T'(X, V(w'v)) #
0, and by 2.4 and 2.15.(ii) we have the exact sequence

0 — Clpa) — I, (V(w'v)) — V(wr) — 0,
and LI, (D(C)) = D(C(pa))[1]. Therefore, by 2.10,
RT(D(C)) = RU(LL, (D(C))) = RT(D(C(pa)))[1].

It follows that I'( X, C(pa)) = 0. On the other hand, by the induction assump-
tion and 2.10, we have

I'(X, I, V(w'v))) =T(X,V(w'v)) #0,
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so ['(X, V(wr)) # 0. This proves our earlier claim.
Let F' be a finite-dimensional representation with lowest weight v, and
put F = Ox ®c F as before. Assume that (i) holds. Then V ®¢, F satisfies

I'(X,V &0, F) =T(X,V)&c F =0,

hence I'(X, (V®oy F)r+v]) = 0. On the other hand, the filtration of V®o, F,
which was discussed before, induces a filtration of (V ®oy F )4y such that
the corresponding graded sheaf is a direct sum of V(u) for all weights u of F
such that w(A +v) = A+ p for some w € W. This implies wA — A = p — wv,
and w € W). The left side of the equality A —w ™'\ = w™'y — v is a negative
of a sum of roots from II, and the right side is a sum of roots from II. It
follows that wA = A, i.e., w € W(A). Let w € W(A) be such that V(wv) is
a submodule of (V ®oy F)r+s)- Then, if (ii) is violated, T'(X, V(wv)) # 0
according to the earlier claim, contradicting I'(X, (V ®oy F)pqy)) =0. O

To put 2.17 into perspective we should mention the following criterion
for vanishing of intertwining functors for simple reflections. In this paper, we
shall need only a special case, which we establish in 7.5, and which is an
unpublished result of Beilinson and Bernstein.

Let a € II, X, the generalized flag variety of parabolic subalgebras of
type a and p, : X — X, the canonical projection. We say that a D-module
V is of Xq-origin if it is equal to a twist pt (W)(u), u € P(X), of the inverse
image p (W) for some D-module W on X,,. The following result is proven in
[15].

Proposition 2.18. Let A € h* be antidominant, and o € 11 such that
a’(N) =0. Let V be an irreducible Dy-module. Then the following conditions
are equivalent:

(Z) Isa (V) - 0”
(ii) V is of Xq-origin.

3. Supports and n-homology

In this section we prove some results relating the localization and n-homology
which follow from analysis of the action of intertwining functors. They are
inspired by the work of Beilinson and Bernstein on the generalization of the
subrepresentation theorem of Casselman [4]. Our main result can be viewed
as a quantitative version of their result.
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We start with some geometric preliminaries. Let < be the Bruhat order
on W (determined by the reflections with respect to II). Let S be a subset of
the flag variety X. For w € W put

Ew(S) ={x € X | b, is in relative position v with respect to by,
for some v < w,y € S}.

Lemma 3.1. Let S be a subset of X and w € W. Then:

(i) dim S < dim Ey,(S) < dim S + {(w).
(iii) If S is a closed subset of X, Fy(S) is the closure of the set

{z € X | b, is in relative position w with respect to some by, y € S}.

(iv) If S is irreducible, E,(S) is also irreducible.
(v) If w,v € W are such that {(wv) = {(w) + {(v),

EunlS) = EulE(9)).

Proof. Let a € II. Denote by X, the generalized flag variety of parabolic
subalgebras of type «, and by p, : X — X, the natural projection. Then
we have

E,, (8) = py (pa(9)).

Clearly, in this case, Es_ (5) is closed (resp. irreducible) if S is closed (resp. ir-
reducible). Moreover, we see that

dim S < dim E, (S) < dim S + 1.

Therefore, E,_(S) is closed. Hence, E,_(S) C E,_(S). On the other hand,
since S C E,,_(9) it follows that S C E,_(S). If z € E,_(S), the whole fiber
Pat(pa()) is contained in E,_(S). This implies Ey_ (S) C Es, (S). This proves
(ii) for simple reflections.

Now we prove (v) by induction in the length of w € W. First we claim
that the formula holds if w = s,, a € II. In this case, E,_(FE,(S)) consists
of all points z € X such that either z € E,(S) or there exists y € E,(S5)
such that b, is in relative position s, with respect to b,. Hence, it consists of
all x € X such that there exists y € S and b, is in relative position u with
respect to b, for either u < v or u = squ’ with v’ < v. In the second case, we
have either ¢(u) = ¢(u') + 1 and u < sqv or f(u) = ¢(v') — 1 and u < v/ < .
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Hence, Es (E,(S)) C Es (S). Conversely, if u < s,v, we have either v < v
or squ < v, hence Es_ (E,(S)) = Es o(5).

Assume now that w is arbitrary. Then we can find « € IT and w’ € W
such that ¢(w) = ¢(w’) + 1. Therefore, by the induction assumption,

Ew(Ev(S)) = Esaw’(Ev(S)) =K, (Ew’(Ev(S))) = L, (Ew/v(s))v

which completes the proof of (v).

Now, for arbitrary w € W, a € 11, and w’ € W such that ¢(w) = ¢(w')+1,
we have F,(S) = E, (Ew(S)). Using the first part of the proof and an
induction in ¢(w), (i), (ii) and (iv) follow. In addition, we see that E,(S) is
closed, if S is closed.

(iif) Let

V = {x € X | b, is in relative position w with respect to some b,, y € S}.
Then V C E,(S). Since E,(S) is closed, V C E,(S). Let y € S. Then the

closure of the set of all x € X such that b, is in relative position w with
respect to b, is equal to E,,({z}). This implies

Vo | Ewl{z}) = Eu(9).

zeSs

We say that w € W is transversal to S C X if
dim £, (S) = dim S + {(w).

If w is transversal to S, ¢(w) < codim S.
Lemma 3.2. Let S be a subset of X. Then

(i) w € W is transversal to S if and only if it is transversal to S.
(ii) Let w,v € W be such that {(wv) = l(w) + €(v). Then the following
statements are equivalent:

(a) wv is transversal to S;
(b) v is transversal to S and w is transversal to E,(S).
Proof. (i) By 3.1.(ii) we have

dim E,,(S) = dim E,,(S) = dim E,,(5),
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and the assertion follows from the definition of transversality.
(ii) By 3.1.(i)

dim Fy,(S) < dim S + f(wv) = dim S + £(w) + £(v),

and the equality holds if and only if wv is transversal to S. On the other
hand, by 3.1.(v),

dim Eyy(S) = dim B, (E,(S)) < dim E,(S) 4+ ((w) < dim S + £(v) + £(w).
Hence, if (a) holds, the last relation is an equality, i.e.,
dim E,,(E,(S)) = dim E,(S) 4 ¢(w)

and
dim E,(S) = dim S + £(v).

Hence, (b) holds.
Conversely, if (b) holds, we see immediately that wv is transversal to
S. O

Lemma 3.3. Let S be an irreducible closed subvariety of X and w € W.
Then there exists v < w such that v is transversal to S and E,(S) = E,(S).

Proof. First we consider the case of w = s,, @ € II. In this case Fy, (S) =
Pl (pa(S)) is irreducible and closed, and we have two possibilities:

a) Sq is transversal to S and dim E;_ (S) = dim S + 1, or
b) s, is not transversal to S, dim E,_(S) = dim S and since S C E_(5),
we have Fy (5) = S.

Now we prove the general statement by induction in ¢(w). If {(w) =0, w =1
and F4(S) = S, hence the assertion is obvious. Assume that ¢(w) = k. Then
there exists w’ € W and « € II such that w = s,w’ and f(w) = ((w') + 1.
In this case, Fy,(S) = Es, (Eyw(S)) by 3.1.(v). By the induction assumption,
there exists v € W, v < w’ which is transversal to S and such that E,(S) =
Ew(S).

Now, by the first part of the proof, if s, is not transversal to E,(S) we
have

Ew(S) = Esa(Ew’(S)) = Ew’(S> = Ev’(S)'

Since v/ < w' < w the assertion follows. If s, is transversal to E,/(S5), we
have

dim E,,(S) = dim E,_ (Ey (S)) = dim B (S) + 1 = dim S + £(v') + 1.
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Put v = s,0". If we have ¢(v) = £(v') — 1,

Ev’(S) = Esu(Ev(S)) = p;l(pa(Ev(S)))

by 3.1.(v) and

Esa (Ev’(S)) = p;l(pa(pgl(pa(Ev(S))))) = Ev’(S)a

contrary to transversality of s,. Therefore, (v) = £(v") + 1, v < w and
E,(S) = Es, (Ey(S)). We conclude that E,,(S) = E,(S),

dim E,(S) = dim E,,(S) = dim S + £(v) + 1 = dim S + £(v)

and v is transversal to S. O

As we remarked in §2, for any coherent Dy-module V, the D,,y-modules
LP1,(V), p € Z, are also coherent.

If V is a coherent Dy-module, the set {z € X | V, # 0} is closed, and thus
coincides with the support supp V of V. We want to analyze how the action of
intertwining functors changes supports of coherent D-modules. First we point
out the following simple fact which is a direct consequence of the definition
of the intertwining functors and 3.1.(iii).

Lemma 3.4. For any V € Mcon(Dy), p € Z and w € W, we have
supp LP1,,(V) C Ey,(supp V).

Lemma 3.5. Let V € Mon(Dy) and w € W transversal to S = supp V.
Assume that S is irreducible. Then

supp Iw(v) = Ew(S)a

and
dimsupp I,,(V) = dim S + {(w).

Proof. We prove this result by induction in (w). If {(w) = 1, w = s, for
some « € II. In this case, the second statement is proved in [4]. By 3.4,
supp I, (V) C E, (5). Also, by 3.1, both sets are closed and E_(S) is irre-
ducible. Since dimsupp I,,(V) = dim S + 1 = dim F,_(S) by transversality,
the first statement follows.

Let w € W with ¢(w) =k > 1. Then w = s,w’ with € IT and ¢(w') =
k — 1. Since w is transversal to S, w’ is transversal to S and s, is transversal



Irreducibility and classification 25

to Ey (S) by 3.2. By the induction assumption, supp I,/ (V) = E.(S). Hence,
by 2.5 and 3.1.(iv), we have

supp Ly, (V) = supp Is, (L (V)) = Es, (Ew(5)) = Ew(S5).

To any coherent Dy-module we attach two subsets of the Weyl group W:
S(V) ={w e W|supp L,(V) = X}

and
E(V) = the set of minimal elements in S(V).

We have the following result. The statement (i) is the result of Beilinson and
Bernstein we mentioned before.

Proposition 3.6. Suppose V € M on(Dy) has irreducible support. Then
(i) the set S(V) is nonempty;

(ii)

EWV) ={w e W | w is transversal to supp V'
and ¢(w) = codim supp V},

i.e., E(V) consists of all w € W transversal to supp V with the mazimal
possible length.

Proof. Assume that w € W is transversal to supp V and ¢(w) = codim supp V.
Then, by 3.5, we conclude that w € S(V). If v < w, ¢(v) < codimsupp V,
and dim supp (V) < dim X by 3.4. Hence, v ¢ S(V), i.e.,, w € E(V).

Conversely, assume that w € £(V). Then, by 3.4, we have E,,(suppV) =
X. Since the support of V is irreducible, by 3.3 we can find v < w such
that v is transversal to suppV and E,(suppV) = X. By 3.5 this implies
v € S(V). Since w is a minimal element in S()) we must have w = v, and w
is transversal to supp V. This proves (ii).

To show (i) it is enough to show that £(V) is nonempty. Clearly, if wy is
the longest element in W, E,, (S) = X. By 3.3, there exists w transversal to
S such that Ey,(S) = X, hence the assertion follows from (ii). O

We recall a simple relationship between localization and n-homology. Let
x € X. Fix a Cartan subalgebra ¢ in b,. Let 8 be a Weyl group orbit in
h*. Let V' € M(Up). The n,-homology modules H,(n,, V), p € Z4, have a
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natural structure of ¢-modules, and via the specialization we can view them
as h-modules. According to a result of Casselman and Osborne, the modules
Hp(ng, V') are annihilated by Py(€) = [T,ew (§—(wA+p)(§)) for all £ € h. For
a h-module U denote by U, the generalized weight submodule corresponding
to the weight © € h*. Then

HP(“ZE? V) = Z Hp(nm V)(w)\+p)
weW

for any p € Z. Moreover, if A € h* is regular, linear forms wA+p in Py are all
mutually different, hence the n,-homology modules H,(n,, V') are semisimple.
These modules are related to localization by the following result (see, for
example, [11]). For any Ox-module F we denote by T,(F) the geometric
fiber of F.

Lemma 3.7. Let A € b* be reqular and 6 = W - X. Then for any V € M(Up)

we have the spectral sequence
LpTw(LqA/\(V)) — H_(p+q) (nx, V)(A+p)~

This result will allow us to extract information about n-homology from
localizations.

Unfortunately, as we remarked in 2.1.(ii), the behavior of localization
functor for singular infinitesimal characters is quite bad and the corresponding
relationship is much less useful. Therefore, to analyze n-homology in this case
we shall use the translation functor technique.

Let F' be a finite-dimensional g-module and F = Ox ®¢ F'. The following
lemma is implicit in [3]. We include a proof for the sake of completeness.

Lemma 3.8. Let A € b*, p € P(X) and w € W be such that w\ and —wu
are antidominant. Let F' be the irreducible finite-dimensional g-module with
highest weight wp. Then V — (V(—p) ®oy F)y 18 a covariant functor from
Me(Dy) into itself, naturally equivalent to the identity functor.

Proof. The filtration of V(—u) ®o, F described in §2 has V(—u + v) as its
composition factors, where v ranges over the set of all weights of F'. Therefore,
Z(g) acts on them with the infinitesimal character x)—_,4,. Assume that

SA=A—pu+v
for some s € W. Then, if we put s’ = wsw™! and N = w)\, we have

SN =N =wv —wpu,
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and since wp and wv are weights of F', '\ — X € Q(X). Therefore, s’ € Wy.
Now, since wy is the highest weight of F', wr —wy is a sum of negative roots.
On the other hand, since )\ is antidominant, s\ — )\ is a sum of roots in
Z;\“ C YT, Therefore, s\ = X and u = v, and the generalized eigensheaf of
V(—p) ®o, F corresponding to xy is isomorphic to V. O

Finally, we can formulate the result we need. Let V' # 0 be a finitely
generated Up-module. We say that A\ € 6 is an ezponent of V' if the set

{LL‘ e X | Ho(nx,V)()\er) 75 0}

contains an open dense subset of X. Beilinson and Bernstein proved that the
set of exponents of V' is nonempty [4]. In particular, the set of all x € X such
that Ho(ng, V') # 0 contains an open dense subset of X.

We say that A € b* is strongly antidominant if Rea”(A) < 0 for any
a € XT. Clearly, a strongly antidominant A is antidominant.

We also define a partial ordering on h* by: A < p if 4 — X is a linear
combination of simple roots in Il with coefficients with non-negative real
parts. This order relation is related to the ordering on the Weyl group W by
the following observation (see for example [9], 7.7.2).

Lemma 3.9. Let A € b* be strongly antidominant. Then for any v,w € W,
v < w implies v < wWA.

Proof. Clearly, it is enough to show that for any w € W and « € II such that
U(sqw) = L(w) 4+ 1, we have wA X sqwA. But s,wA = w\ — a”(w\)a, hence

SqwA —wA = (wa) (Na,

and it is enough to prove that Re(w™1a)”(A) > 0. Since wla is in o (see,
for example, [7], Ch. VI, §1, no. 6, Cor. 2 of Prop. 17), this follows from the
strong antidominance of \. O

The next result is the sharpening of the result of Beilinson and Bernstein
we alluded to before.

Theorem 3.10. Let X € b* be strongly antidominant. Let V € M on(Dy) be
such that S = supp V is irreducible. Put V =T'(X,V).

(i) If w is an exponent of V, there exists w € W transversal to S with
l(w) = codim S such that wA < w.

(ii) Assume that V is irreducible and V # 0. If w € W is transversal to S
and {(w) = codim S, then wA is an exponent of V.
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We first prove (i). Let p be a regular dominant weight and F' the irre-
ducible finite-dimensional g-module with highest weight u. Let F = Ox Q¢ F.
Then A—p is regular and strongly antidominant. Let U = I'(X, V(—pu)). Then,
by 3.8,

V= V(-n) ®ox F)-
This implies

V= F(Xa V) = F(Xv (V(_M) Xox f)[/\])
=X, V(—p) ®ox F)y = (DX, V(—p) @c Fpy = (U @c F)y.-

Let w be an exponent of V', i.e., Hyo(ng, V) (w4p) 7 0 for all x in some open
dense subset of X. Then

HO(n:va V) = HO(nac; (U Xc F)[)\]) = @ HO(“;E; U ®c F)(vA—l—p)v
veW

and
HO(nata V)(w+p) = HO(nxa U ®c F)(w+p)'

Let (F;1 < p < n) be an increasing b,-invariant maximal flag in F. It
induces a filtration (U ®c¢ Fp; 1 < p < n) of the by-module U ®c¢ F. The cor-
responding graded module is the direct sum of modules of the form U ®¢ C,,
where v goes over the set of weights of F. Clearly, the semisimplification of
Ho(n,, U®c F) is a submodule of the direct sum of modules Hy(n,, U)®cC,.
Since the infinitesimal character of U is regular, Hy(n,,U) is a semisimple
b-module. This implies that the semisimplification of Ho(nz, V') () is a sub-
module of the direct sum of modules Ho(nz, U)(y—p+p) ®c C,. In particular,
if Ho(ne, V)(wrp) 7 0, Ho(0g, U)(w—vtp) # 0 for some weight v of F. Since
the set of weights is finite, we can assume that Ho(ng, U)(w—p4p) # 0 for all »
in an open dense subset of X. On the other hand, w — v = v(A — u) for some
uniquely determined v € W. This implies that v~!(w — v) = X\ — p. Since
w = u\ for some u € W, we see that

v A = A = —(p—v ).

Since p is the highest weight of F', the right side is the negative of a sum of
positive roots. Hence v~'u € W) and since \ is antidominant, we see that the
left side is a sum of positive roots. It follows that both sides must be zero,
v~ 1y is in the stabilizer of A and w = u\ = v\. Since A— y is regular, V(—pu) =
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Ax—p(U). Moreover, from 3.7 we conclude that supp Ay—,)(U) = X. Since
L,(V(=p) = L(Ax—p(U)) = Ayr—p)(U) by 2.6, we see that v € S(V(—p)) =
S(V). Hence, by 3.6 there exists w < v such that w is transversal to S and
l(w) = codim S. But, by 3.9, this implies wA < vA = w. This completes the
proof of 3.10.(i).

To prove 3.10.(ii) we need a curious result which is a formal consequence
of the equivalence of derived categories D*(Uy) and D°(D,).

Lemma 3.11. Let A € b* be regular and @ = W -\. Let V' be a Up-module and
p=min{qg € Z | L7IAL\(V) # 0}. Assume that HY(X, L PA\(V)) = 0 for
q < p. Then there exists a nontrivial morphism of V' into HP(X, L"PA\(V)).

Proof. First a simple result about morphisms in derived categories. Let A be
an abelian category and D’(A) its derived category of bounded complexes.
Let C" and D" be two complexes in D°(A) and ¢ € Homps(4)(C", D'). Assume
that

a) H1(C") =0 for ¢ > 0,
b) HY(D') =0 for ¢ < 0.

Then ¢ = 0 if and only if H(¢) = 0.

To prove this we use the truncation functors 7>, and 7<; we introduced
in §2. By the hypothesis, 7<o(C") — C" and D" — 75¢(D") are quasiiso-
morphisms, and by composing them with ¢ we can assume that C? = 0 for
g > 0 and D? = 0 for ¢ < 0. By the definition of a morphism in derived
categories, there exists a complex B° € DY(A) and morphisms of complexes
q: B — C", f: B — D, where ¢ is a quasiisomorphism, which represent
¢. By composing them with the truncation morphism 7<¢(B’) — B, we see
that we can assume in addition that B’ satisfies B¢ = 0 for ¢ > 0. But this
implies that f¢ = 0 for ¢ # 0, im f° C kerd® and imd~! C ker f°. Hence
fY =0 is equivalent to H%(¢) = 0.

Consider now the truncation morphism

LAX(D(V)) — 72p(LAX(D(V))) = D(L7PA\(V))[p]-

By the assumption, it is not zero. By the equivalence of derived categories,
it leads to a nontrivial morphism ¢ : D(V) — RI(D(L7PA(V)[p]) =
RU(D(L7PAX(V))[p]. It induces zero morphisms between the cohomology
modules of both complexes, except in degree zero where we get a mor-
phism of V into HP(X, L PA(V)). Since cohomology modules of L™PAy (V)
vanish below degree p, the complex RI'(D(L PAx(V))[p] satisfies the con-
dition (b). Hence, by the preceding result, the morphism H°(¢) of V into
RU(D(L7PAN(V)))[p]® = HP(X, L7PA5(V)) is nonzero. O
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Now we can prove 3.10.(ii). If V is irreducible, V(—pu) is also irreducible
and their support S is irreducible. Hence, U is irreducible by the equivalence
of categories. Since w is transversal to S and ¢(w) = codim S, by 3.5 we see
that supp Ay—p)(U) = X. Put U = Ay, (U). Since U is irreducible, by
applying 3.11 with p = 0, we get U C I'( X, U).

Assume that s € U is a global section of & which vanishes on the open
dense subset in X. Then it generates a submodule of global sections supported
in the complement of this open set. This submodule must be either equal to U
or to zero. The first possibility would imply that the localization A,,—,)(U)
is also supported in the complement of this open set, contradicting our as-
sumption. Therefore this submodule is equal to zero, i.e., s = 0. This implies
that the support of any nonzero global section in U is equal to X. Let F' be
the irreducible finite-dimensional representation of g with highest weight .
Then, as before, by 3.8,

Ulwp) = (U @ox F)y-

Hence, we see

DX, U(wp)) =T(X, (U @0y F)n)
DX, U ®oy F)y = T(X,U) @c F)py D (U@c Fpy =V.

Moreover, the support of any nonzero global section of Y ®p, F = U X F
which comes from U ®¢ F is equal to X, and the support of any nonzero global
section of its subsheaf U (wp) which belongs to (U ®c F)y = V is also equal
to X. Since U (wp) is coherent, there exists an open dense subset O in X such
that U (wp)|O is a locally free Op-module ([5], VIL.9.3). Therefore, on this set,
a section vanishes if and only if its values (i.e., its images in geometric fibers)
vanish everywhere. Hence, there exists an open dense subset O’ of O, such
that for z € O', some sections from V' do not vanish at z. On the other hand,
for any x € O/, the global sections in n,V vanish at that point. Therefore, for
x € O, the geometric fiber map U(wpu) — T, (U(wp)) induces a nonzero
map of V into T, (U (wp)), which factors through Hy(n,, V'), and this factor
map is a morphism of b,-modules. It follows that Ho(ng, V)wayp) 7# 0 for
x € O, ie., w\ is an exponent of V. This completes the proof of 3.10.(ii).

4. Calculations for si(2,C)

In this section we discuss the simplest case of g = s[(2,C). In this case the
group Int(g) of inner automorphisms of g can be identified with PSL(2,C),
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and we can identify the flag variety X of g with the one-dimensional projective
space PL. If we denote by [zg, 1] the projective coordinates of x € P!, the
corresponding Borel subalgebra b, is the Lie subalgebra of sl(2,C) which
leaves the line x invariant.

First we want to classify all possible Harish-Chandra pairs (g, K) with
g = sl(2,C). We say that two Harish-Chandra pairs (g, K) and (g, K') are
conjugate if there exists an isomorphism 1) : K — K’ and an inner auto-
morphism (3 of g such that 5o p = ¢ 0.

Let B be the Borel subgroup of PSL(2,C) corresponding to [1,0], N
its unipotent radical and T the one-dimensional torus which stabilizes both
0=[1,0] and oo = [0, 1].

Lemma 4.1. Up to conjugacy, the only connected algebraic groups K such
that (g, K) is a Harish-Chandra pair are:

(i) N with ¢ = identity,

(ii) finite coverings of T with ¢ = covering map,
(iii) finite coverings of B with ¢ = covering map,
(iv) PSL(2,C) with ¢ = identity,

(v) SL(2,C) with ¢ = covering map.

Proof. Clearly, dim K > 0, since otherwise there would be infinitely many K-
orbits. Therefore, if the Lie algebra ¢ of K is one-dimensional, the elements
of ¢ are either all nilpotent, or they are all semisimple. This implies that € is
conjugate either to the Lie algebra of N or the Lie algebra of T'. Since N is
simply connected, either (i) or (ii) holds.

If dimt = 2, £ must be solvable, hence a Borel subalgebra. This implies
(iii). Finally, if dim® = 3, ¢ must be surjective, hence (iv) and (v) follows
from the fact that SL(2,C) is simply connected and its center is Zs. O

Let (g, K) and (g, K’) be two Harish-Chandra pairs and ¢ : K/ — K
a morphism of algebraic groups with the property that ¢ ot = ¢’. Then we
have a natural functor from the category M op(Dy, K) into Mop(Da, K').
If the groups K and K’ are connected, this functor is fully faithful. To see
this, one can argue as follows. The corresponding statement for the categories
Miqg(Uy, K) and M(Uy, K') is clear. Therefore, by the equivalence of cate-
gories, it holds also for M op(Dy, K) and M on(Dy, K') if A € b* is antidom-
inant and regular. By twisting, this statement holds for arbitrary A € b*.
Hence we can view M ,,(Dy, K') as a full subcategory of Mo, (Dy, K). In
particular, in the case of a connected group K, the general situation can be
reduced to (i) and (ii).
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We need to determine the structure of standard Harish-Chandra sheaves
in these cases. We start with (i).

First we want to construct a suitable trivializations of D, on the open
cover of P! consisting of P! — {0} and P* — {oc}. We denote by a € h* the
positive root of g and put p = %a and t = a”()\). Denote by N the unipotent
radical of the Borel subgroup of PSL(2,C) which stabilizes oo = [0, 1] in P*.
Then the subgroups N and N correspond to the subgroups

(OIS
o 3)loec]

of SL(2,C). Both are normalized by the image in PSL(2, C) of the torus

{ 2)bee)

Let {E, F, H} denote the standard basis of s[(2,C):

() ey ()

They satisfy the commutation relations

and

[H,E|=2E [H,F]=-2F [E,F]=H.

Also, E spans the Lie algebra of N, F spans the Lie algebra of N and H
spans the Lie algebra of T'. If we specialize at 0, H corresponds to the dual
root «, but if we specialize at oo, H corresponds to the negative of a.

First we discuss P! — {oo}. We define on it the usual coordinate z by
2([1,71]) = x1. In this way one identifies P! — {oco} with the complex plane
C, which is an N-orbit. The matrix

)

moves 0 into z, and this map is an isomorphism of N onto C. Also, if O
denotes differentiation with respect to z considered as a vector field on C,
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then F' corresponds to d under the above isomorphism. Now H and E are
represented by first order differential operators on C, i.e.,

H=a0+b and E=c0+d
where a, b, ¢, d are polynomials. Clearly,
[H,F] = [ad +b,0] = —d'd =V

which implies a = 2z + ag and b = by where ag and by are constants. On the
other hand, in the geometric fiber of Dy at 0, H — (¢t + 1) maps into 0, which
implies ag = 0 and by = ¢ + 1. It remains to determine E. We have

|E,F] =[c0+d,0] = —dd—d,

which implies ¢ = —2% + ¢ and d = —(t + 1)z + dp; and

[H,E] = [220 + (t + 1), =220 + ¢ — (t + 1)z + dy]
= —2[20, 2%0] + 2c0[20,0] — 2(t + 1)z
= 2220 — 200 — 2(t + 1)z = 2(—220 — o0 — (t + 1)2),

which implies ¢g = 0 and dg = 0. Therefore, in our coordinate system the
basis of g is given by

E=-220—(t+1)2  F=0, H=220+(t+1).

o= (0 ):

Then w € SL(2,C), w™! = —w and w[zg, z1] = [x1, 0] for any [z, z1] € PL.
In particular, the automorphism g of P! induced by w maps P! — {oo} onto
P! —{0}. Since D), is homogeneous, ;*(Dy) = Dy and p*(€) = Ad(w)¢ for any
¢ € g. In particular, p*(E) = F, p*(F) = E and p*(H) = —H. The natural
coordinate is ([wo, 1]) = ¢ which identifies P* — {0} with the complex plane
C. Since ¢(u([xo,21])) = ¢([z1,x0]) = 21 = 2([x0, 21]), it follows that in this
coordinate system we have

Consider now P! — {0}. Let

E=0, F=-0—-@t+1)¢,  H=-20-(t+1).
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On C* these two coordinate systems are related by ( = % This implies
O = —2°0,, i.e., on C* the second trivialization gives
14+t
E=-2%0, F=0- i , H=220—(t+1).
z

Therefore, the first and the second trivialization on C* are related by the
automorphism of D¢« induced by

9o 1T g a4,
ya

The N-orbits are 0 = [1,0] and its complement X* = P! — {0}. Since the
group N is unipotent, the representation which induces the connection at 0
is trivial. This implies that the standard Harish-Chandra sheaf Z({0}, \) is
isomorphic to the D-module of truncated Laurent series at 0. Its generator
27! is annihilated by E, and H acts on it by multiplication by ¢ — 1. Also, the
module is spanned by F"z~! = (—1)"nlz~ "+ This implies that the global
sections of Z({0}, A) are isomorphic to the Verma module M ((t —1)p+p) =
M(tp) = M(N).

To see what happens with the standard Harish-Chandra sheaf on the open
N-orbit we first remark that Z(X*, \)| X* = Ox-+ in our second trivialization.
Since the irreducibility of Dy-modules is a local property, to analyze the
reducibility of Z(X*, \) it is enough to consider the restriction to P! — {oo}
(since the restriction to P! — {0} is obviously irreducible). Using the relation
between our trivializations, we see that we can view Z(X* \)|P! — {oo} as
the D¢-module which is the direct image of the module on C* generated by
21t This module is irreducible if and only if ¢ ¢ Z. If t € Z, A € P(%)
and Z(X*, \) contains the invertible homogeneous Ox-module O(X + p) as
its unique irreducible Dy-submodule; i.e., we have the exact sequence

0— O\N+p) — IZ(X",\) — Z({0},\) — 0.

To calculate I'(X, Z(X*, \)) we remark first that (with respect to the trivial-
ization on X*) constant functions on X* are annihilated by E, and H acts on
them by multiplication with — (¢ +1). Moreover, F(" = —(n+t+1)¢"!, for
n € Z4, which implies I'(X, Z(X*, \)) is generated by 1 if ¢ is not a negative
integer. Therefore, if a”(\) is not a negative integer, I'(X,Z(X™*, \)) is the
Verma module M(—(t + 1)p + p) = M(—tp) = M(=\).

If t = —k, k a strictly positive integer, by the equivalence of categories,
I'(X,Z(X*, X)) is reducible, and it contains, as the unique g-submodule, the
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finite-dimensional irreducible g-module with lowest weight A + p. The quo-
tient of I'(X, Z(X™, X)) by this submodule is isomorphic to the Verma module
M(N).

Lemma 4.2. Let X\ € h*. Then:

(i) Z({0}, \) is an irreducible Dy-module;
(ii) T(X,Z({0},\)) = M(X\) and H (X, Z({0},\)) =0 fori > 0.
(iii) If a”(N) is not an integer, Z(X™*, \) is an irreducible Dy-module. If ()
is an integer, we have the exact sequence

0— ON+p) — IZ(X",\) — Z({0},\) — 0
of Dx-modules.
(iv) If o’ () is not a strictly negative integer, we have T'(X,Z(X* \)) =
M(=M).

(v) If a”(\) is a strictly negative integer, we have an exact sequence of
g-modules

0 — Fryp — DX, Z(X™,N) — M(A) — 0

where Fi, is the finite-dimensional g-module with lowest weight X+ p.
(vi) H(X,Z(X*,\)) =0 fori>0.

This enables us to calculate the action of the intertwining functor I = I,_.
Lemma 4.3. Let A € bh*.
(i) If a”(X) is not an integer,
I(Z({0},A)) = Z(X™, =A) and I(Z(X", N)) = Z({0}, —A).

(ii) If o’ () is an integer,
IOAN+p) =0 and L' I(OA + p)) = O(=\ + p),
I(Z({0},\)) = Z(X*, =X) and L' I(Z({0}, \)) = 0;

and

I(Z(X*\) = Z(X*, =) and L™ I(Z(X*,\)) = O(=\ +p).
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Proof. (i) If a”(\) is not an integer, A and —\ are antidominant, hence the
assertion follows from 4.2 and the equivalence of categories.

(ii) To prove the first statement, by 2.4 we can assume that A is antidom-
inant and regular. Since in this situation

L(X, 0\ +p)) = Fa, = H'(X.0(=A + p))

by the Borel-Weil-Bott theorem, the assertion follows from the equivalence of
derived categories and 2.10.

The second statement follows from 4.2, 2.10 and the equivalence of derived
categories. Finally, to get the third statement we use the short exact sequence
of 4.2.(iii). It implies the long exact sequence

0 — L' (O +p)) — LHI(Z(X*,\) — L I(Z({0},)\)
— IO\ + p)) — [(Z(X*,\)) — [(Z({0},))) — 0.

If we apply the first statement, the assertion follows. O

Before turning to the second basic case (ii), we digress to consider a
possibly non-connected group K (compare [12], Appendix B). First, let (g, K)
be a Harish-Chandra pair such that the unipotent radical of K is nontrivial.
In this case, by 4.1, the identity component of K is up to conjugacy either
equal to N or to a covering of B. Therefore, K has exactly two orbits in X.
By conjugating, we can assume that X* = P! — {0} is the open orbit.

Lemma 4.4. Let 7 be an irreducible K-homogeneous connection on X* com-
patible with X\ + p € b*. Then Z(X*,T) is an irreducible (Dy, K)-module if
and only if a”(\) ¢ Z.

Proof. If we view Z(X*, 7) as a Dy-module, it is a direct sum of finitely many
copies of Z(X*/\). If a”(\) ¢ Z, Z(X*, \) is irreducible by 4.2.(iii), hence
Z(X*, 1) has no quotients supported in 0. Therefore, £(X*, 7) must be equal
to Z(X*,7), i.e., Z(X*, 1) is irreducible.

Assume now that a”(\) € Z. Then Z(X*, \) contains O(\ + p) as a Dy-
submodule. Hence, the module Z(X*, 7) contains the largest Dy-submodule V
which is a connection. It is equal to the direct sum of the submodules O(A+p)
for various copies of Z(X*, A). The quotient of Z(X™*, 7) by V is nontrivial and
supported in 0. Clearly, the K-action maps this connection into itself, i.e., it is
a (Dy, K)-submodule. Therefore, V = L(X*, 7) and Z(X*, 7) is reducible. [J
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Now suppose the connected component Ky of K is a cover of PSL(2,C).
In this case, K acts transitively on X. If K = Kj, the standard modules are
O(A+p), A € P(Y), and the action of the intertwining functor I is given by
4.3.(ii). In general, we have the following result.

Lemma 4.5. Let 7 be a K-homogeneous connection on X compatible with
A+ peb* Thenp=—a’(\) € Z and

LI(D(7)) = D(7(pe))[1].

Proof. Since 7 must be a direct sum of Ky-homogeneous invertible Ox-
modules we conclude that p € Z and 7, as a Kyp-homogeneous connection,
is a direct sum of copies of O(A + p).

Let C' = ker . Then C' is a normal subgroup of K. On the other hand,
since Ky is connected, it centralizes C'. Therefore, the map C x Ko — K
given by (¢, k) — ck is a surjective homomorphism. Its kernel is Cy = CN K
imbedded by the map ¢ — (c,c™!) into C' x Ky. The subgroup Cj is the
kernel of the restriction of ¢ to the identity component Ky of K. This map
is a covering map and K is either SL(2,C) or PSL(2,C). Therefore, Cy is
either trivial or Zs. By construction, Cj is a normal subgroup of K, hence it
must be a central subgroup. Hence, by using the map C' x Ky — K we can
always reduce the situation to the case of K = C' x Kj. In this situation the
result follows immediately as in 4.3.(ii). O

Now the case (ii). Then K is an n-fold covering of the torus 7" in PSL(2, C)
and ¢ is the covering map. We realize K as C* and take ¢(¢)([zo,x1]) =
[0, ("z1]. Let (O; be a basis vector of the Lie algebra ¢ of K. Then the
differential of ¢ maps (¢ into nH. The K-orbits in this case are {0}, {oo}
and C*, the stabilizers of {0} and {oo} are equal to K, and the stabilizer of any
point in C* is the group M of n'" roots of 1. The irreducible representations
of K are wy, : ( — (¥ for k € Z.

The only “new” standard Harish-Chandra sheaves arise on the open orbit
C*. Let ng be the trivial representation of M, n; the identity representation of
M, and np = (n1)*, 2 < k < n—1, the remaining irreducible representations of
the cyclic group M. To analyze these Dy-modules it is convenient to introduce
a trivialization of Dy on C* = P! — {0, 00} such that H corresponds to the
differential operator 220 on C*. We obtain this trivialization by restricting
the original z-trivialization to C* and twisting it by the automorphism

3r—>8——1+t:z%8z_%.
2z
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This gives a trivialization of Dy|C* which satisfies

1+t 14+t
+z, an—%, H = 220.

E=—-2%0—

Denote by 7 the K-equivariant connection on C* corresponding to the rep-
resentation 7 of M, and by Z(C*, ng, ) the corresponding standard Harish-
Chandra sheaf in M, (Dy, K). The global sections of 7, on C* form the
linear space spanned by functions z“%, p € Z. Therefore, the function zp+%,
p € Z, is an eigenvector of H for eigenvalue 2(p + %) and K acts on it
via representation wyytr. To analyze the irreducibility of the standard Dj-
module Z(C*, ng, \) we have to study its behavior at 0 and oo. By the pre-
ceding discussion, if we use the z-trivialization of Dy on C*, Z(C* ng, \)
looks like the D¢-module which is the direct image of the Des-module gen-
erated by zn =3 . This module is reducible if and only if it contains con-
stant functions, i.e., if and only if % - % is an integer. On the other hand,
wW(Z(C* e, N)) = Z(C*, g, A), hence Z(C*,ny, A)|PL — {0} is reducible if
and only if ”T_k — % is an integer, i.e., if and only if % + 1t is an integer.
Therefore, Z(C*, ng, A) is irreducible if and only if neither % - % nor % + %
is an integer.
We can summarize this as follows.

Lemma 4.6. Let K be the n-fold covering of T, k € {0,1,...,n — 1} and
A € b*. Then the following conditions are equivalent:

(i) a’(\) ¢ {Z, -2} 1274 1;

n’ n

(ii) the standard module Z(C*,ng, A) is irreducible.

In the following, we shall refer to

2k 2k
(A — 27+ 1
ORI S
as the parity condition.
If a standard module Z(C*, ng, A) is reducible, it has irreducible quotients
supported in {0, 00}. All such irreducible modules are obtained in this way:

Corollary 4.7. FEvery standard module supported in a closed K -orbit is iso-
morphic to a quotient of a unique standard module attached the open orbit
C*.

Proof. For simplicity, assume that a standard module is supported in {0}.
An irreducible K-homogeneous connection on {0} compatible with A + p is
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just an irreducible representation of K with differential equal to A+ p (under
the specialization at 0). If wy : ¢ — (¥ is this irreducible representation of
K, the compatibility implies that k = %n(t + 1). Hence, for each A there is
at most one standard module supported in {0}. Since 7 is the restriction
wg to M, from the discussion preceding 4.6 we see that the standard module
Z(C*,mg, A) is reducible and has an irreducible quotient supported at {0}.
This irreducible module must be isomorphic to our standard module. O

The global sections of Z(C*,ng, A) are the Up-module spanned by e, =
zp+%, p € Z, and the action of g is given by

ko1
Eep = — <p+n+2(1+t)) Ep+1;

E o1
Fep = (P+n—2(1+t)> €p—1;
k
Hep:2(p+n) €p-

This implies that this Uy-module is irreducible if the parity condition holds.
Clearly, this condition is symmetric under the change t — —t. If it is
satisfied, we can define rational functions «,,, p € Z, such that

p+E+1(1+1)
p+E4+11-1)

Qpt1 = @p

and change the basis by f, = a,e,, p € Z. This leads to

a E o1
Efy = apFep = _apil <p + n + 5(1 + t)) for1

=~ (p+ £+ 30-0) fons

= (p-l-i—;(l‘*‘t)) fo1= (p—i-:z— ;(1_t)) Tp-1:

Ff,=ayFe,=
p—1

Hf,=2 <p+:) Jo-

It follows that T'(X,Z(C*,nk, \)) and T'(X,Z(C*, ng, —A)) are isomorphic as
Up-modules. Also, since C* is an affine variety,

HZ(X7I(C*’ Ui /\)) = Hl((c*ka) =
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for i > 0, and the same statement is true for Z(C*, ng, —\). Therefore,
RT(D(Z(C",mi, A))) = RT(D(Z(C*, me, —A)))-

For regular antidominant A satisfying the parity condition this implies, via
the equivalence of derived categories,

LI(D(Z(C", mk, ) = DZ(CT, mg, = X))

Therefore, by translation, this holds for arbitrary A satisfying the parity con-
dition.

Lemma 4.8. Let K be the n-fold covering of T, k € {0,1,...,n — 1} and
A € b*. Assume also that \ and k satisfy the parity condition. Then

LI(D(Z(C*, 1k, A))) = D(Z(C, 1, = X))

Now we want to extend the last three results to the case of non-connected
K. Let (g, K) be a Harish-Chandra pair such that the identity component
Ky of K is the n-fold covering of the torus 7. Then the image ¢(K) of K in
PSL(2,C) is a subgroup of the normalizer N(7T') of the torus 7'. Since 7" is in
the image and 7" has index two in N(T'), we have two possibilities:

(a) p(K)=T;
(b) p(K) = N(T).

Let K1 = ¢~ Y(T). Then, in the case (a), K; = K; and in the case (b), K}
has index two in K. Since K7 acts trivially on the Lie algebra of K, K is a
central subgroup of K7. Moreover, K; is the centralizer of Ky, since in the
case (b) K does not centralize K.

By dimension reasons, the Ky-orbit C* is also a K-orbit. Let S be the
stabilizer in K of 1 € C*, S; = SN Ky and S; = SN Ky. Since S; also
stabilizes 0 and oo, it acts trivially on X. The orbit C* is connected, hence
the map Ko x S — K given by (k,s) — ks, is surjective. Therefore, in
case (b), Sy is a proper subgroup of S. Any representative of the nontrivial
element in S/S; acts on C* as the inversion z — 27!, hence S stabilizes
only 1 and —1 in C*.

Lemma 4.9. The restriction of any irreducible algebraic representation of S
to Sy is a direct sum of copies of ni or a direct sum of copies of Nk B Np_x for
some 0 < k<n-—1.
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Proof. In the case (a) the assertion is obvious since Sy is a central subgroup
of S.

In the case (b) S; is a subgroup of index two in S, hence the restriction of
an irreducible representation of S to 57 is either irreducible or a direct sum
of two irreducible representations conjugated by the action of S/S;. In the
first case the restriction to Sy is a direct sum of copies of 1, for some k € Z.
In the second case, the representation restricted to Sy is a direct sum of two
isotypic components of the same dimension corresponding to two irreducible
representations conjugated by the action of S/S. Since the nontrivial element
of S/8; acts as k — k~! on Sy, the orbit of n; is equal to {ny,n,—x} and
the isotypic components correspond to these representations. O

Since the parity condition is symmetric with respect to k —— n—£k, we see
that we can say that the pair (w, A), where w is a finite-dimensional algebraic
representation of S and A\ € h*, satisfies the parity condition if w|Sy contains
only representations 7, 0 < k < n — 1, such that the pairs (k, A) satisfy the
parity condition. If w is irreducible, by 4.9 it is enough that one irreducible
component 7 of w|Sy is such that the pair (k, A) satisfies the parity condition.

The next result generalizes 4.6 to this setting.

Proposition 4.10. Let w be an irreducible representation of S, T the corre-
sponding connection on C* and A € h*. The following conditions are equiva-
lent:

(i) the pair (w, \) satisfies the parity condition;
(ii) the standard (Dy, K)-module Z(C*, 1, \) is irreducible.

Proof. The Dy-module Z(C*, 7, \) is the direct sum of Z(C*, g, A), where n
goes over all irreducible components of w|Sy. Let £(C*,7,\) be the unique
irreducible (Dy, K')-submodule of Z(C*, 7, A). Since £(C*, 7, \)|C* is 7 and as
a Kp-homogeneous connection 7 corresponds to w|Sy, we see that the Dy-
module £(C*, 7, A) must contain the direct sum V of all L(C*,n, A), where
N ranges over all irreducible components of w|Sp. On the other hand, the
action of K maps the irreducible Dy-module £(C*, g, A) into a submodule
of V. Therefore, V is a (D,, K)-submodule of Z(C*, 7, \), and must contain
L(C*,7,A). It follows that V = L(C* ,7,\). Therefore, Z(C*, 7, \) is irre-
ducible (D,, K)-module if and only if all Z(C*, ng, \), where 7 ranges over
all irreducible components of w|Sy, are irreducible Dy-modules. By 4.6 and
4.9, this implies our assertion. O

Let C be a closed K-orbit in X, i.e., either {0}, or {oo} or the union of
these two points. The next result generalizes 4.7.
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Lemma 4.11. Every standard module attached to C' is isomorphic to a quo-
tient of a standard module on the open orbit C*.

Proof. By twisting we can assume that A is regular and dominant. In the
case (a), K is a quotient of the direct product Ky x S. Therefore, we can
assume that K = Ky x D for some finite group D and that ¢|{1} x D = 1.
The orbit C' consists of just one point and we can assume that C' = {0}.
An irreducible K-homogeneous connection on C' compatible with A + p is
just an irreducible representation of K with differential equal to a direct
sum of copies of A\ + p (under the specialization at 0). Such representation
is an exterior tensor product w X ¢ of irreducible representations w of Kj
and 6 of D. If w = wg, the compatibility implies that & = In(t + 1). If
we denote by Z(C, wy) the standard (g, Kp)-module on C' determined by wy,
we have I'(X,Z(C,w)) = T'(X,Z(C,wx)) X 0 where g acts only on the first
factor in the tensor product. On the other hand, n; X ¢ is then an irreducible
representation of the stabilizer of 1 in K and determines an irreducible K-
homogeneous connection 7 on C*. Its global sections are

D(X,Z(C*, 7, \) = D(X, Z(C*, i, \)) K6,

and the assertion follows from 4.7 and the equivalence of categories.
In the case (b), we have C' = {0,00}. As we remarked in Appendix B of
[12], in this situation

(X, Z(C,w)) = Indi, (D(X, Z({0}, w|{0})))

for any irreducible K-homogeneous connection w on C'. On the other hand,
by the first part of the proof, the module I'(X,Z({0},w|{0})) is a quotient
of T'(X,Z(C*,7,\)) for some irreducible Kj-homogeneous connection 7 on
C*. This connection corresponds to some irreducible representation ~ of the
stabilizer S; of 1in Kj. Let 4 = Indf, (7). Then 4 is either irreducible or the
sum of two irreducible representations v, and y_. Denote by 7, resp. 74 and
7_, the corresponding irreducible K-homogeneous connections on C*. One
can check that

Indf (D(X,Z(C*, 7, ))) = T(X,Z(C*, 7))
in the first case, and

Indf (T(X,Z(C*,7,\)) = T(X,Z(C*, 74, \)) @ T'(X, Z(C*, 7—, \))
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in the second case. Therefore, the module I'(X, Z(C,w)) is a quotient of ei-
ther I'(X, Z(C*, 7, \)) or I'(X, Z(C*, 74, ) )®I'(X, Z(C*, 7_, A)). The assertion
again follows from the equivalence of categories. O

Now we generalize 4.8. A K-homogeneous connection 7 on C* is deter-
mined by the representation w of the stabilizer S in the geometric fiber 77 (7).
On the other hand, S also stabilizes the point —1. Therefore, there exists a
unique K-homogeneous connection 7 on C* determined by w considered as
the representation of S in the geometric fiber 7_; (7). Since K| is transitive on
C* and K is the centralizer of Ky, it follows that 7 = 7 as Kj-homogeneous
connections.

Proposition 4.12. Let w is an irreducible representation of S and A € b*.
Assume that the pair (w, \) satisfies the parity condition. Then

LI(D(Z(C*,1,)))) = D(Z(C*,7,—)\)).

Proof. If (w, \) satisfies the parity condition, all 7, appearing in w|Sy satisfy
this condition too. Therefore, I(Z(C*,7,\)) is as a D_j-module equal to a
direct sum of finitely many Z(C*, n, —\) for 7 contained in w|Sp, and the
higher derived intertwining functors vanish on Z(C*, 7, A). Moreover,

I(Z(C*,1,\) = Z(C*, 7', —=N),

where 7/ is the K-equivariant connection which is the restriction of D_,-
module [(Z(C*,7,\)) to C*. By translation we can assume that A is an-
tidominant and regular. Then by 2.10 we have

[(C*7)=T(X,Z(C" 7, \) =T(X,Z(C", 7', —\)) = T[(C*, 1),

as K-modules.

Assume first that we are in the case (a). In this situation K is a central
extension of Ky. Therefore the map Ky x S — K given by (k,s) — ks is
a surjective homomorphism. This implies that any irreducible representation
of K can be viewed as an irreducible representation of Ky x S. Since Kj
is commutative, the restriction of this representation to S is irreducible. By
Frobenius reciprocity, the preceding formula implies that the representations
of S determining 7 and 7" are equivalent. Hence, in this case 7 = 7.

Assume now that we are in the case (b). In this case K7 is a normal
subgroup of index two in K. Thus we can define a character 0 of K which
is 1 on K7 and —1 outside K;. If 7 is an irreducible algebraic representation
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of K, m ® ¢ is an irreducible algebraic representation of K. There are two
possibilities for 7.

(i) m = w|K; is irreducible. In this case, we can induce 7|K; to K. The
induced representation Ind(m;) contains exactly one copy of m by Frobenius
reciprocity. Since dimInd(m) = 2 dimm, Ind(m) is reducible and it is a
sum of two irreducible representations of K. Let v be the other irreducible
component of Ind(m). Then v|K; = m; by Frobenius reciprocity. Therefore,
v|Ky = 7| K. Since the character of Ind(m;) vanishes outside Ky, trv(k) =
—tr(k) outside K. Therefore, v = 7 ® 6. On the other hand, v % ,
since Ind(7) contains only one copy of 7. Therefore, in this case there exists
exactly two irreducible representations extending 7 to K, the representation
7 and T ® 0. Since 7|K is an isotypic Ky-module, and K /K7 conjugates all
nontrivial characters of K| into their inverses, we see that the restriction of
7w to Ky is trivial.

(ii) m = 7| K7 is reducible. In this case, m; consists of two irreducible rep-
resentations v4 and v_ of Kj conjugated by the action of K/K;. By Frobenius
reciprocity, 7 is contained in Ind(v4 ) and Ind(v_), but v 2 v_. Since dim 7 =
dim Ind(v4) = dimInd(v_), we conclude that 7 = Ind(v;) = Ind(v_). This
implies that the character of 7 vanishes outside Ky and 7 = 7 ® 4.

Assume that I'(C*, 7) contains at least one irreducible component 7 of the
type (i). In this case, w| K is irreducible, hence as in (a) we conclude that the
restriction of 7 to Sy is irreducible. This implies that the restriction of 7 to
S is irreducible. By Frobenius reciprocity, the representation w defining 7 is
equivalent to 7|S. Since the same argument applies to I'(C*, 7’), we conclude
7 = 7/, On the other hand, again by Frobenius reciprocity, we see that the
representation of S in 7_;(7) is also equivalent to 7|S, and 7 = 7 = 7/. Also,
since 7| K is trivial, w|Sp is trivial in this case.

It remains to treat the case when all irreducible representations of K
in I'(C*,7) are of type (ii). Then 7|S = Ind(v4+|S1) = Ind(v_|Sy). If this
is an irreducible representation of S for some 7 in I'(C*, 7), the preceding
argument applies again and 7 & 7. It remains to analyze the situation when
7|S is reducible for all 7 in I'(C*, 7). This implies that 7|S contains two
irreducible subrepresentations oy and o_. By Frobenius reciprocity, o |S; &
o_|S1 = v4|S) = v_|Sy, and o4 and o_ are not equivalent. As before, we
conclude that o_ = o, ® ¢ where ¢« = §|S. Therefore, the representation w
determining 7 is either o4 or o4 ® ¢. Since K/K; = S/S; conjugates v |S;
and v_|Sy, if v4|Sy is a direct sum of copies of 7y, v_|Sy is a direct sum of
copies of n,_x. Therefore, we also have 1 = n,_r. This is possible only if
v4+|Sp is either trivial or its kernel is of order two in Sp.
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Since Ky x S; — K is a surjective homomorphism, if v |Sy = 1, there
exists an irreducible representation v of Ky such that y|Ky = 1 and 7|S; =
v4|Sy. Since K/K; conjugates v4|S; and v_|S; and they are equivalent, we
conclude that the conjugate of v is equivalent to . By Frobenius reciprocity,
there exists an irreducible representation of K contained in I'(X,7) which,
restricted to Ky, contains «v. By the preceding discussion, this representation
must be of the type (i) and we have a contradiction. Therefore, ker(v4|Sp)
is of index two in Sy. Since this is a normal subgroup of K, we can divide
So by it and assume that Sy = Zs. In this case, K is a two-fold cover of
T. Also, there exists an element k, of K which maps into the image of w
in PSL(2,C). It acts as z — 2z~! on C*, and therefore lies in S. Since T
acts with no fixed points on C*, it follows that ¢(Ky) N By is trivial. This
implies that ¢(k,) is the only nontrivial element of ¢(K) N By. If we consider
Z(C*,7,\) as (Dy, Kj)-module, from the preceding argument we conclude
that the restrictions of each isotypic Kj-submodule of I'(X, Z(C*, 7, \)) to Sy
are mutually equivalent and irreducible. Therefore, we can assume that they
are all isomorphic to some irreducible S;-module V. Hence we see that the
global sections are spanned by e, ® v, p € Z and v € V. Since ¢(S;) = 1, the
actions of E, F' and H are

t
E(e, @v) = — (p—|—1—|— 2) ep+1 U,
t
F(e, ®v) = ( — 2) ep-1 @,
H(ey®v) = (2p+ 1)e, ®,

for all p € Z. Let R be the linear transformation which describes the action
of kg on I'(X,Z(C*, 7, \)). Then,

R(e, ®@v) =e_p_1 @ Qpu
for some linear transformation @), on V. By a direct calculation,
R_lER<€p ®v) =F(ep ® Q;;llva)

R_lFR<€p ®v) = E(e, ® Q;J%IQPU)
R 'HR(e, ®v) = —H (e, ®v)
for any p € Z. Since Ad(w)(E) = F, Ad(w)F = E and Ad(w)(H) = —H, we

see that @), = @ for all p € Z. This implies that kg acts as () on the geometric
fiber T1(7) 2V, and as —Q on T_4(7) =2 V.
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If we change the basis {e, |p € Z} to the basis {f, | p € Z} as before, we

get

T(f, ®v) = ale_p 1 ® Qu) = —2

(f=p—1 ® Qu).

a_p—1
On the other hand, for p € N, we have

Qp Y 1 QAp (P+3) (—p+3) opa
Op1 Op1 ap apa (P %) (— —% Q_p
e R _ Qo0 _ -1
a_p a_q

This implies
T(fp®v) == (f-p-1®Qu)

for any p € Z. Hence the actions of kg on the fiber of 7 and 7" at 1 differ in
sign. This implies 7/ = 7 in this case. O

Corollary 4.13. Assume that the pair (w,\) satisfies the parity condition
and that p = —a”(\) € Z. Then

LI(D(Z(C*,7,\))) = DZ(C*, 7, \)(pa)).

Proof. In the case (a), ¢(K) = T. Since T acts with no fixed points on C*, it
follows that ¢(K) N By is trivial. Hence, the representation of the stabilizer
S = ¢ (¢(K) N By) corresponding to the K-homogeneous Og+-connection
i*(O(pcv)) is trivial. This proves that 7 = 7 =2 7 ®p... *(O(pe)) in this case.

In the case (b), the element &, of K maps into the image of w in PSL(2, C).
It acts as z — 2z~ on C* and therefore lies in S. As in the preceding
argument, this implies that ¢(k,) is the only nontrivial element of ¢(K)N Bj.
Its square maps into the identity element of PSL(2, C), hence it acts as —1 in
the one-dimensional representation of S attached to the K-homogeneous Oc=-
connection ¢*(O(«)). If p is even, the representation of the stabilizer attached
to *(O(par)) is trivial and i*(O(par)) = Oc~. Since the parity condition holds,
2k # n in this situation and ker w|Sp is not of index two in Sy. Therefore, as
we have seen in the preceding argument, 7 = 7 and the assertion holds in this
case. If p is odd, by the parity condition k # 0. Hence, either w is induced
from an irreducible representation of S or kerw|Sy is of index two in Sp. In
the first case, the representations of the stabilizer S at 1 and —1 attached to
7 are equivalent and w = w ® ¢. Hence, 7 = 7 ®p.. 1*(O(par)) in this case.
In the second case, the representation of S at 1 corresponding to 7 is w ® ¢,
hence 7 = 7 ®o,. i*(O(pe)) again. O
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Finally, we want to make an observation about the action of the inter-
twining functor I on irreducible Harish-Chandra sheaves. In particular, we
want to establish an analogue of 2.18 in this case. First, by 2.8, L™ # 0
implies that a”(\) € Z.

Lemma 4.14. Let p = —a’(\) € Z. Let L(Q,T) be an irreducible Harish-
Chandra sheaf. Then the following conditions are equivalent:

(i) 1(L(Q,7)) =0;
(ii) either

(a) K contains a conjugate of N and Q is the open orbit in X; or

(b) the identity component of K covers a conjugate of T', Q) is the open
orbit in X and the parity condition fails for .

Proof. Assume that K contains a conjugate of N and () is not the open orbit.
Then @ is a point and [(L£(Q, 7)) # 0 by 4.3.(ii). If the identity component
of K covers T and () is not the open orbit, ) is either a point or a pair of
points, hence the same argument applies. If () is the open orbit and the parity
condition holds for 7, £(Q,7) = Z(Q, T) by 4.10, and I(L(Q, 7)) # 0 by 4.12.
Therefore, (i) implies (ii).

Assume that (ii) holds. By 2.4, we can assume that A = —p. First, assume
that K contains N. Then, by replacing K by its identity component we see
that Z(Q, 7) is isomorphic to a finite direct sum of Z(X*, —p). By 4.2.(iii), each
of these modules contains a copy of Ox as the unique irreducible submodule,
we see that Z((Q,7) contains a connection C which is the direct sum of the
same number of copies of Ox. The connection C is clearly K-homogeneous,
and the quotient of Z(Q, 7) by C is supported in the complement of (). Hence,
it is equal to £(Q, 7). By 4.3.(ii), we see that I(L£(Q, 7)) = 0.

Assume now that (ii) holds and identity component of K covers T'. Again,
by replacing K by its identity component we can assume that Z(Q, 7) is, as
a Dy-module, a finite direct sum of Z(C* ng, \) (for possibly different k).
Moreover, the failure of the parity condition implies that k& must be equal to
0. It follows that Z(Q, ) is a direct sum of finitely many copies of Z(C*, 19, —p)
as a Dx-module. By 4.6, each of these modules contains a copy of Ox as the
unique irreducible submodule, we see that Z(Q,7) contains a connection C
which is the direct sum of the same number of copies of Ox. The connection C
is clearly K-homogeneous, and the quotient of Z(Q, 7) by C is supported in the
complement of Q. Hence, it is equal to £(Q, 7). The assertion I(£(Q, 7)) =0
again follows by applying 4.3.(ii). O
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5. Some results on root systems with involution

In this section we prove some technical lemmas about root systems with
involution. Let V' be a vector space over Q and ¥ a (restricted) root system in
V. We assume that V' is equipped with a natural inner product (. ,.) invariant
under the action of Aut(X). Let o be an involution on ¥, i.e., an automorphism
of the root system X such that 02 = 1. A root o € X is called imaginary if
oca = q, real if cae = —a and complex otherwise. If g is the complexified Lie
algebra of a real semisimple Lie group gg, o a Cartan involution on g and ¢
the complexification of a o-stable Cartan subalgebra ¢ of g, the vector space
V over QQ spanned by the roots of (g, ¢) in ¢* is a root system with involution
induced by the Cartan involution o, and the notions of imaginary, real and
complex roots agree with the usual ones.

Denote by ¥ the set of imaginary roots, Yg the set of real roots and ¢
the set of complex roots in X. Let ¥ be a set of positive roots in ¥. We say
that X7 is of Langlands type if for any positive complex root a the root oo is
negative; and that X7 is of Zuckerman type if for any positive complex root
« the root o« is positive.

If (X,0) is a root system with involution, (X, —o) is also a root system
with involution. The sets of complex roots are the same in both cases; and
real, respectively imaginary, roots for (3, o) are imaginary, respectively real,
roots for (3, —o). Thus, replacing the involution o with —o switches the
two types of sets of positive roots: a set of Langlands type, respectively of
Zuckerman type, for ¢ is a set of Zuckerman type, respectively of Langlands
type, for —o.

Lemma 5.1. The root system % admits sets of positive roots of Langlands
type and of Zuckerman type.

Proof. Let V. =V, & V_ be the decomposition of V into the o-eigenspaces
with eigenvalues 1 and —1. Define a lexicographical ordering on V' with respect
to a basis of V' which consists of a basis of V, followed by a basis of V_. Let
YT be the corresponding set of positive roots. Then o« is a positive root for
any positive root o which is not real. Therefore, X7 is of Zuckerman type.
The existence of sets of positive roots of Langlands type follows by replacing
o with —o. O

Now we want to refine the argument of the preceding lemma. Let >, be
an order relation on V., and >>_ be an order relation on V_, compatible with
the vector space structures on Vi and V_ respectively. Then we can define
an order relation >, _on V =V, @ V_ as (v,w) >, _ (v/,w') if and only if
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v—ov'>, 0ifv#v, and w—w' >_ 0 if v = v'. Analogously, we can define
an order relation >>_ | on V' by reversing the roles of V; and V_.

Lemma 5.2. Let ¥ be a set of positive roots in V and X € V such that
(a,\) <0 for all « € =F. Then there exists a set of positive roots S of
Langlands type such that:

(L1) (a,\) <0 for all imaginary roots in X ;
(L2) (a, A — o) <0 for all nonimaginary roots in L1

(I) N (=XF) consists of complex roots satisfying ca € X
Proof. By continuity we may assume that A is regular and A — oA is not
orthogonal to any nonimaginary roots. Then we can define an ordering on V_
by p>_ 0if (g, A — o) < 0 and an ordering >, on V, compatible with
Y tNX;. This gives the ordering >_  on V. Since A— o\ is not orthogonal to
any nonimaginary root «, they are either positive or negative. On the other
hand, the order relation on imaginary roots is given by >.. Thus any root
is either positive or negative with respect to >>_ , hence the set of all roots
a>_ 4 0is a set of positive roots. Clearly it satisfies the conditions (L1) and
(L2) of the lemma, and it is of Langlands type. In addition, if « is a positive
real root with respect to this ordering,

2(a, A) = (a, A — o)) < 0.

Hence, o € ¥*. This implies that roots in ¥* N (=X 1) are complex. More-
over, if a belongs to 2t N (=XH1), 0o € HF and

0> (ca, A — o)) = (a,0X — N),

which implies
(oa,\) = (a,0A = A) + (a,\) <0
and oo € T, O
Let X be a set of positive roots in X. Put
DET) ={a et | oa e X" and oo # a}.
Proposition 5.3. Let X be a set of positive roots in X.

(i) There exists a set of positive roots of Langlands type X such that

St (-2t c D(EY).
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(ii) Let P be a set of positive root of Langlands type such that S =
SN (=25 D(EY). Then

SNoS=0 and SUcS = D).

(iii) Let X" be another set of positive roots in ¥ such that S = LN (=XH")
satisfies

SNoS=0 and SUcS = D(ZT).
Then " is a set of positive roots of Langlands type.

Proof. Suppose A € V satisfies (o, \) < 0 for all & € ¥*. Then (i) follows
from 5.2.
(ii) Let « € SNoS. Then

—a,—oa e —-Scxtt

Since X% is of Langlands type, this would imply that « is an imaginary root
contradicting v € D(X7). Therefore, SN oS is empty.

Let a € D(X%). Then a € 5L or —a € ¥ L. In the first case, ca €
Yt and oa € 2N (=XHE) = S. In the second case, a € YT N (-XHL) =
S. Therefore, « € SUS.

(iif) Let a be a complex root in X+,

Assume first that a € —=X7. Then —a € S € D(X"). This implies that
—oa € D(Xt) ¢ ¥t and —oa ¢ S. Therefore —oa ¢ —¥1' ie., oa €
-+,

Assume now that a € D(X1). Since a € ¥’ a ¢ S. Hence o € S, i.e.,
e

Finally, assume that o € ©* and o ¢ D(XV). In this case, ca € =X 7 i.e.,
—ca e Xt Ifoa € ¥ —ca € S C D(EF) and —a € D(EY) contradicting
a € F. Therefore, oo € =31,

Consequently " is a set of positive roots of Langlands type. O

Since the Weyl group W of ¥ acts transitively on the sets of positive
roots, this result can be rephrased as follows.

Corollary 5.4. Let X7 be a set of positive roots in . There exists w € W
such that
YiNo(Xh) =0 and L Ua(SE) = D(ET).
In particular, if D(X1) # 0, it must contain a simple Toot.
For any such w € W, w™(X%) is a set of positive roots of Langlands

type.
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Any set of positive roots of Langlands type X! satisfying
S=xtn(-xtE) c D(E)

defines a section S of the o-orbits in D(XT). Such sections are not completely
arbitrary. Actually, they are all contained in a smaller subset of D(XV).

To analyze these sections in more detail we first have to study the case
of root systems of rank 2. If ¥ is a root system of rank 2 with nonempty
D(XT), the involution ¢ must be different from +1. On the other hand, if
a € D(X7), a,0a, —a, —ca are complex roots. Moreover, if « and o« are
not strongly orthogonal, 3. contains at least a pair of either imaginary or real
roots. This implies that Card D(X%) is either 2 or 4.

Assume first that Card D(X1) = 2. Therefore, by 5.3, there exists a set
of positive roots of Langlands type ¥+ in ¥ such that S = ¥+ N (-xH1)
consists of only one root in D(X"). We can assume that S = {a}. Let w be
the element of the Weyl group of ¥ with the property that w(X 1) = &+,
Then S = Y. Since (w) = Card X}, we see that o € Il and w = s,.
Therefore, S C D(X1) NII. The only ambiguity about S is in the case when
D(XT) =1I. This is possible only if both simple roots are of the same length,
i.e., we have the following cases:

(i) ¥ is of type A1 xA; and II = {«, oa};
(ii) X is of type Ag and Il = {«, oa}.

Assume that D(XT) = 4. Then ¥ must contain at least eight complex
roots, and if it contains only eight roots all pairs «,ca must be strongly
orthogonal. This implies that ¥ must be of type Go, and D(XV) consists of a
pair of short roots and a pair of long roots. The remaining four roots are two
pairs of mutually orthogonal roots: a pair of real roots and a pair of imaginary
roots. By 5.3, there exists a set of positive roots of Langlands type X% in
¥ such that S = X N (=X L) consists of two roots in D(XF). Let w be the
element of the Weyl group of ¥ with the property that w(X**) = £*. Then
S =%, and we see that S contains a simple root. We can assume that this
root is . Moreover, if /3 is the other simple root, S = {a, 5,6} and w = s45p.
If 3 is complex, § € D(XT) and o(X1) = ¥*, contradicting the existence of
a positive real root. The same is true if 8 is an imaginary root. Therefore 3
is a real root. It follows that S is the uniquely determined subset of D(XT)
which consists of the one complex simple root « and the root which is the
reflection of the other simple root § with respect to a.

This proves:
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Lemma 5.5. Let X be a root system of rank 2 and ¥ C X a set of positive
roots. Let

C ={a € DY) | ais a minimal element of {o,0a}}.
If w € W is such that
YSEno(Sh) =0 and X Ua(Sh) = D(BT),
we have ¥, C C'. Moreover, 35, = C except if D(XT) =11, i.e., except in the

following cases:

(1) ¥ is of type A1 x A1, Il = {a, 0a};
(ii) X is of type Ay and 11 = {«, oar}.

Now we can discuss the general case. For each a in D(XT) we denote by
Yo the smallest closed root subsystem containing « and oa. Clearly %, is o-
invariant, hence the restriction of ¢ to the vector subspace V,, of V spanned
by 3, defines an involution o, on the root system %,. Thus (X,,0,) is a
root system with involution of rank 2. We can define an ordering on X, by
Yr =3%,NXt. Denote by II, the corresponding set of simple roots in X,,. If
YL is a set of positive roots of Langlands type in ¥, 17 is a set of positive
roots of Langlands type in Y. Define

C(") ={a € D(XT) | ais minimal in {a, ca} with respect to ¥} }.

Now 5.5 combined with the preceding discussion implies:
Proposition 5.6. Let w € W be such that
YSENo(ShH) =0 and X Ua(Sh) = D(ST).
Then we have
Y coEt).
Moreover, {a,ca} C C(X7) if and only if

(i) a is of type AvxAr, T, = {a,00);
(ii) Yo is of type Ag and I, = {a, ca}.

The next result is a converse of 5.2.

Lemma 5.7. Let X7 be a set of positive roots of Langlands type in V and
A €V such that (L1) and (L2) hold. Then there exists a set of positive roots
¥t such that
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(AD) (o, \) <0 for all roots in X7
(I) ¥+ N (=XHE) consists of complex roots satisfying ca € L.

Proof. Again, by continuity we can assume that \ is regular and A — o\ is not
orthogonal to any nonimaginary root. Then the set of all roots a satisfying
(a, A) < 0 is a set of positive roots in 3. Also, it contains all imaginary and
real roots from . Now (I) follows as in the proof of 5.2. O

We shall also need:
Lemma 5.8. Let X be a set of positive roots and \ € V' such that

(V1) (a,\+ o)) <0 for all roots in « € X such that ca € 3T ;
(V2) (a, A\ —aX) >0 for all roots a € 3 such that —oa € X+

Then there exists a set of positive roots X1 of Langlands type such that

(DL1) (a,\) <0 for all imaginary roots in T ;
(DL2) (a, A — aX) >0 for all nonimaginary roots in X HL;
(I) all « € X N (=XHE) are complex and satisfy:
(I1) o € 7 ; and
(12) (a,\) <0.

Proof. By continuity, we may assume that A is regular, A + o\ is not orthog-
onal to imaginary roots, and A — g\ is not orthogonal to nonimaginary roots.
Then we can define an order relation > on V by u >, 0if (u,A+0X) <0
and an order relation >_ on V_ by p >_ 0 if (4, A — oX) > 0. Together
they define the order relation >_  on V. As before >_ | determines a set
of positive roots Y1 of Langlands type. It satisfies the condition (DL2).
Moreover, since

2(a, A) = (, A+ o))

for any imaginary root «, we see that (DL1) holds. Since A is regular,
NSt =80yt
Analogously, for any real root a € X%,
2(a,\) = (a0, A —0X) >0

and o € 7. Conversely, if « is a real root in ¥ it follows that (o, \A—coA) > 0
and o € XL, Therefore,

YNt =Y nutl,
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Hence, the roots in £+ N (—=X*F) are complex. Moreover, if a € XN (—XH1)
and —oa € ¥, it would follow from (V2) that (a, A — oA) > 0, and from
the definition of % that (a, A — oA) < 0 which is impossible since « is not
orthogonal to A — o \. Therefore, cav € ¥ for any a € L+ N (—=XHF). Finally

2(a,\) = (0, A+ 0X) + (a, A — o)) <0,

because of (V1) and (DL2). O

Lemma 5.9. Let X% be a set of positive roots of Langlands type and X € V
such that (DL1) and (DL2) hold. Then there exists a set of positive roots ¥ %
of Zuckerman type such that

(Z1) (o, \) > 0 for all real roots in L%,
(Z2) (a, A+ o) <0 for all nonreal roots in L2,
(I) SHZN(=SHE) consists of complex roots and (o, \) < 0 for a € 2H% N
(-5h).

Proof. To prove this statement argue as in the preceding argument, but re-
place the order >_  with >, _. O

Finally, we shall need the following simple result.
Lemma 5.10. Let X1 be a set of positive roots of Langlands type. Then:

(i) The set P =X UX"T is a parabolic set of roots in 3.
(ii) There exists v € V_ such that P = {a € ¥ | (o, v) > 0}.

Proof. (i) Let o € ¥y and § € ¥ —3; be such that a+ is a root. We have to
show that a+ 3 is positive. This is evident if « is positive. On the other hand,
if v is negative, the root 3 is either complex or real, hence o3 € —X 7. Assume
that o + 8 € =X, Since a + 3 is not imaginary, a + o3 = o(a + ) € BT,
and 08 = (o + 0f8) — a € X1, contradicting the preceding statement.

(ii) Let u € V be such that ¥t = {a € ¥ | (o, u) > 0}. Since X7 is of
Langlands type, for any positive nonimaginary root « we have (o, ou) < 0.

If we put v = u — ou, we have v € V_ and (a,v) > 0 for any positive
nonimaginary root «. Therefore, (o, v) > 0 for any o € P. On the contrary,
if « ¢ P, —aisin X1t — X/, hence (a,v) < 0. O

6. K-orbits in the flag variety

A K-orbit in X can be viewed as a K-conjugacy class of Borel subalgebras
in g. The following result is due to Matsuki [14].
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Lemma 6.1. Let b be a Borel subalgebra of g and N the unipotent radical
of the Borel subgroup B of G = Int(g) corresponding to b. Then the algebra
b contains a o-stable Cartan subalgebra by. All such Cartan subalgebras are
conjugate by K N N.

Let @ be a K-orbit in X and x € . Then, by 6.1, @ determines a K-
conjugacy class of g-stable Cartan subalgebras in g. Therefore, we have a map
from the set of K-orbits in X onto the set of K-conjugacy classes of o-stable
Cartan subalgebras in g; in particular the latter set is finite. Let ¢ be a o-
stable Cartan subalgebra in g, and let R be the root system of (g, ¢) in ¢*. Any
choice of positive roots RT in R determines a Borel subalgebra, spanned by ¢
and the root subspaces corresponding to the roots in R*, and thus determines
a K-orbit in X. Assume that two such choices of positive roots define Borel
subalgebras b and b’ lying in the same K-orbit in X. Choose k& € K such
that Adk(b’) = b. Then Adk(c) is a o-stable Cartan subalgebra which is
contained in b. By 6.1, there is u € K N N such that Ad k(¢) = Adu(c), i.e.,
k' = u~'k € K lies in the normalizer Nk/(c) of ¢ in K, and

b’ = Ad(k~1)(b) = Ad(K "u1)(b) = Ad(K ~")(b).

Therefore, the K-orbits in X which map into the K-conjugacy class of ¢ are
parametrized by the conjugacy classes of positive root systems in R with
respect to Nk (¢). To summarize:

Observation 6.2. (i) Fach K-orbit in X is attached to a unique K -conjugacy
class of o-stable Cartan subalgebras.

(ii) Let ¢ be a o-stable Cartan subalgebra. Then the K-orbits corresponding
to the K-conjugacy class of ¢ are parametrized bijectively by the Nk (c)-orbits
of sets of positive roots Rt for (g,¢).

Let @ be a K-orbit in X, z a point of @), and ¢ a o-stable Cartan subal-
gebra contained in b,. Then o induces an involution on the root system R in
¢*. Let R™ be the set of positive roots determined by b,. The specialization
map from the Cartan triple (h*, X, 3") into the triple (¢*, R, R") pulls back
o to an involution of Y. From the construction, one sees that this involution
on ¥ depends only on the orbit @), so we denote it by og. Let h = tg @ ag
be the decomposition of h into og-eigenspaces for the eigenvalue 1 and —1.
Under the specialization map this corresponds to the decomposition ¢ = tHa
of ¢ into o-eigenspaces for the eigenvalue 1 and —1. As we discussed in §5, we
can divide the roots in (3, o) into imaginary, real and complex roots. This
division depends on the orbit (), hence we have

Yg,1 = @-imaginary roots,
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YgRr = Q-real roots,
Yg,c = Q-complex roots.

Via specialization, these roots correspond to imaginary, real and complex
roots in the root system R in c¢*.
Put

D.(Q)={a € X" |oga € ¥, gga # a};
then D (Q) is og-invariant and consists of ()-complex roots. Each og-orbit

in D;(Q) consists of two roots, hence d(Q)) = Card D;(Q) is even. The
complement of the set D, (Q) in the set of all positive -complex roots is

D_(Q)={aeXt | —oga € " oqga # —a}.

In addition, for imaginary o € R, ca = « and the root subspace g, is o-
invariant. Therefore, o acts on it either as 1 or as —1. In the first case g, C &
and « is a compact imaginary root, in the second case g, ¢ € and « is a
noncompact imaginary root. We denote by Rey and Ry the sets of compact,
resp. noncompact, imaginary roots in R. Also, we denote the corresponding
sets of roots in ¥ by X¢g ¢ and Xg n7.

Lemma 6.3. (i) The Lie algebra € is the direct sum of t, the root subspaces
ga for compact imaginary roots a, and the o-eigenspaces of ga D Goa for the
etgenvalue 1 for real and complex roots c.

(ii) The Lie algebra €N b, is spanned by t, go for positive compact imag-
inary roots «, and the o-eigenspaces of go D goa for the eigenvalue 1 for
complex roots o € RT with ca € RT.

Proof. Evident. O
Lemma 6.4. Let Q) be a K-orbit in X. Then

1
dim @ = §(Card Yo,cr + Card¥gr + Card g ¢ — d(Q)).

Proof. The tangent space to ) at x can be identified with ¢/(¢Nb,). By 6.3,

dim Q = dim ¢ — dim(& N b,)

1 1 1
= Card 2@701 + §(Card EQyR + Card EQ,C) 5 Card EQyC[ — Ed(Q)

O
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By 6.4, since D (Q) consists of at most half of all Q-complex roots, the
dimension of K-orbits attached to ¢ lies between

1 1
§(Card Yg,cr +CardXgr + B Card EQ@)
and

%(Card Yoo+ Card YR+ Card EQ’(C).

The first, minimal, value is attained if () corresponds to a set of positive
roots RT of Zuckerman type. We call such orbits Zuckerman orbits attached
to ¢. The second, maximal, value is attained on the K-orbits corresponding
to sets of positive roots of Langlands type. We call those orbits Langlands
orbits attached to ¢. As we have shown in 5.1, there exist both Langlands and
Zuckerman orbits attached to c.

The following simple observation will play a critical role later. Let o € 11
and X, be the generalized flag variety of g of parabolic subalgebras of type
«. Denote by p, the natural projection of X onto X, which maps a Borel
subalgebra b C g into the parabolic subalgebra of type a containing b. Let @
be a K-orbit in X and V = p;!(pa(Q)). Then V is an union of finitely many
K-orbits. Let = € Q and y = po(z). Let P, be the parabolic subgroup of G of
type a which stabilizes y and p,, its Lie algebra. Let U be the unipotent radical
of P,. Then the quotient of P,/U by its center is isomorphic to PSL(2,C).
Denote by 7 the corresponding homomorphism of P, into PSL(2,C). The
differential of 7 defines an isomorphism of the fiber p;1(y), i.e., the set of
Borel subalgebras of g contained in p,, with the flag variety X, = P' of
s1(2,C). Also, o~ (p(K)Nker 7) is a normal subgroup of the closed subgroup
0 H(p(K)NP,) of K. Therefore, we have a natural homomorphism ¢, of the

group
Ko = (p(K)N Py) /¢~ (p(K) Nker7)

into PSL(2, C).

Lemma 6.5. (i) (sl(2,C), K,) is a Harish-Chandra pair.

(ii) The identification of X, and the fiber p;t(y) identifies K,-orbits in
X, with the intersections of K -orbits in V with p;*(y).

(iii) If v is a compact Q-imaginary root, the identity component of K, is
a covering of PSL(2,C). The orbit Q is equal to V.

(iv) If a is a moncompact Q-imaginary root or a Q-real root, the iden-
tity component of K, is a one dimensional torus. In the first case, dim Q) =
dim V' — 1, in the second dim Q = dim V. The variety V is a union of two or
three K -orbits.
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(v) If a is a Q-complex root, the unipotent radical of K, is one di-
mensional. The variety V is a union of two K-orbits, dim@Q = dimV if
oga ¢ X, and dimQ = dimV — 1 if oga € XF. In the second case,
Pa 1 Q — pa(Q) is an isomorphism.

Proof. (ii) Let Q, be a K,-orbit in X, & p;!(y). Then Q, is contained in a
K-orbit O. Let 2’ € O N X,. Then there exists &k € K such that k-2’ € Q,.
Moreover, k -y = k- po(2') = po(k - ') = y implies that k € o' (o(K) N B,),
which yields 2’ € @,. Therefore, Q, = O N X,.

(i) follows from (ii).

To prove the remaining statements, we calculate the Lie algebra of K,.
Using the notation of 6.3, we see that £ N p, is spanned by t, gg for positive
compact roots 3, o-eigenspaces of gg @ g, for the eigenvalue 1 for complex
roots f € RT with o8 € R*, and either g_, if a is compact imaginary, or
o-eigenspaces of g_o ® g_, for the eigenvalue 1 if « is a complex root such
that ca ¢ R™.

If a is compact imaginary in R, €N p, has a Levi factor that contains g,
and g_,. Therefore, the Lie algebra of K, in this case must be sl(2,C). This
completes the proof of (iii).

If a is noncompact imaginary or real, the Lie algebra of K, is the image
of t under the differential of 7. By (i), K, must be at least one-dimensional
and from 4.1 we conclude that its identity component is an one-dimensional
torus. An application of 4.1 and (ii) completes the proof of (iv).

If « is complex, the Lie algebra of K, is solvable and contains the image
under the differential of 7 of either g, if caw € RT, or g_,, if ca ¢ R™.
Therefore, the unipotent radical of K, is one dimensional by (i) and 4.1, and
K, acts on X, with two orbits. By (ii), this implies that V' contains two
K-orbits. Applying 4.1 again we see that in the first case K, stabilizes x,
QN X, ={z}, and o (p(K)N P)) = ¢~ (o(K) N B,); in the second case
K, does not stabilize z, and @ is the open orbit in V. ]

Let w be transversal to a K-orbit Q). Then E,,(Q) is K-invariant. Since it
is irreducible by 3.1.(iv), and the number of K-orbits is finite, there exists a
unique K-orbit @), of maximal dimension in E,(Q). The next result reduces
the analysis of elements of W transversal to a K-orbits to simple reflections.

Lemma 6.6. Let w,v € W be such that {(wv) = L(w)+L(v), and Q a K-orbit
in X. Then the following conditions are equivalent:

(i) wv is transversal to Q;
(ii) v is transversal to Q and w is transversal to Q..

If these conditions are satisfied, Quy = (Qv)w-
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Proof. Assume that wv is transversal to ). Then, by 3.2, v is transversal to
@ and w is transversal to E,(Q). Since @, is dense in E,(Q), E,(Q) C Q.
Hence, by 3.1.(ii) and 3.1.(v),

va(Q) = Ew(Ev(Q)) C Ew(@) = Ew(Qv)

This implies

dim @ + {(wv) = dim Fy, (Q) < dim £, (Qy)
< dimQ, + f(w) < dimQ + £(v) + £(w),

hence the inequalities must be equalities. Therefore, w is transversal to Q.
In addition this implies that the K-orbit @y, is open in E,(Q,), i.e., Quy =
(Qu)w-

If v is transversal to @) and w is transversal to @), by 3.2.(ii) and 3.1.(ii), v
is transversal to Q and w is transversal to Q, = £,(Q) = E,(Q). By 3.2.(ii),
it follows that wv is transversal to Q). O

The case of simple reflections is treated in the following result.

Lemma 6.7. Let QQ be a K-orbit and o a simple root. Then s, is transver-
sal to Q if and only if « is either noncompact Q-imaginary or @Q-complex
satisfying oo € X

Proof. By our definition, Es_(Q) = p, ' (pa(Q)), hence s, is transversal to Q
if and only if Q is of codimension one in p,!(p.(Q)). By 6.5.(iii) and (iv),
if a is compact Q-imaginary of Q-real, dimp,'(p.(Q)) = dim Q, hence s,
is not transversal to (). On the other hand, by 6.5.(iv), if « is noncompact
Q-imaginary, s, is transversal to Q. If « is Q-complex, s, is transversal to @
if and only if oga is a positive root by 6.5.(v). O

Assume first that « € IT is noncompact Q-imaginary. Then Fs_(Q) is the
union of two or three K-orbits by 6.5.(iv). Fix z € Q. Let ¢ be a o-stable
Cartan subalgebra in b,. Then roots o and —a via specialization determine
root subspaces g, and g_, of g. Let s, be the subalgebra of g spanned by g,
0o and [ga, 8o C c. Then s, is o-stable, since o acts as —1 on g,. Let o,
be the restriction of ¢ to §,. Therefore, [, = s, + ¢ is a o-stable Levi factor
of the parabolic subalgebra p of type a which contains b,. This parabolic
subalgebra corresponds to the point p,(z) in the generalized flag variety X,,.
Let &, € go and €_, € g_o. Then &, — &, is a semisimple element in s, and

0(5& - g—a) = _(ga - f—a>~
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Therefore, the kernel of the root « in ¢ and the line spanned by &, — £_,
span another o-stable Cartan subalgebra in g, which we denote by 0. The
o-invariant vectors in 0 are the subspace of codimension 1 in the o-invariants
of ¢. Therefore, ¢ and 0 are not K-conjugate. Since 0 C p, there exists a
Borel subalgebra b, containing 9 which lies inside p. The point 2z’ lies in a
K-orbit which projects onto p,(Q) in X,. In the notation of 6.5, the fiber
over y = po(x) can be viewed as the flag variety X, of sl(2, C). Since K, is an
one dimensional torus by the discussion in 6.5, by the results of §4 it follows
that ¢N s, is the only o,-stable Cartan subalgebra in s, on which o, acts as
identity. The representative of the other class of o4-stable Cartan subalgebras
is 0 N s,. The involution g, acts on it as —1, and it corresponds to the open
orbit in X,. Hence the K-orbit of 2 is open in p,'(pa(Q)), i.e., this orbit is
Q..

From the construction it is clear that the involutions g and o, agree
on ker a. On the other hand, on the complementary line spanned by a”, o¢g
acts as 1 and oq,, as —1. Therefore,

0Q;s, — Sa©0Q =0Q © Su-

It follows that « is a Q,-real root.
Hence, we established the following fact.

Lemma 6.8. Let a € Il be a noncompact Q-imaginary root. Then

(i) 0q,, = 54 ©0Q = 0Q © Sq;
(ii) « is Qs -real.

Now we want to discuss elements of W transversal to K-orbits and which
are products of complex simple reflections only. Let w € W and Z,, be the
subvariety of X x X consisting of pairs of Borel subalgebras in relative position
w. Denote by p1, p2, the projections of Z,, onto the first, resp. second, factor
in X x X. As we mentioned in §2, py : Z,, — X is a locally trivial fibration
with fibers isomorphic to C/®). Therefore, for any K-orbit Q in X, p;*(Q)
is a smooth K-invariant subvariety of Z,,. Recall the notation established in

§2.

Lemma 6.9. Let QQ be a K-orbit in X attached to a o-stable Cartan sub-
algebra ¢ and a set of positive roots R in ¢*. Let w € W. Assume that
Y5 C Dy(Q) and B Nog(X) = 0. Then:

(i) p3*(Q) is a K-orbit in Z,;
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(ii) the projection pi induces an isomorphism of py*(Q) onto the K-orbit
p1(p3 H(Q)) in X, which is attached to ¢ and the set of positive roots in
R corresponding to w=(X) under the specialization determined by Q.

By 3.1.(iii), the K-orbit p;(py ' (Q)) is dense in E,,(Q). Hence,

dim E,,(Q) = dimpi (p; 1(Q)) = dim Q + £(w),

and w is transversal to Q. It follows that Q. = p1(p; 1 (Q)).

We prove this statement by induction on ¢(w). Assume first that ¢(w) = 1,
i.e., w = s, for some simple root a. Then s,(X1) = (X7 —{a})U{—a}, hence
¥) = {a} and the only condition is that o € D (Q). Let € Q and y =
pa(z) as before. The fiber of py : Z;, — X at x consists of all pairs (2, z) €
X x X such that b/, and b, are in relative position s,. This is equivalent to
x' # x and p,(2') = pa(z). To prove (i), it is enough to show that the stabilizer
0o Y p(K)NB,) of z in K acts transitively on this fiber. Since « is Q-complex
and oga € X1, by 6.5.(v), K, = ¢ 1 (p(K) N B,) = ¢ 1 (o(K) N P,), and
this group acts transitively on {2’ € X | po(2') = y, 2’ # x}.

Let (z,2'), (z,2") € p;1(Q). Then pu(2') = pa(z) = pa(z”), so z’ = 2"
since p, 1 Q@ — pa(Q) is a bijection by 6.5.(v). This proves (ii) in this
situation.

Now we can prove the result for an arbitrary w by induction on ¢(w).
Assume that the statement holds for all w’ € W such that ¢(w’) < k, and
that w satisfies {(w) = k. Let w = $q, Sa, - - - Sa, be a reduced expression of w.
Denote w' = Sq,5a5 - - - Say_,- Then f(w') = k — 1 and w = w's,, . Moreover,
as we remarked in §2, we see that X, = s,, (XF,) U {ax}, and this union is
disjoint. So o, € D1 (Q), and by the first part of the proof, 6.9 holds for s,, .
Hence, the K-orbit (s, is attached to ¢ and the set of positive roots sq, (RT).
The specializations of (h*, 3, X1) to (¢*, R, R") and (¢*, R, 54, (RT)) differ by
Sq,- Therefore,

0Quay, = Sax ©0Q O Soy-

Since og(X5) NEE = 0, we have
0= UQ(SO% (Zi’)) N Sak<21+u’) = Say (O—Q-Sak: (Evj/) N E+/),

and oq,, (35) Nt = 0. Before we complete the proof of 6.9 we need to
describe D+(Qsak).

Lemma 6.10. Let o € D (Q) be a simple root. Then

5a(D1(Qs,)) = D+(Q) = {e, 0qa}.
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Proof. Let € Di(Q), different from « and oga. Then oo # «, hence
5q(8) € 1 and s4(0gf) € EF. It follows that s.(f) and og,_ (sa(3)) =
(s40¢)(B) are contained in XT. Therefore, D4 (Q)—{a, 0ga} C so(D4(Qs.))-
Clearly,
Q.. (@) = (5a0@5a)(a) = —sa(0gq).

Since oga € X7 is different from «, it follows that s,(cga) € ¥ and
0q.. (a) € —=¥XT. Therefore, o ¢ Dy(Qs,). Let 3 € s4(D4(Qs,)). Since
a ¢ Di(Qs,), B € ET. Also s4(8) € Di(Qs,), ie., so(8) € LT and
00..(5a(8)) = (sa0q)(B) € X*. Assume that (s4sq)(8) = a. This would
imply that § = —oga € —X1 what contradicts the preceding statement.
Therefore, (s400)(3) # « and og(3) € L. This implies that 3 € D (Q).
Since D4 (Q)s,) is a set of positive roots, so(D4+(Qs,)) cannot contain a. If
0Q,, @ would be in s,(D4(Qs,)), this would imply that

—0Q,,(a) = =(5a09Q5a)(a) = sa(0ga) € D1(Qs..)

and —a = —oq,_ (0q,, () € Di(Qs,), which is again impossible. O

We now resume the proof of 6.9. Since oo (X5)NSE = 0, ogau & sa, (X).
By 6.10,

Sap (X)) C B8 — {an, ogar} C D1 (Q) — {an, 0o} C 80, (D4 (Qs,,)),

and ©F, C D (Qs,, )- Therefore w' satisfies the conditions of 6.9 with respect
to the K-orbit @, -

Now the induction step. Let p’y, p's be the projections of Z,, onto the
first, resp. second, factor in X x X. Denote the corresponding projections for
Zs,, by p"y and p”y. Since f(w) = £(w') +1 = L(w') + £(sq,), as we remarked
in §2, the natural map from the fibered product r : Z, X x ZS% — Zuw,
given by r((z,2'), (', 2")) = (x,2"), is an isomorphism of varieties. It maps
p/gl(Qs%) X Qe P"51(Q) onto py 1(Q). By the first step of the proof, the pro-
jection of p’z_l(Qsak) X Qe ?'51(Q) onto p’g_l(Qs%) is a K-equivariant bijec-
tion, hence p'y (Qs,, ) X Qu, 2’51 (Q) is a K-orbit. This implies that py }(Q) is
a K-orbit. Its projection p; (p; '(Q)) is equal to the projection p'; (p’Q_l(Qsak ),
i.e., to the K-orbit (Qs% )w = Qu, and the projection map is an isomorphism
of py (@) onto Q.. This ends the proof of 6.9.

Another consequence of this inductive analysis gives the following propo-
sition, which is a generalization of 6.10. First we remark that

UQw =wo O—Q o wil



Irreducibility and classification 63

This is evident if w is a simple reflection. On the other hand, by induction in
{(w), we have

. o =1 =1 _ -1
UQw—U(QSak)w,—w Ongakow =W Sqy, ©0Q © S, W =woogow .

Proposition 6.11. Let QQ be a K-orbit and w € W. Assume that ¥} C
Di(Q) and o Nog(Xy) = 0. Then

0Q. :woaQow*I,

w D (Qu) = D1 (Q) — (X} Uag(E))).

and
D_(Qu) =wD_(Q)U E;,l U (—JQW(EI,l)).

Proof. We prove this statement by induction in ¢(w). If ¢(w) = 1 this is
the statement of 6.10. Assume that ¢(w) = k, with & > 1. Let w' € W
be such that {(w') = k — 1 and w = w's,. Then, as we remarked in §2,
5 = s4(2F)U{a}, and this union is disjoint. As we checked in the preceding
argument, w’ satisfies the conditions of the proposition with respect to the
orbit @, hence by the induction assumption we have

W T D4 (Qu) = w' T Dy ((Qs,)w) = D (Qs,) — (S5 UogXy).

This implies that

w71D+(Qw) = SawlilDJr(Qw)
— 5D (Qu) — (505 UogsaSih) = Dy (Q) — (S5 UogSi).

On the other hand, since w™ D (Q,) C Xt Nw H(XT), it follows that
Dy (Qy) C Xt Nw(XT). Hence, we have

D_(Qu) = w(Xoc) NIt — Dy (Qu)

= (w(Zgc) NETNw(ET) = Di(Qu)) U (w(Xgc) N T 1)
w(EgcNuw H(EN NSt —w D (Qu)) Uw(Sgc N (=)
w(Ege NEY — (W™ Dy (Qu) USE)) Uw(=3)
wD_(Q) Uoa(S) US)
wD_(Q)UX! U (—0g, (2] 1)).
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In particular, if @) is a Zuckerman orbit, we get the following result.

Corollary 6.12. Let Q be a Zuckerman orbit and w € W such that ¥},
consists of Q-complex roots and Xf Nog(X)) = 0. Then

D_ (Qw) = Z$—1 U (_UQw (E;Z—l))'

This finally leads to the following statement.

Proposition 6.13. Let Q1 be an arbitrary K-orbit in X and w € W. Then
the following conditions are equivalent:

(1) there exist a Zuckerman orbit Q) attached to the same conjugacy class
of Cartan subalgebras such that X}, consists of Q-complex roots, X7 N
GQ(E$) = @ and Ql = Qw-

(i7) EZ,I N (—an(ZI,l)) =0 and D_(Q,) = Ez,l U (—JQI(ELI)).

Let © be a subset of the set of simple roots II. Let Xg be the variety of
parabolic subalgebras of g of type ©. For a point y in Xg we denote by p,
the corresponding parabolic subalgebra of g. Let Xg, be the subset of all
y € Xo such that p, and o(p,) have a common Levi subalgebra. Then Xg ,
is a union of K-orbits.

Proposition 6.14. Let () be one of the K-orbits in Xe ,. Then Q) is affinely
imbedded in Xg.

If © = (), Xg coincides with X. In this case, every K-orbit is affinely
imbedded. The proof of this result for Harish-Chandra pairs in ([12], 4.1)
(due to Beilinson and Bernstein), applies to the present situation. We leave
it to the reader to make the necessary modifications.

Now consider the case when © consists of only one simple root «. To
simplify the notation assume that our orbit in X, is the projection p,(Q)
of an orbit ) in X. Then p,(Q) is in X, if and only if the set {o, —a} is
og-invariant, i.e., if o is either @-imaginary or @-real. Thus we obtain:

Corollary 6.15. Let QQ be a K-orbit in X and o € II. Assume that o is
either Q-imaginary or Q-real. Then po(Q) is affinely imbedded in X,

We shall also need the following simple (and well-known) remark.

Lemma 6.16. (i) A K-orbit in the flag variety X is closed if and only if it
consists of o-stable Borel subalgebras.

(ii) The K-orbit of any o-stable parabolic subalgebra in a generalized flag
variety Xeg is closed.
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Proof. Let © C II and equip Xg X Xeo with the G-action given by

9(z,y) = (9z,0(9)y),

for g € G and z,y € Xo. Let (z,2) € A. If P, is the parabolic subgroup
which stabilizes x € Xg, the stabilizer of (z, x) equals P, No(P,). Therefore,
if the Lie algebra p, of P, is o-stable, the stabilizer of (z,x) is P, and the
G-orbit of (x,x) is closed. Let C be the connected component containing
(x,x) of the intersection of this orbit with the diagonal A. We have just seen
that C is closed. Via the correspondence set up in the proof of 4.1 in [12],
C' corresponds to the K-orbit of x under the diagonal imbedding of X¢ in
Xo x Xe. This proves (ii) and one implication in (i).

Let @ be a closed K-orbit, and x € Q. Then the stabilizer of x in K is a
solvable parabolic subgroup, i.e., it is a Borel subgroup of K. Therefore, by
6.3 and 6.4,

1 1 1
dimQ@Q = §(dlm{? — dim ’t) = §(Card EQyC[ + i(Card EQ,C + Card EQ,R))

and

1
dim Q = i(Card Yo,.cr + CardXgr + Card X ¢ — d(Q)).

This implies
CardXgr + Card Xg ¢ = 2d(Q).

Since D, (Q) consists of at most half of all Q-complex roots, we see that
there are no @-real roots, and all positive )-complex root lie in D (Q). This
implies that all Borel subalgebras b,, x € @), are o-stable. O

We shall also need some information on Weyl group elements transversal
to Langlands orbits. Let @ be a Langlands orbit in X. Then, by 5.10, the set
P =%, UXT is a parabolic set of roots in . It determines a set of simple
roots ©. Since P N (—P) = g 1, O consists of Q-imaginary roots. Let Wg
be the subgroup of W generated by reflections with respect to roots in ©.

Lemma 6.17. og(P) = —P.
Proof. We have

0Q(P) = 00(3q.1) Uog(XT — 1)
= X1 Uoq(E" —Xq1) = (=Sq1) Uo(ST — Xq.1).
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Let o € X7 — Xg 1. If av is Q-real, og(a) = —a and og(«) is a negative root.
If v is Q-complex, o () is also a negative root, since () is a Langlands orbit.
Therefore, og(X1T — g ) C =X, and

0Q(P) = (=Zqr) Uog(E" = Xq1) C (~Xqr)U(-X7) = -P.

O

As before, let Xg be the generalized flag variety of parabolic subalgebras
of type ©. Denote by pg the canonical projection of X onto Xg.

Lemma 6.18. po(Q) is the open K-orbit in Xe.

Proof. Let y € Xg and denote by p, the corresponding parabolic subalgebra
of g. Then the tangent space to Xg at y can be identified with g/p,, and the
tangent space to the K-orbit through y with ¢/(¢ N p,). Hence, the K-orbit
through y is open in Xg if and only if £ +p, = g.

Assume that y = pg(z), x € Q. Then, by 6.17, g = p, + o(p,). Hence,
any £ € g can be represented as £ = & + o (&) with &, & € p,. This implies

=& -+ (L +o(&)) €ttty

ie,g==¢t+p,. O

Let " be another K-orbit in X which contains @ in its closure. Then,
since pe(Q) is open in Xg, the projection of Q' to Xg must be equal to
po(Q). Let 2’ € @' be such that pg(2’) = y = pe(x). Let ¢’ be a o-stable
Cartan subalgebra in b,. By 6.17, [, = o(p,) N p, is the o-stable Levi factor
of p,. Hence, it contains ¢’. Since ¢ = t @ a, and [, is the centralizer of a in g,
we conclude that a C ¢/, i.e., a C o. This implies ag C a¢g and

O'Q/|CIQ =—1.

Hence, for any o € ¥ the restrictions of o v and —a to ag agree. By 5.10.(ii),
if @ € P we see that —og:av € —P. Hence, og/(P) = —P.
Therefore, we proved the following strengthening of 6.17.

Lemma 6.19. Let Q be a Langlands orbit in X and Q' another K-orbit in
X such that Q is contained in the closure of Q'. Then:

(i) 0q(P) = —P;
(1t) ag C ag.
Corollary 6.20. O'Q/(E+ — EQ’[) = —(EJ'_ — ZQJ).
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Proof. By 6.19, we have
EQJ =PnN (—P) = PﬂUQ/(P).

Let o € ¥t — ¥g ;. Since «a is not Q-imaginary, by the preceding relation
oga ¢ P. Hence ogyov € —P. This implies oga € —(X7 — Xg ). O

Proposition 6.21. Let w € W be transversal to a Langlands orbit (). Then
w € Weo for the set © of all simple Q-imaginary roots.

Proof. Let w = spw’, l(w') = {(w) — 1 with a € II. Then, by 6.6, w' is
transversal to @ and s, is transversal to (.. Assume that o ¢ ©. By the
definition of Qr, Q C Q. This implies

0Q, (ET =31 = —-(E" = o),

and 0@ , € —X7T. But this contradicts the transversality of s, to Qur, by 6.7.
Hence, @ € ©. By the induction in length the statement follows. O

Finally, we analyze the structure of the stabilizers in K of points in X.
Let Q be a K-orbit in the flag variety X. Let z € () and b, the corresponding
Borel subalgebra. Denote by B, the corresponding subgroup of G' = Int(g).
Fix a o-stable Cartan subalgebra ¢ in b, and let C' be the corresponding torus
in Int(g). Let S, be the stabilizer of z in K, i.e.,

S = ¢~ ((K) N By).

Then the Lie algebra s, = €Nb,, is a semidirect product of t = {£ € ¢ | 0(&) =
¢} with the nilpotent radical u, = {n € n, | o(n) = n} of s,. Let U, be the
unipotent subgroup of K corresponding to u,; it is the unipotent radical of
Sy. Put T = ¢~ 1(o(K) N C). Then we have:

Lemma 6.22. The stabilizer S, is the semidirect product of T with U,.

Proof. Let s € ¢(S;). Then s € o(B,) N By, and this group is a semidirect
product of C' with o(N,)NN,. This implies that we have a unique representa-
tion s = cn with ¢ € C and n € 0(N,) N N,. Therefore, s = o(s) = o(c)o(n)
implies that ¢ = o(c) and n = o(n), i.e.,, ¢ € o(K)NC and n € ¢(Uy).
This implies S, = T - U,. Since T is a reductive subgroup of S, it is con-
tained in a Levi factor 7" of S,. This in turn implies that the natural map
T — S, /U, =2 T is surjective, i.e., T =T". O
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Let
F = {exp(§) | o(exp(§)) = exp(§), & € a}.

Then for any s € F, we have s = o(s) = exp(c(£)) = exp(—¢§) = s, i.e.,
s> = 1. Hence F is a direct product of several copies of Zs. Let s € F and «
a @Q-complex root. Then the character e* of C satisfies

1

e(s) = exp(a(§)) = exp(oa(a(§))) = exp(—oa(f)) = e™7(s).

Therefore, e®(s) = e~7*(s) = £1. Denote by A a set of representatives of the
(—og)-orbits in D_(Q). Then

So(t) =[] e*(t), t € F,

a€cA

is a character of F' independent of the choice of A.

Let a be a ()-real root. Denote by s, the three-dimensional simple algebra
spanned by ga, §—o and [ga, §—o). Let S, be the connected subgroup of G =
Int(g) with Lie algebra s,; it is isomorphic either to SL(2, C) or to PSL(2, C).
Denote by H, the element of [g,,g-] C a such that a(H,) = 2. Then H,
is the dual root in ¢, and 5(H,) € Z for any 8 € X. This implies m, =
exp(miH,) satisfies m2 = 1 in G. Moreover, o(m,) = exp(—miH,) = m 1 =
Me, and m, € F. Clearly m, = 1 if S, = PSL(2,C), and m, # 1 if S, =
SL(2,C), and in this latter case m,, corresponds to the negative of the identity
matrix in SL(2, C).

Lemma 6.23. Let a € IT be Q-real. Then 6g(mq) = 1.

Proof. Let 8 € D_(Q). Then s, € ¥ and s,008 = 0¢gsaf3. Hence, s, €
Yo.c and —0gsaf € T, Le., 548 € D_(Q). Clearly,

eSa’B(ma) = eﬁ*av(ﬁ)a(ma) = eﬂ(ma)eo‘(ma)av(ﬁ) = eﬂ(ma).

On the other hand, if s,/5 =  we see that a”(3) = 0. Therefore 5(H,) =0
and e®(m,) = 1. Hence the expression for dg(m,) contains either both e (m,,)
and 8 (my,) if 5,8 # B, or € (my) = 1 if 5,8 = B. O

Let t, = s, N & it is the Lie algebra of a one dimensional torus K, in
K. Tts image ¢(K,) in G is a torus in S,. Therefore, m, € ¢(K,). The
composition of ¢ : K, — S, and the covering projection S, — Int(s,) is
an n-fold covering map between two one dimensional tori. We shall need to
know an explicit lifting of m,, to K,. If we identify K, with C*, the kernel of
this map is isomorphic to {62%17 | 0 < p<n-—1}. Let n, correspond to en
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under this isomorphism (there are two possible choices for n, and they are
inverses of each other). Then ¢ maps n, to mg, hence n,, lies in 7. We have
shown:

Observation 6.24. n, € T, p(ny) = mq.

7. Intertwining functors and standard Harish-Chandra
sheaves

First we want to describe a simple necessary condition on A € h* for the exis-
tence of a K-homogeneous connection 7 on a K-orbit ) in X. We introduce
a real structure in f by putting hg to be the real span of all dual roots a”,
a € 3. For any A € h* we denote by Re A the complex linear form on h which
satisfies (Re A)(&) = Re A(€) for € € by, and by Im A the complex linear form
on b which satisfies (Im A)(§) = Im A(§) for £ € bg.

If K is a subgroup of a covering G of Int(g) with Lie algebra €, we say
that the Harish-Chandra pair is linear.

Lemma 7.1. For A € b*, let Q an arbitrary K-orbit in X and 7 a K-
homogeneous connection on Q) compatible with A+ p. Then

(1) & (A4 o) € Q for any o € X. In particular, Im X\ vanishes on tg.
(it) If, in addition, (g, K) is a linear Harish-Chandra pair, " (A+ogQ\) € Z
for any o € X. Hence, o € Xy if and only if oga € 2.

Proof. Let x € (Q and ¢ = t @ a a g-stable Cartan subalgebra of b,. Then
t C ¢ and it defines a closed subgroup in K. The image ¢(7") of T" in Int(g)
is contained in the Cartan subgroup C of Int(g). Let r be the order of the
kernel of the homomorphism of 7" into C. Since 7 is compatible with A + p,
there exists a character w of T with differential equal to the restriction to
t of the specialization of A + p. Then w" is a character of 7" which factors
through (7). It defines a character p of ¢(T) with differential equal to
the restriction to t of the specialization of r(A + p). This in turn implies
that ¢ — p(co(c)) is a character of C' with the differential equal to the
specialization of r(A + ogA + p+ ogp). Therefore, r(A + ogA) is a weight.

To prove (ii), without loss of generality, we can assume that G is simply
connected. Let B, denote the Borel subgroup of G with Lie algebra b, and
C' the complex torus in G with Lie algebra ¢. Let ¢ € C. Then co(c) € S,.
Since the exponential map from ¢ onto C' is surjective, any ¢ € C' is of the
form ¢ = exp(§) for some & € ¢. This implies co(c) = exp({ + 0(&)) € Sy In
particular co(c) lies in the connected component of S,,.
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Let w denote the representation of the stabilizer S, induced by the con-
nection 7 on (), which is compatible with A + p. Then

w(ca(e)) = exp((A + p)(€ + 0(£))) = exp(A + oA + p + @) (£))-

On the other hand, if u(¢) € 2miZ for any u € P(X), ¢ = exp(&) is equal to
the identity in G, and exp(\ 4+ ogA)(€) = 1. This implies A\ + oo\ € P(X).
Therefore, for any root a € X, we have a”(\) + (oga)”(\) € Z, and o € ),
is equivalent to oga € Xj. O

Let @ be a K-orbit in X and ig : Q — X the natural inclusion. Assume
that @ is not a Langlands orbit, i.e., the set D (Q) is not empty. Let w € W
satisfy the conditions of 6.9, i.e., ¥ C D, (Q) and X, Nog(X) = 0. There
we defined the K-orbit Q, = pi1(py (Q)). Since p; : p; 1 (Q) — Q is an
isomorphism, ps composed with the inverse of this map induces a natural
projection of @, onto (). This fibration is locally trivial and its fibers are
isomorphic to C/®).

Let x be a point of (), ¢ a o-stable Cartan subalgebra contained in b,, and
R the set of positive roots in the root system R of (g, ¢) corresponding to the
orbit Q. Fix A € h*. The homogeneous twisted sheaf of differential operators
D, on X induces a homogeneous twisted sheaf of differential operators (D) )@
on the orbit Q). Let 7 be a K-homogeneous connection on () compatible with
(Dy)i@. This means that the differential of the corresponding representation
of the stabilizer K N B, of x is a direct sum of copies of the one dimensional
representation of € N b, given by the specialization of A 4+ p. Let g2 be the
restriction of py to py *(Q). Then we have the following commutative diagram:

p Q) —1— Z,
tDl le
Q0 -9 x

Since the orbit map ig is an affine immersion and ps is a locally trivial fi-
bration, we conclude that j is also an affine immersion. Therefore, by base
change ([5], VI.8.4) we see that:

P3(Z(Q. 7)) = p3(Rig+ (7)) = R%j+(g5(7)).

Let 7, be the inverse of the invertible Oz, -module of top degree relative
differential forms for the projection py : Z,, — X. Then

To ®0,, P3(Z(Q. 7)) = Tw ®0,, R+ (a5(7)) = Rj4 (% (Tw) B0, 14, ©(7)):
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Therefore,

Rip14 (Tw ®0g, ROJ+(Q§(7))) = qu1+(Roj+(j*(7;u) ®Op;1<Q) (7))
= R(p10 )+ (5" (Tw) ®o _, , ¢3(7))-

Py (Q)
The map p; o j induces an isomorphism ¢; of p; 1 (Q) onto Q,,, so
Ripy(Tyy ®0,, B4 (43(7))) = Riigu+ (Ra1: (5% (Tu) @0 _,  63(7)):
2

Since the orbit map g, is an affine immersion, these expressions vanish for
q # 0. Hence, if we put

= 0 (7(T) €0, 63(7),
this is a K-homogeneous connection on (), and we see that
R0p1+(% Q0g, p3(Z(Q, 7)) = L(Quys Tw)-
By the definition of the intertwining functors, this gives
LI, (Z(Q, 7)) = Z(Qu, Tw)

and
L,(Z(Q,7)) =0

for ¢ # 0. To describe 7, more explicitly, we let ¢, denote the natural pro-
jection of (), onto @ which we described previously. Then

ru = 04 (7 (T0) @0, () = a1+ (G (Ta)) B0g, 45(7).
Since Ty, = pi(O(p — wp)), we also conclude that
a1+ (7 (Tw)) = z’aw(O(p —wp)).
Therefore, we finally get
Tw = 4u(7) Q0y, i, (O(p — wp)).

Let x € Q. Then the stabilizer of z in K is a quotient of the stabilizer of
quw(x) € @ by a unipotent normal subgroup. Therefore, the quotient map
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induces a bijection between irreducible algebraic representations of these sta-
bilizers. This implies that 7 — ¢} (7) is a bijection between irreducible
K-homogeneous connections on ) compatible with A\ + p and irreducible K-
homogeneous connections on (,, compatible with w\ + wp. We have proved:

Lemma 7.2. Let Q) be an arbitrary K-orbit in X. Suppose w € W satisfies
Y C Di(Q) and 3 Nog(Xh) = 0. Then:

(i) the map T —— T, is a bijection between irreducible K-homogeneous
connections on @ compatible with A+ p and irreducible K -homogeneous
connections on Q. compatible with wA + p;

(ii) for any standard Harish-Chandra module Z(Q,T), we have

L[w(D(I(Qa T))) = D(I(Qwa Tw))'

Let (g, K) be an arbitrary Harish-Chandra pair. Let © be a subset of
the set of simple roots II. Then it defines the generalized flag variety Xg
of all parabolic subalgebras of type O. Let po : X — Xg be the natural
projection.

Let O be a K-orbit of K in Xg. Then V = pg'(O) is a smooth subvariety
of X and a union of K-orbits. Denote by j the natural immersion of V' into X.
Then Dy defines a K-equivariant twisted sheaf of differential operators Di on
V. Let Mcoh(Di, K) be the category of K-equivariant coherent Di—modules.

Let 0 € O and X, = pg' (o) the fiber over o. Denote by s : X, — V the
natural immersion of the fiber X, into V. Then jo s is the natural immersion
of X, into X. Let P, be the stabilizer of 0 in G = Int(g), and U, its unipotent
radical. Let L, = G,/U, and G, the quotient of L, by its center. Let 7 be the
natural homomorphism of P, into GG,. Then its differential defines a surjective
morphism of the Lie algebra p, onto g,. This map induces an identification
of the fiber X, with the flag variety of g,, which maps any Borel subalgebra
b of g contained in p, into b/(b N ker7). These maps induce a canonical
isomorphism of the Cartan algebra b of g with the product of the center
of the Lie algebra [, of L, with the Cartan algebra b, of g,. Therefore, we
get a natural splitting of h* into the subspace spanned by roots in © and
the complement h*(©) = {u € b* | a’(u) = 0 for a € O}, and b} can be
identified with the first subspace. The root system 3, of g, can be identified
with the root subsystem Yg of ¥ generated by ©, and ¥} with ¥ NX™T. Let
r be the projection of h* onto b} along h*(©). Let p, be the half-sum of roots
in X7. Then

a’(p) =2 =a’(p,)
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for any o € ©, hence r(p) = p,. This implies
(D)* = (DAY = (Dx o)™ = Dx,ring) = D3,

where we put A, = 7(\) and we let Dj, denote the homogeneous twisted sheaf
on X, attached to p € bJ.

The subgroup ¢! (p(K)NP,) acts on X,, and this action factors through
K, = ¢ o(K) N Py) /o (p(K) Nker7). The pair (g,, K,) is a Harish-
Chandra pair, since K,-orbits in X, are exactly the intersections of K-orbits
with X,. Since the K-orbits are affinely imbedded in X by the result in
Appendix A, it follows that K,-orbits are affinely imbedded in X,.

Consequently, the inverse image functor s* is an additive functor from
the category Mcon (D3, K) into the category Meon (DS, K,).

Lemma 7.3. The functor s : ./\/lcoh(Dg\,K) — Meon(DS,, Ko) is exact. It
1s an equivalence of categories.

This is certainly a known fact (compare [6], 3.10).

Consider now the special case when O consists of one simple root «. Then
0o = 5l(2,C), X, = {a, —a} and X} = {a}. In this case, we have g, = s((2, C)
and the connected component of K, is one of the groups listed in 4.1. By 6.5,
we have the following possibilities:

(a) If ais compact @-imaginary, the identity component of K, is isomorphic
to either SL(2,C) or PSL(2,C).

(b) If v is @-complex the unipotent radical of K, is nontrivial.

(c) If « is either noncompact @-imaginary or @-real, the identity compo-
nent of K, is a one dimensional torus.

In the case (c), we generalize the definition of the SLy-parity condition
from §4. By 6.5, if a is @Q-real, the K,-orbit ), = @ N X, is open in X,.
Hence, for any irreducible K-homogeneous connection 7, the K,-homogeneous
connection 7, can be viewed as a homogeneous connection on C* C P!, If this
connection satisfies the parity condition from §4, we say that 7 satisfies the
SLo-parity condition with respect to the simple (J-real root «.

As in §2, let I denote the intertwining functor I, for g, = sl((2,C).

Lemma 7.4. Let A € h*. For any V € My.(Dy) we have
R(j o s)'(L1s,(D(V))) = LI(R(j o 5)'(D(V))).

Proof. Put ' = j os. The morphism s’ x s’ : X, x X, — X x X is an
identification of X, x X, with its image in X x X. The intersection of X, x X,
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with Z, consists of pairs (b, b,/), by, by C p,, which are in relative position
Sa- Since p, is a parabolic subalgebra of type «, any two Borel subalgebras
of g contained in it are either in relative position s,, or they are equal. This
implies that the inverse image (s’ x s')71(Z,,) is the complement Z, of the
diagonal in X, x X,. Denote by § the isomorphism of Z, onto (X, x X,)NZs, .

Then we have the commutative diagram
Zo —— Z,,
S
X, = X
and by base change ([5], VI.8.4),
Rs" o Rpiy = Rpo14 o RS'.
On the other hand,
RS (Ts, ®0,,. 3 (V) = Tos, ®oy,, RS (p5(V)),

and since
Zy —2— Z,.

po | a3

Xo - X

is also commutative,

Rs'(p; (V) = R(p2 0 5)'(V)[~ dim X + 1]

= R(s' oppa)' (V) [~ dim X + 1] = pfy(Rs'(V)),

which finally implies the assertion.

In some cases, the lemma reduces the calculation of the action of the
intertwining functor LI,  on a standard module to an SLy-calculation.

Let Q be a K-orbit and V = p;1(po(Q)). Assume that V is a Harish-
Chandra sheaf supported in V. Then, by Kashiwara’s theorem, RPj ‘W) =0
for p # 0, and 5'(V) is in Mon (D3, K). By 3.1 and 3.4, the support of LPI,
is also contained in V. Therefore, the same applies to these Harish-Chandra

sheaves. Hence, by the preceding lemma, we see that

T (7 (L, (V) = LU (s (5 (V)
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for any ¢ € Z. Assume that V is irreducible Harish-Chandra sheaf with sup-
port @, ie., V = L(Q, 7). Then, since the restriction of an irreducible D-
module is either irreducible or 0, we see that the restriction of £(Q, ) to
the complement of JV is irreducible. By Kashiwara’s equivalence of cate-
gories, j'(£(Q, 7)) is an irreducible object in Mo (D5, K). Moreover, by 7.3,
st(3'(L(Q,7))) is an irreducible object in Mo (Dy,, K,). Hence, it is equal
to L(Qo, To), where @, = QNS and 7, is the restriction of 7 to Q,. It follows
that

st LAL, (L£(Q,7)))) = LU(L(Qo, o))
for any ¢ € Z. Assume that a”(\) € Z. Then, by 2.16, either I, (L£(Q,T)) =
0 (and I(L£(Qo, 7)) = 0) or L7, (L(Q,7)) = 0 (and L™ (L(Q,,T,)) =
0). This leads immediately to the following generalization of 4.14. It is an
unpublished result of Beilinson and Bernstein, which is a special case of 2.18.

Lemma 7.5. Let a € Il and o”(\) € Z. Then I, (L(Q, 7)) = 0 if and only
if either

(i) « is compact Q-imaginary root; or
(it) « is a Q-complex oot such that —oga is positive; or
(iii) « is a Q-real root which doesn’t satisfy the SLo-parity condition.

Proof. Consider the cases (a), (b) and (c) we discussed before. If (a) holds,
« is compact Q-imaginary and I, (£(Q, 7)) = 0 by 4.14. If (b) holds, « is
Q-complex. If oo () is a positive root, @, is a point and I, (L£(Q, 7)) # 0 by
4.14. If 0g(a) is a negative root, @, is open in X, and I, (£(Q,7)) = 0. If
(¢) holds, « is either noncompact Q-imaginary or Q-real. In the first case, @,
is either one or two points, and I (L£(Q, 7)) # 0 by 4.14. In the second case,
@, is the open orbit in X,. By 4.14, I, (£(Q, 7)) = 0 holds if and only if the
SLo-parity condition fails for 7. O

Assume now that V' is affinely imbedded in X. Since the fibration p, :
X — X, is locally trivial, this is the case if p,(Q) is affinely imbedded in
Xq. As we have seen in 6.15, p,(Q) is affinely imbedded in X, if the root «
is either Q-imaginary or Q-real. Then py* (V) is a smooth subvariety of Z,,.
Moreover, since V' is affinely imbedded and ps : Z5, — X is locally trivial,
it is also affinely imbedded in Z, . Let g2 be the restriction of py to py ' (V).
Then we have the following commutative diagram:

pgl(v) L Zsa

@ p| -

V%X
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Since k is an affine immersion, and ps and ¢, are submersions, from base
change ([5], VI.8.4) we see:

p2(i+(V)) = ki (e2(V)),

for any Dﬁ;—module V. Also,
To ®05,, P20+ (V) = Taw ®0,, bt (2(V)) = b (K(Te) @0 1 ) (V).

Therefore,

R4 (Ts, @0, 137+ (V) = Ripre (5 (0 (T5,) @0, (V)
= R(p1 o k)4 (K*(Ts,) ®o a5 (V).

2V

Since V = p; 1 (pa(Q)), we see that py (V) = pr' (V). Hence, if we denote
by ¢ the restriction of p; to py ' (V), we get the commutative diagram

p' (V) — Z,,
q1l p1l
v —15 X
From it we conclude that
Ri(prok)s = RI(joq)+ = jt o Rlgus.

This implies

LI, (5+ (V) = 5+ (Riqu (K" (Ts,) @0, 42(V))),

py (V)

Hence, by Kashiwara’s theorem, we have

L, (j+ (V) = 51 (R (L5, (+ (V))))

for all g € Z. _
If V is a coherent (D}, K)-module, by 7.3, R%j'(L4I, (j+(V))) is com-
pletely determined by its restriction to X,, i.e., by

sT(ROJ(LIL,, (j+ (V) = RI™P(@)(j o 5)' (LI, (j+ (V).
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By 7.4 and base change, we have

R(j o s) (LI, (D(j+(V)))) = LI(R(j o s)(D(j+(V))))
= LI(D(s+(V)))[— dim pa(Q)]-

Hence
sT(RYG (L, (j+ (V) = LU (s*(V)).

Clearly, since @ is a K-orbit in V, we have Z(Q,7) = i+ (7)) = j+(I+(7)),
where [ : () — V is the natural inclusion. Hence the preceding identity,
combined with 4.5 and 4.12, leads to the following two propositions.

Proposition 7.6. Let A € §*, @ be a K-orbit and 7 a connection on @
compatible with A. Let o € 11 a compact Q-imaginary root. Then p = —a”(\)
is an integer, and

LI, (D(Z(Q, 7)) = D(Z(Q, 7)(pa))[1].
Proof. In this case, by 6.5.(iii), we have Q@ = p_'(pa(Q)). Then, by Kashi-
wara’s equivalence of categories, R*j'(Z(Q, 7)) = 7 and R%5'(Z(Q, 7)) = 0 for
q # 0. This implies
RP(j o s)(Z(Q,7)) = R’s'(R°j'(Z(Q, 7)) = Rs'(7).
Hence RP(j o s)'(Z(Q, 7)) = 0 for p # dim Q — 1 = dim p,(Q), and

RImQ1(jo HZ(Q. 7)) = RS (r) = 5°(r) =,

where 7, is the restriction of 7 to X,. By 4.5 and the preceding calculations,
we see that

R'(j 0 5)' (LI, (Z(Q,7))) = 0
for ¢ # —1, and

R (j o 5) (LI, (T(Q, 7)) = L™ (7,) = 7o(par)
= RO (o )(Z(Q, 7)) (pa) = RT™E71(j 0 5) (Z(Q, 7) (pv))-

This implies our statement. O
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Consider now the case of a @-real root a. In this situation, by 6.5.(iv),
Q is the open orbit in p;!(pa(Q)). The restriction to Q, = X, N Q of the
K-equivariant connection 7 on ) defines a K,-equivariant connection 7, on
C*. We say that 7 on @ satisfies the SLo-parity condition with respect to « if
RIMO=1(T(Q, 7)) = Z(Q,, 7,) satisfies the SLy-parity condition.

Moreover, since a is a )-real root, the twisted sheaves Df\Q and sz A\
correspond to the same invariant linear form on £€Nb,, i.e., they are naturally
isomorphic. Since the stabilizer S, of x € () in K maps into the stabilizer S
of 1 in X, = P!, we see that there is a point # in @ which corresponds to —1
in X, = P!, such that S; = S,. Let 7 be a K-homogeneous connection on
@ corresponding to the representation w of S, in the geometric fiber T, (7).
Then there exists a unique K-homogeneous connection 7,, on () such that
w is the representation of Sz = S, in T3(7s,). It can be interpreted as a
K-homogeneous Dlz y-connection on Q).

Proposition 7.7. Let QQ be a K-orbit in X, a € Il a Q-real root and \ € h*.
Assume that T satisfies the SLa-parity condition with respect to oc. Then

LI, (D(Z(Q,7))) = D(Z(Q, 7s,))-

Proof. As in the preceding proof we first see, by base change, that RP(j o
$)(Z(Q,7)) =0 for p# dimQ — 1 and

Rdim Q*l(j o s)I(I(Q, 7)) = Z(Qo, Tos Ao)

where @, = Q) N X, is the open orbit in X, and 7, is the restriction of 7 to
@o- On the other hand, by the calculation preceding 7.4 and 4.12,

Rdimel(j o S)!(LQISQ (I(Q,T)) = LqI(I(Qo; To, /\)) =0

if ¢ # 0, and

RdimQ_l(j © 8)!(‘[3a (Z(Q, 7)) = I(Z(Qo, 70, A))
= I(Qo, Tos =) = R (j 0 ) (Z(Q, 7s,))-
As in the preceding argument, this implies our assertion. O

In addition, if p = —a”(\) € Z, we see from 4.13 that 7,, = T ®o,
’L'Z?((’)(poc)). Hence we have the following result.
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Corollary 7.8. Let Q) be a K-orbit in X, a € Il a Q-real root and A € h*.
Assume that p = —a”(\) € Z, and that T satisfies the SLa-parity condition
with respect to a. Then

LI, (D(Z(Q, 7)) = D(Z(Q, 7)(p))-

Finally, we have to introduce the notion of the SLy-parity condition with
respect to an arbitrary Q-real root a. Let x € Q and w the representation of
the stabilizer S, of z in K in the geometric fiber T;,(7). Then, as we explained
at the end of §6, to o we attach an element n, € S, of x in K. We say that
T satisfies the SLo-parity condition with respect to « if the spectrum of the
linear transformation w(n,) does not contain —e*™ N5 (p(n,)). Since n,
is determined up to inversion, this condition does not depend on the choice
of n,. By 6.23, if o € II it agrees with the previous defined parity condition.
Moreover, for g = sl(2,C) this condition agrees with the one in §4.

The next result describes how the parity condition behaves under the
action of intertwining functors.

Lemma 7.9. (i) Let 7 and 7, be the connections on Q and Q,, respectively,
as in 7.2, and o a Q-real root. Then wa is a Qy-real Toot and the following
conditions are equivalent:

(a) T satisfies the SLy-parity condition with respect to o
(b) Ty satisfies the SLo-parity condition with respect to wa.

(ii) Let a be a Q-real root and T and s, the K-homogeneous connections
on Q as in 7.7. Let B be a Q-real root. Then s, is a Q-real root and the
following conditions are equivalent:

(a) T satisfies the SLo-parity condition with respect to (;
(b) 75, satisfies the SLy-parity condition with respect to so[.

Proof. (i) Let z € @ and ¢ a o-stable Cartan subalgebra contained in b,.
Denote by C' the torus with Lie algebra ¢ in G = Int(g). Then there exists
z' € @, such that ¢ C b,/. Therefore, by 6.22, the stabilizers S, and S, of
and 2’ in K have a common Levi factor T' = ¢~ (¢(K)NC). Let w and w’ be
the representations of S, and S, respectively in geometric fibers of 7 and 7.
Let s and s’ be the specializations determined by the Cartan subalgebra ¢ in
b, and b, respectively. Then s’ = s o w. Since g, = woogow ! by 6.11,
we see that wa is a QQy-real root if and only if « is a ()-real root. Moreover,
the elements ng, 8 € Xq, r, and n), v € Ygr, of T attached to these two
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specializations satisfy n, = n),, for @ € g r. From 6.11 we see that

0Q, = H eBHe“’ﬁ,

pext | BEA

where A is a set of representatives of the (—og)-orbits in D_ (@), and where
the characters e* are defined via the specialization s’. Since p — wp is the sum
of roots in Ef;,l, we have

0. (9(Mwa)) = €7 (p(M4ya)) 00 (#(na)),

and finally

W (1500, (P(0)) = ()PP (p(1ly0) S0 (9(1)
= w(na)dg(e(na)).

This implies (i), since 7 is a Dy*-connection and 7, is a D.%*-connection.
(ii) Clearly we have og(saff) = —f+a’(f)a = —saf5, and s, is a Q-real
root. Let z € () and w the representation of the stabilizer S, in the geometric
fiber T,,(7). Let ¢ be a o-stable Cartan subalgebra in b,. Then there exists a
unique point Z € @ different from = such that p,(Z) = ps(z) and b, D ¢. The
stabilizer Sz is equal to S;. The specializations s and § attached to the Cartan
subalgebra ¢ at these two points differ by the reflection s,, hence the elements
n~ and 7N, v € Xg R, of the stabilizer attached to these two specializations
satisfy n., = fi, . Since the representations w and & of the stabilizer S, = S;,
attached to 7 at the points  and Z respectively, are conjugate, we see that
the spectrum of w(ng) is equal to the spectrum of w(ns,z) = @(7g). The
representation of the stabilizer attached to 7,, at x is @, and the assertion
follows since 7 is a D}’-connection and 7y, is a D,?,-connection. O

Finally, we want to analyze the structure of the standard module Z(Q), 7)
in the situation when « is a Q-real simple root, a”(\) € Z and the SLy-parity
condition fails for 7 with respect to a. Then Z(Q, 7) = j4+ (4 (7)) with I (7).
Clearly, I (7) is reducible by 7.3, since s*(I4(7)) = Z(Q,, 7o) is reducible
by 4.10. Let K be its unique irreducible submodule corresponding under the
restriction st to £(Q,, 7,). Then, by 7.3, we have the following exact sequence

0—K—1l(1)—Q—0

where Q is the direct sum of irreducible standard (D}, K)-modules on V
attached to the K-orbits in V — (). Since j. is exact, this short exact sequence
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leads to the short exact sequence
0 — j+(K) — Z(Q,7) — j4+(Q) — 0,

where j;(Q) is a direct sum of standard modules Z(Q)', 7’) for some K-orbits
Q' in V — @Q and irreducible K-homogeneous connections 7 on (). By 4.14
and a previous discussion, we also have I (j;+(K)) = 0. This establishes the
following result.

Lemma 7.10. Let A € b*, o € I, Q a K-orbit in X and 7 an irreducible
K-homogeneous connection on Q compatible with A\ + p. Assume that o is
Q-real, & (N\) € Z and the SLy-parity condition fails for T with respect to «.
Then the standard Harish-Chandra sheaf Z(Q,T) contains a Harish-Chandra
subsheaf C such that

(1) 15,(C) = 0;
(ii) the quotient Z(Q,T)/C is a direct sum of standard Harish-Chandra
sheaves on the K-orbits in p;*(pa(Q)) — Q.

Finally, the same discussion, combined with 4.11, leads to the following
result.

Lemma 7.11. Let A € b*, a € II, Q a K-orbit in X and 7 an irreducible
K-homogeneous connection on ) compatible with A\ + p. Assume that « is
Q-imaginary root. Then the orbit Q is closed in p, (pa(Q)). Let Q' be the
open orbit in p,t(pa(Q)). Then there exists an irreducible K-homogeneous
connection 7' on Q" such that Z(Q,T) is a quotient of Z(Q',1').

In addition, if «”(\) € Z, the kernel of the quotient map Z(Q',7") —
Z(Q,T) contains the Harish-Chandra sheaf C described in 7.10.

8. Irreducibility of standard Harish-Chandra sheaves

In this section we prove a necessary and sufficient condition for irreducibility
of standard Harish-Chandra sheaves.

We start with a necessary condition for irreducibility. We use the notation
from the preceding section. Let o € Il and @) be a K-orbit. Denote V' =
Pl (pa(Q)) and X, = p;l(pa(x)) for some z € Q. Let 7 be an irreducible K-
homogeneous connection on ) compatible with A + p such that the standard
Harish-Chandra sheaf Z(Q, 7) is irreducible. Clearly, V' is a smooth subvariety
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of X and @ is affinely imbedded in V. Then we have the following diagram:

Q —— vV

|l
Q2. x

Therefore, by the base change

F Q7)) = ix(r)

and this is an irreducible (Di, K)-module. Moreover, by 7.3, the restriction
st (i (7)) is irreducible (DY , K,)-module. If we denote by 7, = s*(7) the
restriction of 7 to @, = @ N X,, by the base change calculation, we get
sT(ie (7)) = Z(Qo, 7o), i.e., it is a standard module on X,. The following
result follows immediately from 6.5, 4.4 and 4.10.

Lemma 8.1. Let o € Il and A € b*. Let QQ be a K-orbit in X and T an
irreducible K-homogeneous connection on @ such that Z(Q, 1) is irreducible.
Then:

(i) if a is Q-complex and oo ¢ XT, we have a”(\) ¢ Z;
(ii) if o is Q-real, T satisfies the SLa-parity condition with respect to .

We shall use this result and intertwining functors to study the irreducibil-
ity of standard Harish-Chandra sheaves. We start with a discussion of a special
case.

Assume that @, is the open orbit of K in X. Then it is the Langlands
orbit attached to the conjugacy class of maximally split o-stable Cartan sub-
algebras of g. We say that the pair (g, K) is split if it satisfies the additional
assumption:

(sp) there exists a o-stable Cartan subalgebra in g on which o acts as —1.
This implies that all roots in X are ()-real.

Proposition 8.2. Let (g, K) be a split Harish-Chandra pair. Let Z(Q,,T) be
a standard Harish-Chandra sheaf on Q,. Then the following conditions are
equivalent:

(i) T satisfies the SLa-parity condition for all o € 3;
(ii) Z(Qo,T) is an irreducible Harish-Chandra sheaf.
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Proof. Assume first that o € Il and that it satisfies the SLy-parity condition.
Then, by 7.7, we have

1,,(Z(Q, 7)) = Z(Q,T").
There are two possibilities:

(a) a’(\) ¢ Z. In this case I, is an equivalence of categories. Hence Z(Q, 7)
is irreducible if and only if Z(Q, 7') is irreducible.
(b) p=—a’(\) € Z. Then, by 7.8, we have

Isa (Z(Qv T)) = I(Qa T,) = I(Q7 T)(pOl)
Hence, again Z(Q, 7) is irreducible if and only if Z(Q, 7’) is irreducible.

By 7.9, this enables us to reduce the question of the SLo-parity condition for
an arbitrary root « to the case of simple root «. But in this case, the the
irreducibility implies that the SLo-parity condition holds by 8.1.(ii).

It remains to show the converse. Assume that 7 satisfies the SLo-parity
condition for any root a. Then by the above discussion, for any w € W we
have

1,(Z(Q, 7)) = Z(Q, Tw),

and Z(Q, 1) is irreducible if and only if Z(Q, 7,,) is irreducible. Assume that
Z(Q, 1) is reducible. Let B be an irreducible quotient of Z(Q, 7). Then its
support is irreducible and, by 3.1 and 3.5, there exists w € W, with the
following property: supp I,,(B) is irreducible and dim supp 7,,(B) = dim X —
1. Since I, is right exact, we conclude that I,(B) is a quotient of Z(Q, 7).

Therefore, again by 7.9, it is enough to show that the SLy-parity condition
implies that there are no quotients of Z(Q,7) with irreducible support of
dimension dim X — 1. Assume that A is such quotient and that its support
is the closure of an orbit " with dim @’ = dim X — 1. Then there exists a
simple root o € II which is “transversal” to @', i.e., if p, : X — X, is
the natural projection of X onto the variety X, of all parabolic subalgebras
of type a, dimp;t(pa(Q')) = dimQ’ + 1 = dim X. This implies that the
projection of @’ into X, is the open and dense orbit of K in X,. The fiber
over an arbitrary point in this orbit is isomorphic to the flag variety X, = P!
of 5[(2,C). Let s : P! — X be the corresponding map. Since « is a Q-real
root, the identity component of K, is a one dimensional torus by 6.5.(iv).
By base change, s (Z(Q, 7)) = Z(Q,, 7,) is a standard Harish-Chandra sheaf
on X, corresponding to the restriction 7, of 7 to the open orbit @), of K,
and it has a nontrivial quotient supported in {0} U{oo}. Since the SLy-parity
condition holds for « this is impossible by 4.10. O
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We shall use 8.2 to prove a necessary and sufficient criterion for the ir-
reducibility of standard Harish-Chandra sheaves on Zuckerman orbits. We
start with the following observation. Let O be a closed orbit of K in Xg.
Then V' = pg'(0) is a closed smooth subvariety of X and a union of K-
orbits. Let MEO%(DA, K) be the full subcategory of M op(Dy, K) consisting
of modules supported in V. The direct image functor j, is an equivalence
of the category Mo (D3, K) with Mﬁg(D,\,K). Its inverse is j'. This, in
combination with 7.3, leads to the following result.

Lemma 8.3. The functor RY™O(j o s)' is an equivalence of the category
MES (D, K) with Meon (DS, . Ko).-

Let Q be a Zuckerman orbit. Then X% is a set of positive roots of Zuck-
erman type for (X,0¢). The set Py = Yor UXT is a og-stable parabolic set
of roots by 5.10. Let © C II be the corresponding set of simple roots, and Xg
the generalized flag variety of all parabolic subalgebras of type © in g. Let
O = po(Q). By 6.16.(ii), the orbit O is closed in Xg.

The fiber X, over y is identified with the flag variety of g,. Since p, is
o-stable, the Lie algebra of ¢~ !'(p(K) N P,) is equal to €N p,. Let ¢ be a
o-stable Cartan subalgebra in b,, R the root system of (g,¢) in ¢*, and Rt
the set of positive roots determined by b,. Then p, is spanned by the Borel
subalgebra b, and the root subspaces g, for all real roots a € R. Clearly ¢
and g, for all real roots o € R, span a o-stable Levi factor [, of p,, and g, is
canonically isomorphic to [l,, [,]. The center of [, is the intersection of kernels
of all real roots in ¢*. The involution ¢ induces an involution o, on g, = [l,, l,].
Therefore, the Lie algebra €, of K, can be identified with € N [[,, [,] which is
the set of fixed points of ¢,. The intersection of ¢ and [l,,[,] determines a
Cartan subalgebra of g, on which o, acts as —1. Thus (g,, K,) is a split
Harish-Chandra pair.

Proposition 8.4. Let Q) be a Zuckerman orbit in X, X an element of b*, and
7 a K-homogeneous connection on () compatible with \. Then the following
conditions are equivalent:

(i) T satisfies the SLy-parity condition for all Q-real roots o € ¥;
(ii) the standard module Z(Q,T) is irreducible.

Proof. Let Q, = QN X,. Then @, is a K,-orbit in X, of a Borel subalgebra of
go which contains a Cartan subalgebra on which o, acts as —1. This implies
that all roots in X, are ,-real, and that (), is open in X,. By base change,

RO (j 0 5)(Z(Q, 7)) = T(Qos o),
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where 7, is the restriction of 7 to @,. Since all irreducible composition factors
of Z(Q,7) lie in MZ9(Dy, K), by 8.3, Z(Q,7) is irreducible if and only if
Z(Qy, 7o) is irreducible. Now 7 satisfies the SLo-parity condition for all )-real
roots if and only if 7, satisfies the the SLo-parity condition for all @),-real

roots, i.e., for all roots in ¥,, so the assertion follows from 8.2. O

Next, we prove a result which reduces the problem of irreducibility of
standard Harish-Chandra sheaves to the special case of Zuckerman orbits.

Lemma 8.5. Let QQ be a Zuckerman orbit, A € h*, and w € W. Suppose
N consists of Q-complex roots, and X N og(X) = 0. Then the following
conditions are equivalent:

(i) S NX\ =0 and Z(Q, T) is irreducible Dy-module;
(77) Z(Qu, Tw) is irreducible Dy,x-module.

Proof. First we remark that in this case D, (Q) consists of all positive Q-
complex roots. If ¥ N Xy = (), by 2.9, the intertwining functor I, is an
equivalence of the category My.(Dy) with My.(Dyy) and -1 is its inverse.
By 7.2, we have

1u(Z(Q, 7)) = ZL(Qu, Tw)-

Therefore Z(Q, 7) is irreducible if and only if Z(Q.,, 7) is an irreducible Dy~
module.

Now we shall prove, by induction on f(w), that X N Xy # @ only if
Z(Qu, Tw) is a reducible Dy,y-module. If £(w) = 0, w = 1 and X} = 0, so the
assertion is obvious. Thus we assume the statement holds for all w’ € W with
l(w') < k. Let {(w) = k. Then w = s,w’ for some o € IT and w’ € W with
((w') = k — 1. As we remarked in §2, ¥t = {w'~" ()} UX],. Therefore, 3,
consists of Q-complex roots and X, Nog (X)) = 0. By 2.5 and 7.2, we have

L(Qu, mw) = In(Z(Q, 7)) = L5, (1w (Z(Q, 7)) = Is, (T(Qur, Tw)),

and L, (Z(Qur, Twr)) = 0.

If w’fl(a) ¢ Xy, ie, a ¢ Sy, we have 3 NS, = X1 Ny, and by the
induction assumption Z(Q,r, 7w ) is a reducible D,y-module if F, N # 0.
Since, by 2.9, in this case I, : Mge(Dyxn) — Mge(Dyy) is an equivalence
of categories, Z(Qu, Tw) is a reducible D,y-module if 3 N3y # 0.

If a € Xyrr, p = —a’(w'\) = a’(w)) is an integer, and —w ™ 'a € If.
This implies that —w ™'« is a positive Q-complex root, and —og(w™ta) ¢ If.
Since 0g, = woogow™! by 6.11, we see that « is a Q,-complex root and
oo, ¢ 1. By 8.1.(i) this implies that Z(Q, 7) is reducible. O
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We shall need the following auxiliary result. Let g = sl(3,C) and o an
involution on g given by o(A) = JAJ™1, A€ g, with

-1 0 0
J=10 -1 0
0 0 1

Then o is a Cartan involution for the real form su(2, 1) of s((3,C). Let (g, K)
be a Harish-Chandra pair such that € is the Lie algebra of fixed points of o.
For simplicity assume that K covers the subgroup of SL(3,C) consisting of
all matrices of the form

0
A 0 7

0 0 detA™?

where A is an arbitrary 2 x 2 matrix. Write ¢ for the projection of K into
SL(3,C). Let ¢ be the o-stable Cartan subalgebra spanned by

00 1 1 0 0
H=|0 0 0| and T=[0 -2 0of |,
100 0 0 1

and C' the corresponding Cartan subgroup of SL(3,C). Let R be the root
system of (g, ¢) in ¢*. Then R contains a unique real root « such that the dual
root H, is equal to H. The only other real root is —«, and the remaining
roots are complex. Recall the meaning of m,, and n,, which were defined at
the end of §6. Note that

-1 0 0
me =exp(imHy)=| 0 1 0 | =exp(inT).
0 0 -1

Lemma 8.6. (i) The subgroup S = ¢~ (¢¥(K) N C) of K is isomorphic to
C*.

(ii) We can choose n, = exp(inT).

(iii) Let w be a character of S and p € ¢* such that the differential of w
agrees with the restriction of u to the subspace of ¢ spanned by T. If B is a
complex root such that 57(n) € Z, we have

w(ng) = eFime (1)
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Proof. (i) First we claim that ¢(K) N C is the one-parameter subgroup in
SL(3,C) determined by T'. Since the exponential map exp : ¢ — C' is surjec-
tive, any k € ¥(K) N C has the form k = exp(aT + bH). From k = o(k) we
get k = exp(aT —bH) and k! = exp(—aT +bH). This implies 1 = exp(2bH)
and b € inZ. Since m,, = exp(imH) = exp(inT), the assertion follows.

We can identify ¢ (K) with GL(2,C). Then 7(A4, z) = zA defines a ho-
momorphism of SL(2,C) x C* into ¢ (K ), which is a two-fold covering. The
nontrivial element of the kernel of 7 is (—1,—1). Since SL(2,C) is simply
connected, the fundamental group of ¢(K) is Z. For even n = 2k, the n-fold
covering of 1 (K) factors through SL(2, C) x C*. Without any loss of generality
we can assume that K is the n-fold cover of ¢(K'). Hence K = SL(2,C) x C*
and (A, z) = zFA. This implies that kert) consists of all elements of the
form (I,¢) and (—1I,e'% ¢), where € is an arbitrary k-th root of unity. Since

0

0

1
-1 0

+1 0O
0

0

~
I
O ONlw
[\ [JN)
o O O
N[

0
o1
1

and since the first matrix lies in the image of the Lie algebra of SL(2,C) and
the second in the center of €, we see that the first component of exp(z7) €

K =SL(2,C) x C* is equal to

g er 0
Gl —=]7 0 %
2

for any z € C*, hence the second is equal to e n. If z = 2miq, ¢ € Z,
exp(2¢qmiT) is one of the elements of ker), and all of them are obtained in
this way. This completes the proof of (i).

(ii) The matrix

2 0 0
T+Xe+X oa=]0 =2 0
0 0 O
lies in the image of sl(2, C). Therefore,
2mi 0 0

exp(im(T + Xo + X o)) =exp| 0 —2m 0] =1
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in the image of SL(2,C), and this identity persists in /K. Hence, in K,
exp(—im(Xq + X_p)) = exp(inT).

Since ¢, is spanned by X, + X_,, and since

t 0 0 et 00
exp(t(Xa+ X o)) =exp|0 0 0 |=[0 1 0],
00 —t 0 0 et

we see that
exp(t(Xo + X_0)) # Mma

for ¢ ¢ im(2Z + 1). This implies that n, = exp(inT) is a possible choice for
Ne-

(iii) We may assume that /3 is a complex root in ¢ such that o = 5 — o 3.
Then () = 1 and

eF(my) =™ ) = 1.

On the other hand,

eﬂ(ma) — ei?rﬁ(T)7

so B(T) is an odd integer and T is a weight in the dual root system. Since
exp(2miT) = 1, T lies in the dual root lattice. Analogously, we see that sT,
0 < s < 1, does not lie in the dual root lattice. This implies 3(T") = £1 and

T = (8 + (08)).
Hence

w(ng) = m(T) — im(B7 () +(08) (1) — p—ima™(p) 2miB7 (1) — —ime’(u)

if '= /"4 (¢p)", and

w(ng) = eTHIT) — o= (8 (0+(@8) (1) — gimar (1) o=2miB () _ gimar (1)

otherwise. O

Now we prove the irreducibility criterion in the general situation. Let
@ be K-orbit in X, og the induced involution on the root system X. As
explained in §5, the root system with involution (X, —o¢) determines a subset
C(XT) € D(X7) of ¥, which we now denote by C_(Q).
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Theorem 8.7. Let (Q be a K-orbit in X, X\ an element of b*, and 7 an
irreducible K-homogeneous connection on ) compatible with X\ + p. Then the
following conditions are equivalent:

(i) C_(Q)NX\ =0, and 7 satisfies the SLa-parity condition with respect
to every Q-real root in X;
(ii) the standard Dx-module Z(Q, ) is irreducible.

Proof. By 6.13 there exist a Zuckerman orbit @)1 and w € W, such that
3+, consists of Qi-complex roots, X,-1 N (—0g, (Zy-1)) =0, Q = (Q1)w-1,
Y N (—og(Zy)) =0, and

D(Q) = 2w U (=00 (Xuw))-

Also there exists an irreducible K-homogeneous connection 7/ on Q1 such
that 7 = 7/ ;. Then, by 8.5, the standard Dy-module Z(Q, ) is irreducible
if and only if Z(Q1,7’) is an irreducible D,,\-module and ¥,,-1 N X, = 0.

By 8.4, Z(Q1,7") is irreducible if and only if 7/ satisfies the SLo-parity
condition for every (q-real root in X. By 7.9.(i), this is equivalent to the
SLo-parity condition for 7 and every @-real root in 3.

It remains to analyze the condition 3,1 N X,,x = (0, which is equivalent
also to X, N Xy = (). We have to show that C_(Q) N Xy = 0 is equivalent to
YP N Y, =0 when the SLo-parity condition is satisfied for all Q-real roots in
3.

By 5.6 we have X7, € C_(Q), hence C_(Q)NX) = 0 implies X Ny = 0.
We still must prove the opposite implication when the SLy-parity condition
is satisfied for 7 and all Q)-real roots in X..

By 5.6, it is enough to establish the following statement:

(*) Assume the SLo-parity condition is satisfied for 7 and all Q-real roots
in ¥. Let o € ¥¢g ¢ be such that either

(a) closed root subsystem %, of ¥ generated by o and oga is of type
Al X Al, or

(b) the closed root subsystem ¥, of ¥ generated by a and oga is of
type Ag, and o — oga is a Q-real root.

Then either {a, oga} C Xy or {a,oga} NI\ = 0.

By 7.9, this statement is equivalent to the analogous statement for the
connection 7 on (. Therefore, in proving (*) we can assume without any
loss of generality that () is a Zuckerman orbit.

Let € @ and ¢ a o-stable Cartan subalgebra in b,. Then, by the spe-
cialization corresponding to @, the root subsystem ¥, of ¥ determines the
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semisimple Lie subalgebra generated by the root subspaces gg, 3 € ¥, which
we denote by g.. By its construction g, is o-invariant. Let o, be the involution
on g, induced by o. Its fixed point set is the subalgebra £, = £Ng,. Let N(go)
be the connected component of the normalizer of g, in K, C(g,) the connected
component of the centralizer of g, in K, and put K, = N(go)/C(go). Then
K, acts on g., and the differential of this action defines an isomorphism of the
Lie algebra of K, with &,. Therefore (g., K,) is a Harish-Chandra pair. The
subalgebra ¢, = go N ¢ is a Cartan subalgebra of g,, which lies in the Borel
subalgebra b, = g, Nb,. If we let h, denote the Cartan algebra of g., we get a
natural injection h, — ¢, —> ¢ — . This map induces a restriction map
h* — bi. The kernel of this map equals {p € b* | a”(n) = (o))" (p) = 0}.
The restriction map identifies the root subsystem >, with the root system of
go in b and maps XF = X, N XT into a set of positive roots XF. The set of
simple roots I, determined by 31 corresponds to II, under this identifica-
tion. In addition, if we let A\, denote the restriction of A € h* to b, we see
that 5 € 3, is equivalent to § € (X,),, for any 5 € %,.

In the case (a), go = sl(2,C) x s[(2,C), and o, acts as 05(&,n) = (n,§) for
&,n € sl(2,C). Thus &, is the diagonal in s[(2, C) x s[(2, C). This implies that
the group K, is a covering of the group PSL(2,C), i.e., it is either SL(2,C)
or PSL(2,C). In the first case, K, is the diagonal subgroup of SL(2,C) x
SL(2,C), and in the second the diagonal subgroup of PSL(2,C) x PSL(2,C).
The Harish-Chandra pair (g, K) is therefore linear in this case. By 7.1.(ii),
(3o)a, is either empty or equal to 3,. This implies that either ¥, Ny =0
or ¥, C Xy. This proves (*) in this case.

In the case (b), go = s((3, C) and the Harish-Chandra pair (g., Ks) is the
one described before 8.6 (by passing to a finite cover of K, if necessary). Let
= a—oa be the unique positive Q-real root in X}. Suppose {a, oga}NEy #
(). Then, without any loss of generality, we can assume that a”(\) € Z.

Assume first 8 € II. Then £7(p) = 1 and €™ (?) = —1. If w is the rep-
resentation of the stabilizer S,, by 8.6.(iii) we see that either w(ng)e!™ A +0)
or w(ng)e ™ AFP) has an eigenvalue equal to 1. This implies that w(ng)
has an eigenvalue equal to —e*™ (M), Hence the SLy-parity condition fails
for /3, contrary to our assumption. It follows that a”(\) ¢ Z and we have a
contradiction.

Assume now that 3 is not simple. Since @) is a Zuckerman orbit, by 5.10
we see that the root system of ()-real roots has the set of all simple Q-
real roots as a basis. Therefore, f = w7, where w is a product of simple
reflections with respect to Q-real roots, and v a simple (J-real root satisfying
v = wa—oguwa. By 7.9, the SLo-parity conditions hold for a connection 7’ on
@ which is compatible with wA + p. Therefore, by the preceding part of the
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proof, we conclude (wa)”(wA) ¢ Z. This in turn implies that o”(\) ¢ Z, and
we have a contradiction again. Therefore {o,oga} N Xy = 0, and (*) holds
also in this case. O

The preceding argument implies that we can replace C_(Q) by a smaller
subset which does not contain any element of the pair {o, —oga} if ¥, is
of type As, since integrality with respect to one of these roots automatically
implies that the S Ly-parity condition fails for the Q-real root 8 = a — oga.
Since the integrality of A with respect to a ()-complex root is easier to check
than the parity condition, it seems natural to leave this redundant condition.

The next corollary is the D-module version of a result of B. Speh and
D. Vogan ([20]). It can be deduced directly from 8.2, 8.4 and 8.5, skipping a
considerable amount of combinatorics related to C_(Q).

Corollary 8.8. Let (g, K) be a linear Harish-Chandra pair. Let Q) be a K-
orbit, X € h*. Then the following conditions are equivalent:

(i) D_(Q) N X\ = 0, and 7 satisfies the SLa-parity condition for every
Q-real root in X;
(i) Z(Q, T) is an irreducible Dy-module.

Proof. Using the notation from the preceding proof, by 7.1.(ii), it follows that
the condition ¥ N Xy = () is equivalent to

D_(Q)NZy = (B, U (-0%)) NEy =0

for linear Harish-Chandra pairs. This, in conjunction with the preceding
proof, completes the argument. O

9. Geometric classification of irreducible Harish-Chandra
modules

In this section we describe the geometric classification of irreducible Harish-
Chandra modules due to Beilinson and Bernstein [3].

Let V be an irreducible Harish-Chandra module. We can view V' as an
irreducible object in the category Ms,(Uy, K'). Clearly, the real parts of the
elements of # form a Weyl group orbit Ref and contain a unique strongly
antidominant element. If we fix a strongly antidominant A € 6, Re A is in-
dependent of the choice of A. By 2.15.(ii), there exists a unique irreducible
Dy-module V such that I'(X, V) = V. Since this Dy-module must be a Harish-
Chandra sheaf, it is of the form £(Q,7) for some K-orbit @ in X and irre-
ducible K-homogeneous connection 7 on (). Hence, there is a unique pair
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@, 7) such that I'(X, £(Q, 7)) = V. Therefore, if og is the involution deter-
Q
mined by (), we can define

1
A = 5()\ — o))

and

1
AQ=§u+my)

Clearly, A = Ao + A%. Moreover, by 7.1.(i), we have a"(\g) € R, i.e., A is a
real linear form on h*. In addition,

A? 4+ Redg = Re

is an invariant which depends only on 6.

If A is in addition regular, the above correspondence gives a parametriza-
tion of equivalence classes of irreducible Harish-Chandra modules by all pairs
(Q,7). On the other hand, if A is not regular, some of pairs (@, 7) corre-
spond to irreducible Harish-Chandra sheaves £(Q, 7) with I'(X, £(Q, 7)) = 0.
Therefore, to give a precise formulation of this classification of irreducible
Harish-Chandra modules, we have to determine a necessary and sufficient
condition for nonvanishing of global sections of irreducible Harish-Chandra
sheaves £(Q, 7).

Let A € b* be strongly antidominant and ) a K-orbit in X.

If o is Q-imaginary root, its dual root o vanishes on Ag, and a”(A) is
real.

Let

Yo={aeX|Rea’(\) =0}

Put X7 = Sy Nt and Iy = I1N Y. Since A is strongly antidominant, Il is
the basis of the root system Yo determined by the set of positive roots 3.
Let Wy be the Weyl group of X.

Let ¥1 = X Nog(Xo); equivalently, 3 is the largest root subsystem of
Yo invariant under og. Let ¥ = ¥ NY*, and II; the corresponding basis
of the root system ;. Clearly, Il N ¥, C II;, but this inclusion is strict in
general.

If o € I, there are the following possibilities:

(i) a is @Q-imaginary root and a”(\) = 0;
(i) o is @Q-complex and oga is positive;
(ili) « is Q-complex, —oga is positive;
(iv) «ais Q-real.
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Simple roots in Iy of type (i) and (iv) are automatically in II;. The roots in
Iy — IT; must be of type (ii) or (iii).
Let

Yo={ae¥|a’(\) =0}

If a € 34, by a previous remark, we have
1
a’(\9) = i(Re a’(A) + Re(oga)’(A)) = 0.

Therefore, it follows that for oo € X9, we have (oga)’(X) = 0 and oga € Y.
Hence, Y is also og-invariant. Let ¥3 = X N2+, and Iy the corresponding
basis of the root system 5. Again, IIg N Xy C II; N Xs C Ilp, but these
inclusions are strict in general.

The next theorem gives the simple necessary and sufficient condition for
I'(X,L£(Q, 7)) # 0, that was alluded to before. In effect, this completes the
classification of irreducible Harish-Chandra modules.

Theorem 9.1. Let A € h* be strongly antidominant. Let Q be a K-orbit in
X and 7 a K-homogeneous irreducible connection on Q) compatible with A+ p.
Then the following conditions are equivalent:

(i) T(X, L(Q, 7)) #0;
(ii) the following conditions hold for the pair (Q,T):
(a) the set Iy contains no compact Q-imaginary roots;

(b) for any Q-complex root o € ¥ with a”(X) = 0, the root oga is
also positive;

(c) for any Q-real a € ¥ with a”(\) = 0, 7 must satisfy the SLy-parity
condition with respect to a.

The proof is based on the following lemma.
Lemma 9.2. Let D_(Q)N1Ily = (0. Then

(Z) II; C Ho,‘

(ii) D_(Q)NXf = 0.
Proof. (i) Let I" = Ty N Ey. Let 8 € £f. Then 8 = 3 e, Na® Na € Zy,
and

oo = Z Na0Qo + Z NaoQO.

acll’ aclly—II"



94 Henryk Hecht et al.

Since ¥ is og-invariant, 0o and oga, a € I, are in ¥;. This implies that

Z naoga € Q(X1) C Q(Xo).

aclly—II’

Hence, with respect to the canonical inner product on b, we have

O:( Z naoQa’Re)\): Z na(oga | Re ).

a€clly—II’ aclly—IT"

Since Iy does not contain roots of type (iii), roots o € Il —II" are of type (ii).
Hence, the oga are positive roots and (oga | ReA) < 0. On the other hand,
a ¢ ¥ leads to (oga| Re X) # 0. Therefore, (cga | Re ) < 0 for a € Iy —1IT',
and ne, = 0 for these roots. It follows that § = > e nac, ie., II' is a basis
of ;. Hence, II; = II' C II,.

(i) Let 8 € D_(Q) N X§. Since B is a positive root in g, we have
B = Y aem, Mo With mq € Z,. By our assumption Ily consists of simple
roots of type (i), (ii) and (iv) only. Therefore, Iy = II{UIT] where IIj contains
the simple roots of type (i) and (iv) and IIfj contains the simple roots of type
(ii). Since IIfy C II;, we have Re(oga)”(A) = 0 for a € II;. On the other hand,
oqa are positive roots for a € IIfj, hence Re(oga)’(A) < 0. Since ogf is a
negative root, it follows that

0< (0gB|ReA) = > mq(oga|Re))

a€llp

= Z mq(ogal Re X) + Z mqa(oga|ReX) = Z mq(oga|ReX) <0.

aell a€lly aelly

Hence, Re(ogB)7(A) = 0, i.e., we have oo € ¥y. Therefore, we proved
that 8 € X7, i.e., we have

D_(Q)NZd =D_(Q)NXxy.

Since ¥ is og-invariant, by 5.4, we see that II; N D_(Q) = 0 implies X1 N
D_(Q) = 0. Therefore, we have D_(Q) N Xf = 0. O

Now we can prove 9.1. Let o € IIy be such that a”(A) # 0. Then
a’(A) is purely imaginary and s, is also strongly antidominant. Hence,
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I, - Mye(Dy) — Mye(Ds,») is an equivalence of categories by 2.9. There-
fore,

L5, (£(Q, 7)) = L(Q, 7)),

for some K-orbit @’ and an irreducible K-homogeneous connection on '
compatible with so\ + p. Also, by 2.10, we have

DX, L£(Q,7)) =T(X, L(Q, 7).

Therefore, the conditions (i) for £(Q,7) and L(Q', ') are equivalent.

We claim that the conditions (ii) for £(Q,7) and £(Q',7') are also equiv-
alent. Clearly, « is either ()-complex or Q)-real.

Assume first that o is Q-complex. By 6.5.(v), the set p;l(p(Q)) is
union of two K-orbits () and @Q". Since I, : Mye(Dy) — Mye(Ds, ) and
I, : Mye(Ds, \) —> Myc(Dy) are equivalences of categories, by 7.2, there ex-
ists a connection 7”7 on Q)" compatible with s, A+ p such that I, (Z(Q",7")) =
Z(Q, 7). It follows that I, (L(Q,7)) = L(Q",7"). Therefore, Q' = Q" and
7/ = 7", Since the situation is completely symmetric, without any lack of gen-
erality, by possible switching of the roles of the pairs (@, 7) and (@', 7), we can
assume that dim )’ = dim @) — 1. Since o = 5,000 05, by 6.11, we see that
So maps compact (Q-imaginary, noncompact -imaginary, ()-complex and Q-
real roots into compact (Q’-imaginary, noncompact ()’-imaginary, Q’-complex
and (Q'-real roots respectively. In addition, Xq is s,-invariant. Hence, s, maps
¥ into 1" and ¥y into 5. Since a is not in Xy, s, maps XJ into (3')*.
Therefore, s, maps Iy into I1,. Therefore, the conditions (ii)(a) for £(Q,T)
and L(Q', ") are equivalent. By 7.9.(i), the conditions (ii)(c) for £(Q, ) and
L(Q',7") are also equivalent. By 6.11, D_(Q) = so(D-(Q")) U {c, —oga}.
Therefore, D_(Q) N X consists of s,(D_(Q') N X7 ), a and possibly —oga
(if it is in ©{). Since Im a”()\) # 0 and a”(A9) is real, we see that

Im(oga)’(A) = —Ima’(X) # 0.

Hence, the conditions (ii)(b) for £(Q,7) and £(Q’,7') are also equivalent.

If ais Q-real, I (Z(Q,7)) = Z(Q,7s,) by 7.7. Hence, I, (L(Q,T)) =
L(Q,7s,) and Q' = @ and 7' = 7, in this case. Since s, commutes with og,
it follows that it maps ¥; into X} and Xy into Xf. Since « is not in Xy, s,
maps Y into (X2')*. Therefore, s, maps Iy into ITj. Clearly s, acts trivially
on @Q-imaginary roots, and the conditions (ii)(a) for £(Q, 7) and £(Q,7’) are
identical. Moreover, s, permutes ()-real roots in this case and, by 7.9.(ii), the
conditions (ii)(c) for £(Q,7) and L(Q,7’) are equivalent. Also, s, permutes
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positive Q-complex roots, hence the conditions (ii)(b) for £(Q, 7) and L(Q, 7’)
are equivalent.

This completes the proof of our claim.

First we establish the implication (ii)=-(i). Assume that I'(X, £(Q, 7)) =
0. By 2.17, there exists w € Wy such that I,,(£(Q, 7)) = 0. We prove that
(ii) does not hold by induction in ¢(w). First, assume that ¢(w) = 1. Then,
W = Sq, a € Iy, and the assertion follows from 7.5.

Assume that £(w) = p > 1. Then there exists a € Il and w’ € Wy such
that w = w's, and L(w') = p — 1. If I, (L(Q, 7)) = 0, we are done by the
previous step. Therefore, we can assume that I, (£(Q, 7)) # 0. There are two
possibilities:

(a) @"(X) = 03
(b) a’(A) #0.

Assume first that (a) holds. Then, by 2.16.(ii) we see that L£(Q,7) is the
unique irreducible quotient of I (L£(Q, 7)). Therefore, since I, is right exact,
Iy (L(Q, 7)) is a quotient of

T (15, (£(Q, 7)) = 1u(£(Q, 7)) = 0,

ie., Iy (L(Q,7)) = 0. By the induction assumption, (ii) cannot hold for
L(Q, 7).

Assume now that (b) holds. In this case, by the previous discussion,
I, (L(Q,7) = L(Q',7") and I'(X, L(Q', 7)) = T'(X,L(Q, 7)) = 0. There-
fore, I,y (L(Q',7")) = 0 and by the induction assumption the condition (ii)
fails for £(Q’,7"). The preceding discussion now implies that (ii) also fails for
L(Q, 7). This completes the proof of the implication (ii)=-(i).

Now we prove (i)=-(ii). Assume that I'(X, £(Q, 7)) # 0. The first step
in the reduction to the case D_(Q) N X§ = ). The proof is by downward
induction on Card(D_(Q)). Assume that D_(Q) N X§ is not empty. By 9.2,
there exists a € Iy such that « is @-complex and —oga is positive. By 2.17
and 7.5.(ii), a”(A) = 0 is impossible. Therefore, a”(A) # 0 holds. By the pre-
ceding discussion, in this case Is, (£(Q, 7)) = L(Q',7") and T'(X, L(Q', 7)) =
I'(X,£(Q, 7)) # 0. Moreover, the conditions (ii) for £(Q,7) and L(Q', 1)
are equivalent. On the other hand, we have Card D_(Q') = Card D_(Q) — 2
by 6.10, and in finitely many steps we are reduced to the situation where
D_(Q) N7 is empty.

In this situation the condition (ii)(b) is vacuous. Now we prove that (ii)(c)
holds. For a simple Q-real root « € II; there are two possibilities:

(a) a”(A) #0;
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(b) a”(A) = 0;

If (a) holds, as before, we conclude that we have I (L£(Q, 7)) = £(Q, ") and
(X, L(Q, 7)) =T(X, L(Q,7")). Also, conditions (ii) for £(Q, ) and L(Q, ")
are equivalent. Therefore, we can replace (Q,7) with (Q, 7).

If (b) holds, by 7.5, 7 must satisfy the S Lo-parity condition with respect to
«. In this case, by 7.8, we have I (Z(Q,7)) = Z(Q, ), i.e., 7" = 7. Moreover,
by 7.9.(ii), the SLo-parity condition for 7 is satisfied for Q-real root S if and
only if it is satisfied for the Q-real root s,0.

By definition, ¥ is og-invariant. Also, by 9.2, ¥, N D_(Q) = (). Hence,
Y7 is of Zuckerman type in ¥; with respect to the induced involution. By
5.10.(i), @-real roots in II; form a basis of the root system of all Q-real roots
in ;. By applying consecutive reflections with respect to simple Q-real roots
in II;, we see that the SLo-parity condition holds for all ()-real roots in .
Hence the condition (ii)(c) holds for £(Q, ).

It remains to show that (ii)(a) holds. This is an immediate consequence
of the following lemma.

Lemma 9.3. Assume that the pair (Q, T) satisfies [1; C Iy and the conditions
(i7)(b) and (ii)(c) from 9.1. Then the following conditions are equivalent:

(i) the set Iy contains no compact Q-imaginary roots;
(i) T(X, L(Q, 7)) # 0;
(iii) T(X.Z(Q,7)) # 0.

Proof. We already established that (i) implies (ii). That (ii) implies (iii) is
obvious. Therefore, we have to show that (iii) implies (i).
The root system Y5 can be characterized as

Yo =Ha € | Ima’(N) =0}

If X satisfies the condition Im a”(A\) < 0 for all a € 11y, we have IIy C II; C
[Ty C II. Hence, if a0 € Il5 is a compact Q-imaginary root, « is a simple root.
And in this case, by 7.6, we have I, (Z(Q, 7)) = 0. Since A is antidominant,
by 2.10, this implies by that

(X, Z2(Q, 7)) = I'(X, L, (Z(Q,7))) = 0.

Hence, we have a contradiction and (i) holds.

Assume that the above condition on A doesn’t hold. Then, there exist
an element w of minimal length in the Weyl group W; generated by the
reflections corresponding to roots in 3 such that w satisfies this property.
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Put k = ¢(w). We prove that (i) holds by induction in k. Let w = w’s,, with
w' € Wy, a € Ty, satisfying ¢(w’) = k — 1. Then, by the minimality of ¢(w),
we have s, Im A # Im A. Therefore, Im a”(\) # 0 and « is either Q-complex
or a ()-real. By a previous argument, [;, is an equivalence of categories,
there exists a K-orbit @' and an irreducible K-homogeneous connection 7’
compatible with s, A + p such that I, (Z(Q,7)) = Z(Q', 7). Then, by 2.10,
we have I'( X, Z(Q', 7)) = I'(X, Z(Q, 7)) # 0.

Since Yy is determined by Re A, it doesn’t change if we replace A by s A.
Therefore, Il is the same for (@, 7) and (@', 7). If a is Q-complex, by 6.11,
we have

0@ = 50 00Q 0 Sq = 0Q © Soqga © Sa-

Since o € 31, we have o € ¥y and oga € Xg. It follows that
2/1 =N O'Q/(Eo) =>oN O’Q(ZO) =y,

and 1T} = 1II;.

If o is Q-real, we know from a previous discussion that ' = @, hence
T} = I in this case too. Therefore, the conditions of the lemma are satisfied
for (@', 7).

Now, w'(sqA) satisfies the above condition and ¢(w’) = k — 1. Hence, (i)
holds for Z(Q', 7') by the induction assumption. We already established that
the condition (i) holds for (@, 7) if and only if it holds for (@', 7'). Therefore,
(i) holds for Z(Q, 7). O

Let V' be an irreducible Harish-Chandra module in M, (Up, K). In gen-
eral, the Weyl group orbit 6 contains several strongly antidominant elements.
For different strongly antidominant A in 6, V = I'(X, £(Q, 7)) for different
pairs (@, T), as one can easily check in simple examples (like the discussions
of SL(2,R) in the introduction of [12] and SL(2,C) at the end of [19]). Still,
the K-conjugacy class of og-stable Cartan subalgebras attached to K-orbits
@ is uniquely determined by V:

Proposition 9.4. Let 0 be a Weyl group orbit in b*. Let V' be an irreducible
Harish-Chandra module in M (U, K). Let \,\' € 0 be strongly antidomi-
nant, Q, Q' be K-orbits in X and 7, 7’ irreducible K-homogeneous connec-
tions on Q, resp. Q', compatible with X + p, resp. X + p, such that

VX, LQ,7) 2T(X, L(Q, 7).

Then:
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(i) the orbits Q and Q' are attached to the same K-conjugacy class of o-
stable Cartan subalgebras in g;
(ZZ) R,e )\Q — Re )\/62,;
(iii) X9 = (\)<'.

Proof. Fix an antidominant A in 6. Then, by 2.15.(ii), there exists a unique
pair (@, 7) consisting of a K-orbit () and an irreducible homogeneous con-
nection 7 on ) compatible with A + p such that V' =T'(X, £(Q, 7)).

Let Wy = W(Re\) be the stabilizer of Re A in W. Then W), is generated
by reflections with respect to the roots o € II orthogonal to Re A. Clearly, wA
is strongly antidominant if and only if w € W,. Consider the set S of pairs
(Q',N) of K-orbits @' and strongly antidominant A’ such that there exists
an irreducible K-homogeneous connection 7/ on ' compatible with X + p
satisfying I'(X, £(Q', 7)) = I'(X, L(Q, 7)). Fix such pair (@', \'). Let w be
the shortest element in Wy such that X' = wA. We prove the statements (i)
and (ii) by induction in ¢(w). If £(w) = 0, by 2.15.(ii), we see that @ = Q'
Let {(w) > 0. Then w = s,w’, where w' € Wy, {(w) = {(w') + 1, and a € T
such that a”(ReA) = 0. Then, a”(\) # 0 by the minimality of w; and a”(\)
is purely imaginary. Therefore, by 7.1.(i), @ cannot be a ()’-imaginary root.

Moreover, by 2.9, the intertwining functor I, is an equivalence of cate-
gories. Hence [, (L(Q',7")) = L(Q",7") for some pair (Q",7"), where 7" is
an irreducible K-homogeneous connection on Q" compatible with \”" + p =
SaN 4+ p=w'X+ p. By 2.10, we have

DX, L(Q", ") =T(X, L, (£(Q", 7)) = T(X, L(Q', 7)) = T'(X, L(Q, 7))

Hence, by the induction assumption, Q" corresponds to the same conjugacy
class of o-stable Cartan subalgebras as () and Re Xc/g” = Re \g.

We already remarked that « is either Q’-real or @)'-complex. In the first
case, by 7.7, we have I, (Z(Q',7")) = Z(Q',7s,) for some irreducible K-
homogeneous connection 75, on Q' compatible with A” 4 p. Therefore, we have
L, (L(Q, 7)) = L(Q, 7s,). Tt follows that Q" = @'. Since Re N = Re N, we
have

1 1
ReAg = Re A, = Re 5()\” —ogr\") = Re 5()\' —ogN) =Re)g.
In the second case, by an analogous argument using 7.2, we see that Q" and

@' correspond to the same K-conjugacy class of o-stable Cartan subalgebras,
and ogr = 54 0 0@ © 54 by 6.11. Therefore,
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ReAg = Re Mg, = Re %()\" —ogr\") =Re %()\” — 500 Sa\")
= Re%(x\’ —ogN) =Re)y.
On the other hand, as we remarked before,
Re A = A9 + Re g
depends only of 8. Hence, we have
A9 +Redg = (V)? + Re )y,

and, finally, \¢ = (\)<". O

Therefore, the invariants Re A\g and A% do not depend on £(Q,7) but
only on the Harish-Chandra module V = TI'(X, £(Q, 7)). Hence, can define

ky = Re)g and k" = \¢

and call it them the Langlands invariant ky and the Vogan-Zuckerman in-
variant KV of V.

In 11.7 we are going to show that an irreducible Harish-Chandra module
V' is tempered if and only if Ky = 0.

10. Decomposition of global sections of standard
Harish-Chandra sheaves

Let 6 be a Weyl group orbit in h* and A € 0 strongly antidominant. Let
Q@ be a K-orbit in the flag variety X and 7 an irreducible K-homogeneous
connection on ) compatible with A + p. Let Z(Q, 7) be the standard Harish-
Chandra sheaf attached to (Q,7) and £(Q,7) its unique irreducible Harish-
Chandra subsheaf. In 9.1 we established a necessary and sufficient criterion
for I'(X, £(Q, 7)) = 0. In this section we want to prove some preliminary
results on the structure of Harish-Chandra modules I'(X, Z(Q, 7)). We start
with the easy case.

Lemma 10.1. Let 0 be a Weyl group orbit in h*, and A € 0 antidominant.
Let @ be a K-orbit in the flag variety X and T an irreducible K-homogeneous
connection on @ compatible with X\ + p. Assume that I'(X, L(Q,T)) # 0.
Then T'(X, L(Q, 7)) is the unique irreducible Harish-Chandra submodule in

N(X,Z(Q,1)).
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Proof. Let V =T(X, £(Q,7)). Then, by 2.15.(i), V is an irreducible Harish-
Chandra module. Hence, it is an irreducible Harish-Chandra submodule of
I'(X,Z(Q,7)). Assume that U is another irreducible Harish-Chandra sub-
module of T'(X,Z(Q,7)). Then the adjointness of Ay and I'(X,—) implies
that we have a nontrivial Dy-module morphism ¢ of Ay(U) into Z(Q, 7). It
follows that the image im ¢ of Ay(U) is a Harish-Chandra subsheaf of Z(Q, 7)
which contains £(Q, 7). Therefore, I'(X, J) is a Harish-Chandra submodule
of I'(X, Z(Q, 7)) which contains V as a composition factor. On the other hand,
it must also be a quotient of I'(X, A\(U)) = U, and we have U = V. O

In particular, if I'(X, £(Q, 7)) # 0, I'(X,Z(Q, 7)) is an indecomposable
Harish-Chandra module.

Now we want to consider the general case. The main result is the following
theorem.

Theorem 10.2. Let 6 be a Weyl group orbit in h*, and \ € 6 strongly an-
tidominant. Let Q) be a K-orbit in the flag variety X and T an irreducible
K -homogeneous connection on (Q compatible with A+ p. Assume that the Uy-
module I'(X,Z(Q, 7)) # 0. Then, there exist

(a) a unique family (Q1,Qo2,...,Qp) of K-orbits in X;
(b) a unique family of K-homogeneous irreducible connections 1; on @,
1 < <p, compatible with X\ + p;

such that

(i)
P
MX,Z(Q.7)) = DT X, Z(Q: 7))
i=1
is the (unique) decomposition of T'(X,Z(Q,T)) into a direct sum of in-

decomposable Harish-Chandra modules.

Then Q;, 1 < i < p, are in the closure of Q.
The Langlands invariants and the Vogan-Zuckerman invariants of irre-
ducible Harish-Chandra modules V;, 1 <1 < p, are given by

kv, = Re Ag and £V =\ for 1 <i<p.
If the pair (Q,T) satisfies the condition (ii)(c) from 9.1 we have p = 1.

If the pair (Q,T) satisfies the conditions (ii)(b) and (ii)(c) from 9.1, the
condition (ii)(a) from 9.1 is also satisfied.
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Proof. Since the Harish-Chandra modules I'(X,Z(Q;, 7;)) are indecompos-
able if (i) holds, the decomposition of I'(X, Z(Q, 7)) is just the decomposition
into indecomposable direct summands. Hence, the modules I'(X,Z(Q;, 7))
are uniquely determined. Moreover, each indecomposable direct summand
I'(X,Z(Q;, 7)) has a unique irreducible submodule I'(X, £(Q;, 7;)) by 10.1.
Therefore, by 2.15, the irreducible Dy-modules £(Q;, ;) are uniquely deter-
mined. This proves the uniqueness in (a) and (b).

Clearly, the composition factors of the Harish-Chandra sheaf Z(Q, )
are of the form L£(Q',7") for some K-orbits Q' C @ and irreducible K-
homogeneous connections 7" on @'. Since A is antidominant, I'(X, —) is ex-
act and, by 2.15, the composition factors of I'(X,Z(Q, 7)) are exactly such
I'(X,L(Q',7") # 0. Therefore, all V; are also of the form I'(X, £(Q',7")).
Applying 2.15 again, we see that @Q; must be among @', and Q; C Q.

It remains to prove the existence of the decomposition and its last two
properties. We use a reduction argument similar to the proof of 9.1. We use
freely the notation and results from this proof.

First we recall some results from the proof of 9.1. Let o be a root from
Iy, i.e., a simple root such that Rea’(A) = 0. Assume that a”(\) # 0.
Then I, : Mge(Dy) — Mye(Ds,») is an equivalence of categories. Let @
be a K-orbit in X and 7 an irreducible K-homogeneous connection on ()
compatible with A\ 4+ p. By 7.1.(i), « is either Q-complex or Q-real. If « is
Q-complex, there exists a K-orbit @’ such that Q U Q' = p,'(p(Q)) and
an irreducible K-homogeneous connection 7/ on @’ compatible with s, A\ + p,
such that I (Z(Q,7)) = Z(Q', 7). If a is Q-real, I (Z(Q, 7)) = Z(Q', 7’) for
@’ = Q and an irreducible K-homogeneous connection 7 on @’ compatible
with saA + p. In addition, I, (£(Q, 7)) = L£(Q',7’) in both cases, and the
conditions (ii)(a), (ii)(b) and (ii)(c) from 9.1 for the pairs (@, 7) and (@', 7")
are equivalent.

Now we prove a reduction argument. Let () be a K-orbit in X and 7 and
irreducible K-homogeneous connection on @-compatible with A 4+ p. Then,
since both A and s, A are antidominant, we have

X, Z(Q, 7)) = I(X, [, (Z(Q', 7)) = T(X, (@', 7).

Assume that the assertion of the theorem holds for Z(Q’, 7’), i.e., we have the
decomposition

F(sz(Qla 7—/)) = @ F(XvI(Qg, T;))
i=1

for some K-orbits @) and irreducible K-homogeneous connections 7; on @)’
compatible with sy A + p. Clearly, I, : Mye(Ds,x) —> Mye(Dy) is also an
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equivalence of categories. Therefore, as before, we get

P
DX, Z(Q. 7)) = P T, L. (Z(Q}, 7))
i=1
But, as we remarked before, Is (Z(Q},7])) = Z(Qs, ;) for some K-orbits Q;
in X and irreducible K-homogeneous connections 7; on ¢; compatible with
A+ p. In addition,

Vi =T(X, L(Qi, 7)) = T(X, L, (L£(Q5, 7)) = T'(X, L(Q;, 7)) = VI,
and we obtained a decomposition of I'( X, Z(Q, 7)) with the required proper-
ties. Clearly, ky, = kyy and kY = kY for 1 < i < p. On the other hand, we
have Re Ag = Re(sa\) g and A9 = (5,A)9 as in the proof of 9.4. Therefore,
the assertion of the theorem holds for Z(Q, 7).

Now we prove the existence by induction in dim Q). If dim () is minimal
possible, @ is closed and Z(Q, 7) is irreducible. Hence, by 9.1, the statement
follows immediately.

Assume that dim () is not minimal and that the assertions of the theorem
hold for all standard Harish-Chandra sheaves attached to the orbits of lower
dimension. If T'(X, £(Q, 7)) # 0, then the statement follows from 10.1. Hence,
we can assume that I'(X, £(Q, 7)) = 0. Then, there exists a root in ¥ which
fails to satisfy one of the conditions in 9.1.(ii).

Assume first that D_(Q) N1y # 0. Let o« € D_(Q) N1lp. Then « is a
@-complex simple root and Re a(A) = 0.

Assume first that a(\) # 0. As in the proof of 9.1, we conclude that
I, (Z(Q, 7)) = Z(Q', ") for the other K-orbit Q" in p'(p(Q)) and an irre-
ducible connection 7" on Q' compatible with s, + p. Moreover, by 6.5.(v),
dim Q" = dim @ — 1. By the reduction statement, we see that the assertions
of the theorem for Z(Q, 7) follow from the induction assumption for Z(Q’, 7').

Assume now that a”(A) = 0. In this case, by 7.2, there exists an irreducible

K-homogeneous connection 7" on @’ compatible with A 4+ p and such that
I, (Z(Q', 7)) = Z(Q, 7). Hence,

p

F(X,I(Q, T)) = F(X, I, (I(le TI))) = F<X7I(QI7 TI)) = @F(X’I(Qia Tz,))

i=1

and by the induction assumption applied to Z(Q)',7’). Therefore, if we put
Q; = Q) and 7; = 7/ we get the existence of the decomposition having the
properties (i) and (ii). Moreover, as in the proof of 9.4, we see that A9 =
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A9 and Re Ag = ReAg. Finally, as we remarked in the proof of 9.1, s,
maps '-real roots into Q’-real roots and by 7.9, 7 satisfies the SLy-parity
condition with respect to a @Q-real root § if and only if 7/ satisfies the SLo-
parity condition with respect to a @’-real root s,/. Therefore, the theorem
holds for Z(Q, 7) by the induction assumption.

As in the proof of 9.1, by downward induction on Card D_(Q), we reduce
this to the case D_(Q)N X = 0. In this situation, the condition (ii)(b) from
9.1 becomes vacuous.

Assume that the connection 7 satisfies the SLo-parity condition with re-
spect to all @-real roots [ such that 57(A) = 0. By 9.3, since we assumed
that I'(X, £(Q, 7)) = 0, we have a contradiction with the assumption that
X, Z(Q, 1)) # 0.

Therefore, for Z(Q, ) there exists a Q-real root 8 € ¥y such that 7 fails
the SLy-parity condition with respect to 8. In this situation, as we remarked
in the proof of 9.1, the Q-real roots in Il form a basis of all the root system
of all ()-real roots in Xy. Let a be such @-real simple root. Then we have
either Ima”"(\) # 0 or a”(\) = 0.

Assume first that Im a”(\) # 0. Then, I,(Z(Q, 7)) = Z(Q, 7s,) by 7.7. By
the reduction result, the theorem holds for Z(Q, 7) if and only if it holds for
Z(Q, 7s,)-

Assume now that a”(A) = 0 and the SLo-parity condition holds for 7 with
respect . Then by 7.8 and 7.9, we see that for any )-real root 3, T satisfies
the SLs-parity condition with respect to g if and only if it also satisfies the
SLy-parity condition with respect to s,0.

Therefore, there exists w € W which is a product of reflections with
respect to @-real roots in Ily, an irreducible K-homogeneous connection 7/
on () compatible with w\ + p and such that 7/ fails the SLy-parity condition
with respect to wf € Ily, and the theorem holds for I'( X, Z(Q, 7)) if and only
if it holds for I'(X, Z(Q, 7")).

Hence, we can assume that § is a ()-real simple root and the connection
7 fails the SLy-parity condition with respect to 5. By 7.10, there exists a
Harish-Chandra subsheaf C such that

O—C—I(Q,7) — Q —0,

I,,(C) = 0 and Q is a direct sum of standard Harish-Chandra sheaves attached
to K-orbits in p;'(ps(Q)) — Q. Hence, by 2.10, T'(X,C) = (X, I,,(C)) = 0.

Therefore,

(X, Z(Q, 7)) = T'(X, Q).



Irreducibility and classification 105

Since dim(pgl(pg(Q)) — @) < dim(Q), by the induction assumption

p

D(X,Z(Q,7) = PT(X, Z(Qi, 7))

i=1

for some K-orbits @); and irreducible K-homogeneous connections 7; on ;.
Let Q" be an orbit in pgl(p/g(@)) — Q. Then, by 6.5 and 6.8, 0y = sgoog =
0g o sg. Therefore, Re \g = Re A\g and A?" = \Q. Hence, by the induction
assumption, xy; = Re A\g and KV = A<, O

11. n-homology of Harish-Chandra modules

In this section we specialize the results of §3 to Harish-Chandra modules.

The open K-orbit @, C X is clearly a Langlands orbit. By 6.4, all Q,-
imaginary roots are compact, and by 5.10, the set P = ¥;UX™ is a parabolic
set of roots. Therefore, for an arbitrary x € ),, P determines a parabolic
subalgebra p, D b,. Let u, be the nilpotent radical of p,. For any o-stable
Cartan subalgebra ¢ in b,, let ¢ = t ® a be the decomposition into the o-
eigenspaces with eigenvalues 1 and —1 respectively. Then the centralizer of a
in g is a o-stable Levi factor of p,. Since all Q,-imaginary roots are compact,
it is the direct product of the centralizer m of a in ¢ with a. Let M be the
centralizer of a in K. Then M is a reductive subgroup of K with Lie algebra
m.

Let V be a Harish-Chandra module in M,(Uy, K') for some W-orbit ¢
in h*. Then Hy(u,, V) is an algebraic M-module and an a-module. By the
specialization we can view it as an ag,-module. The h-module Hy(n,, V)
is a quotient of Hy(u,, V'), and the natural projection is a morphism of ag, -
modules. It can be viewed as the module of lowest weight vectors of Hy(u,, V).
Since Hy(n,, V) is finite-dimensional, Hy(u,, V) must be finite-dimensional
too.

A nonzero restriction of a root from ¥ to ag, is called a restricted root.
It is well-known [1], that the set ¥, of all restricted roots is a root system in
ag,, the restricted root system of the Harish-Chandra pair (g, /(). We define
an ordering on this root system by choosing X1 to be the set consisting of
all nonzero restrictions of roots from X*. Denote by II, the corresponding set
of simple restricted roots. This is the set of distinct non-zero restrictions of
elements of II. Let C be the real cone in ag, consisting of restrictions of all
A € b* such that 0 < A. In other words, this is the cone consisting of all linear
combinations of elements of Il, with coefficients with nonnegative real part.
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We call C the tempered cone. We denote the corresponding ordering on the
vector space ag, by <.

Let § = plag,. We say that a linear form p € ag, is a restricted exponent
of V' if Hy(uz, V) (uss) # 0. The set of restricted exponents is independent of
the choice of x € Q,.

In §3 we introduced the notion of an exponent of a finitely generated Uy-
module. If A € h* is an exponent of V', Ho(nz,V)(r4,) # 0 for all z in some
open dense subset of K. If V' is a Harish-Chandra module, by K-equivariance,
this set must include the open K-orbit @),. This implies the following result:

Lemma 11.1. The set of restricted exponents of V.€ Myq(Up, K) is equal
to the set of all restrictions of the exponents of V to ag,.

A Harish-Chandra module V' is tempered if all of its restricted exponents
lie in the tempered cone C. A tempered Harish-Chandra module is square-
integrable if all of its restricted exponents lie in the interior of the tempered
cone C.

Remark 11.2. Let Gy be a connected semisimple Lie group with finite center
and K its maximal compact subgroup. Denote by g the complexified Lie al-
gebra of Gy and by K the complexification of Ky. Let o be the corresponding
Cartan involution of g. Then our category M., (Up, K) is the “classical” cat-
egory of Harish-Chandra modules with infinitesimal character corresponding
to 6. In this situation, the notions of tempered and square-integrable repre-
sentations were introduced by Harish-Chandra in terms of growth of Ky-finite
matrix coefficients on Gy. By the results of ([8], [16]) these two definitions are
equivalent.

Now we use the results of §3 to obtain information on restricted exponents
of global sections of Harish-Chandra sheaves with irreducible support. Recall
the notation @Q,,, for K-orbits @, introduced in §6.

Lemma 11.3. Let A € h* be strongly antidominant, Q a K-orbit in X and

V € Meon(Dy, K) with supp(V) = Q. Let w € W be transversal to Q. Then:

(i) wlag) C aq,-
There exists a set ®,, of mutually orthogonal Q.-real Toots in X with the

following properties:

(it) the roots in ®,, vanish on w(ag) and their dual roots span a complement

of w(ag) in ag,;
(i17) a”(wX) >0 for all o € .
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Proof. We proceed by induction in ¢(w). If /(w) = 0, w = 1 and @, = 0.
Thus we may assume that ¢(w) > 1. In this case, w = sqw’, where a € I and
w' € W with £(w') = ¢(w) — 1. If w is transversal to @, w’ is transversal to
Q@ and s, is transversal to (), by 6.6. Assume that « is Q},-complex. Then
0Q, = 50 ©0Q,, ©Sa by 6.11. Hence,

salag,,) = aq,

and, by the induction assumption,

w(aQ) = sa(w'(aqQ)) C salag,,) = ag,-

Also if 3 is a Qy-real root, s, is a Qy-real root. Since s, permutes positive
roots different from o, ®,, = s,(Py,r) consists of positive @,-real roots. The
roots of ®,, vanish on w'(ag), hence the roots of ®,, vanish on w(ag) =

w'(ag). Also, by induction assumption, the dual roots of the roots in @,
span a complement to w'(ag) in ag,,. Hence, the dual roots of the roots in
®,, span a complement to w(ag) = so(w'(ag)) in ag, = sa(ag,,). Moreover,
for g € @,

B7(wA) = B7(sqw'\) = (sa8)"(w'A) >0,

by the induction assumption.

Assume now that a is noncompact @,-imaginary. Then, by 6.8, 0g, =
5q 00q,, and « vanishes on ag_,. Hence, the roots in ®,, are @,-real and
Qu-real root « is orthogonal to them. Put &, = ®,, U {a}. Since ag, is
the direct sum of ag , and the line spanned by a’, we see by the induction
assumption that

w(ag) = sa(w'(ag)) C salag,,) = aq,, C aq,

the root a vanishes on w(ag) and the dual roots of the roots in ®,, span a
complement of w(ag) in ag,, . Finally, for § € ®,,, since /5 is orthogonal to a,

B(wA) = B(saw'\) = (sa8)"(w'X) = 87(w'\) >0,

by the induction assumption. On the other hand, since supp(V) = @ and
w’ is transversal to @, by 3.2.(i) and 3.5, supp Ly (V) = Q.. Hence, I, (V)
must contain an irreducible composition factor isomorphic to £(Q,, ) for
some irreducible K-homogeneous connection 7 on @,. Therefore, a”(w'\) €
R by 7.1. Since A is strongly antidominant and w’ < w, we have w'\ <
wA = sqw'\ = w'A — a”(w'\)a by 3.9. Hence, 0 > a”(w'\) = —a”(wl), ie.,
a’(wA) > 0. O
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Let A be strongly antidominant, @ a K-orbit and V € M., (Dy, K) with
supp(V) = Q. Let w € W be transversal to Q of maximal possible length.
Denote by 0, the subspace of ag, spanned by roots dual to ®,,. Then we
have the direct sum decomposition

aQo = w(aQ) @ aw

and
h=tg, ®wlag) ® 0.
On the other hand,
h =ty ®ag,

Hence, w(tg) = tg, ®0y. Let Ag = 3(A—0gA) be the linear form on h which
was introduced in the last section. Then, wAg vanishes on tg, © 9, and we
can view it as a linear form on ag,. On w(ag) it agrees with wA. On the other
hand, the restriction of wA to 0, is equal to %Zaeéw a’(wA)a. This implies
that the restriction of wA to ag, is equal to the sum of the restriction of wg
to ag, and 1" . @ (wA)a. Therefore, by 11.3.(iii),

w)\\aQu > w)\Q.

Let v be the unique element of the Weyl group orbit of Re Ay which lies in
the closure of the negative Weyl chamber in h*.

Lemma 11.4. (i) The linear form v € b* wvanishes on tg,, i.e. it can be
viewed as an element of ag, .

(ii) Let W be the subset of 11, consisting of all roots orthogonal to v.
There exists w € W transversal to @ of mazimal possible length such that
wRe g = v. For any such w

wReMag, =v+ Y _ s,
Bew

where cg > 0.

Proof. By the preceding discussion, (ii) implies (i). By applying 5.2 to Re A
we see that there exists v € W such that a’(vReAg) < 0 for @ € ¥ and
¥ C D4 (Q). By definition, this implies v = v Re A\g. Also, v is transversal to
@ by 6.9, and @, is a Langlands orbit attached to the same conjugacy class of
o-stable Cartan subalgebras as () by 5.2 and 6.11. Let u be an element of W
transversal to @), of maximal length. Then, by 6.6, w = uw is transversal to @
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of maximal length. By 6.21, u € Wg, where O is the set of all @,-imaginary
simple roots. Since Ag vanishes on tg, v = vRe \g vanishes on tg, = vtg.
This implies uv = v, i.e., v = wRe Ag.

Assume that w € W is any element transversal to @) of maximal possible
length such that v = w Re Ag. By the preceding discussion, wA¢g vanishes on
tg, ® 0, and the roots in ®,, vanish on w(ag). Hence the roots in ®,, are
orthogonal to v. Moreover,

1
wReMag, =v+ 3 Z a’(wA)a.

Oéeq>w

Let ¥, w be the root subsystem of ¥, generated by W. Since v lies in the closure
of the negative (restricted) Weyl chamber, ¥, y is the set of all restricted roots
orthogonal to v. On the other hand, ®,, consists of (),-real roots, what yields
P, C Yo NE}. Hence

wReMag, =v+ Y _ s,
BeV

where cg > 0. ]

Since v < w'Ag for all w’ € W, by 11.4.(i) and a preceding inequality, we
have

Vv U))\|(1Q0

for any w transversal to @ of maximal possible length. By 3.10.(i), it follows
that if w is a restricted exponent of V' = I'(X,V), v < w. This implies the
following result.

Proposition 11.5. Let A € 0 be strongly antidominant, ) a K-orbit in X
and V a Harish-Chandra sheaf in Mon(Dy, K) with suppV = Q. Then:

(1) if ReAag = 0, the Harish-Chandra module I'(X,V) is either tempered
or zero;

(it) if ag = 0 and X is regular, the Harish-Chandra module I'(X,V) is
square-integrable.

Proof. (i) follows immediately from the preceding discussion, since Re A|ag =
0 implies ReA\g = 0 and v = 0.

(ii) In this case, by 3.10.(i), for any restricted exponent w there exists
w € W transversal to () of maximal possible length such that wA|ag, < w.
By the preceding discussion, this implies that w > £ 3 c. @ (wA)a. Since in
our situation ®,, consists of positive roots which span ag, and the coefficients
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are strictly positive by regularity and 11.3.(iii), we conclude that w is in the
interior of the tempered cone C. O

Conversely,

Proposition 11.6. Let A € 0 be strongly antidominant, () a K-orbit in X
and V an irreducible Harish-Chandra sheaf in M con(Dy, K) with suppV = @
such that V- =T(X,V) # 0. Then:

(i) if V is tempered, Re Mag = 0;
(it) if V is square-integrable, ag = 0 and X is reqular.

Proof. (i) By 3.10.(ii), wA|ag, is a restricted exponent for any w € W
transversal to () of maximal possible length. Choose w which satisfies the
conditions of 11.4.(ii). Since v is a linear combination of (restricted) fun-
damental weights corresponding to simple roots from II, — ¥ with negative
coefficients, we see that wA|ag, is in the tempered cone only if v = 0. This
in turn implies that Re Ajag = 0.

(ii) Since V' is tempered, by (i) it follows that ¥ = 0. Let w € W be the
element transversal to () of maximal possible length constructed in the proof
of 11.4.(ii). The argument there can be sharpened as follows. Since u € Weg,

w(ag) = w(ag) = u(ag,) = aq,

®,, consists of Q,-imaginary roots by 11.3.(ii). Since @, is a Langlands orbit,
(Q,-imaginary roots are generated by the set of simple (),-imaginary roots by
5.10. Their non-zero restrictions to ag, form a subset ©, of the set II, of all
simple restricted roots such that their span contains ®,,. Hence, ©, C ¥ and
as in the proof of 11.4.(ii)

whlag, = Y ¢sf,

BEB,

where ¢z > 0. If wA|ag, is in the interior of tempered cone, ©, must be equal
to Il,. Since the roots in ©, vanish on ag,, this is possible only if ag, = 0.
This in turn implies that ag = 0.

It remains to show that X is regular. Since ag = 0, the orbit () is closed by
6.16 and all roots are Q-imaginary. Therefore, V = L(Q, 7) = Z(Q, ) for some
irreducible K-homogeneous connection 7 on (. Assume that a”(\) = 0 for
a € IL. If « is compact, LI, (D(V)) = D(V)[1] by 7.5. This in turn implies, by
2.17, that I'(X, V) = 0 contradicting our assumption. If o is noncompact, s, is
transversal to ) by 6.7. Also, Q' = @, is a K-orbit such that ag is spanned
by a” by 6.8. Hence, A|ag = 0. The argument from the preceding paragraph
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implies that there exists w € W transversal to Q' of maximal possible length
such that wA|ag, is not in the interior of the tempered cone. By 6.6, ws, is
transversal to @ and {(ws,) = ¢(w)+1 = codim Q'+ 1 = codim @, i.e., it has
the maximal possible length. In addition, wsyA|ag, = wA|ag, is not in the
interior of the tempered cone, contradicting square-integrability of I'(X, V).
Hence, A must be regular. O

Finally, by combining 11.5 and 11.6, we get the following result which
explains the meaning of the vanishing of the Langlands invariant ki .

Corollary 11.7. Let V' be an irreducible Harish-Chandra module. Then the
following conditions are equivalent:

(i) V is tempered;
(ZZ) Ry = 0.

12. Tempered Harish-Chandra modules

In this section we reprove some “classical” results about tempered Harish-
Chandra modules. These results are certainly well-known, but our arguments
are completely new and we think much simpler and conceptual than the
traditional ones.

Let V' be an irreducible Harish-Chandra module in M(Uy, K). Let A € 0
be strongly antidominant. As we discussed in the last section, there ex-
ists a unique pair (@, 7) consisting of a K-orbit ) and an irreducible K-
homogeneous connection 7 on K compatible with A + p, such that V' =
I'(X, £(Q,7)). The orbit @ determines an involution og on h*. As before, we
put

Y1 ={a e X |Rea’(N) = Re(oga)’(\) = 0}.
The following sufficient condition is useful in determining if a root is in ;.

Observation 12.1. Let A be strongly antidominant. Let o be a root such that
Rea”(Ag) = 0. Assume that « is either in D_(Q) or Q-real. Then « is in
3.

Proof. First, a”(\) — (cga)”(A) is imaginary, i.e.,
Rea’(A) = Re(oga)™(N).

This immediately implies the statement if « is Q-real. In the other case, since
—oga € X1 and A is strongly antidominant, it follows that Re(oga)”(A) > 0,
and Rea’(\) = 0. O
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In particular, if Re Ag = 0, all roots @ € D_(Q) and all (-real roots are
in ¥;. Hence, 12.1 has the following consequence which was first proved by
Ivan Mirkovié [17].

Theorem 12.2. Let A € b* be strongly antidominant. Let Q) be a K-orbit
in X and T an irreducible K-homogeneous connection on Q) compatible with
A+ p. Assume that ReA\g = 0. Then I'(X, L(Q, 7)) # 0 implies that Z(Q),T)
is irreducible, i.e., L(Q,T7) =Z(Q,T).

Proof. As we already remarked, all roots o € D_(Q) and all Q-real roots are
in ;. Therefore, by 12.1, for all Q-complex positive roots o € D_(Q) we
have a”(\) # 0. In addition, for all Q-real roots the SLo-parity condition is
satisfied. Hence, Z(Q, 7) is irreducible by 8.7. O

Theorem 12.2; in conjunction with 11.7, provides also a classification of
the tempered irreducible Harish-Chandra modules. Specifically, by 11.7, the
condition Re Ao = 0 is equivalent to the temperedness of the Harish-Chandra
module I'(X, £(Q, 7)). Thus 12.2 explains the simplicity of the classification
of tempered irreducible Harish-Chandra modules: every tempered irreducible
Harish-Chandra module is the space of global sections of an irreducible stan-
dard Harish-Chandra sheaf.

In combination with 10.2, we get the following result.

Corollary 12.3. Let A € h* be strongly antidominant. Let Q) be a K-orbit
i X and T an irreducible K-homogeneous connection on ) compatible with
A+p. Assume that Re A\g = 0. Then T'(X,Z(Q, 7)) is a direct sum of tempered
irreducible Harish-Chandra modules.

IfT(X,Z(Q, 7)) is reducible, the SLy-parity condition for T fails for some
Q-real root a.

The situation becomes especially simple in the case of square-integrable ir-
reducible Harish-Chandra modules. We reprove Harish-Chandra’s celebrated
results [10]. First, we have his criterion for existence of square-integrable
Harish-Chandra modules.

Theorem 12.4. Assume that M,(Up, IX) contains square-integrable Harish-
Chandra modules. Then

(i) rank g = rank K;
(ii) the orbit 0 is reqular and real.
Proof. Assume that V is an irreducible square-integrable Harish-Chandra

module. Then, by the above discussion there exist a strongly antidominant
A €0, a K-orbit @ in X and an irreducible K-homogeneous connection 7 on
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@) compatible with A + p, such that V' = I'(X, £(Q, 7)). By 11.6.(ii), this im-
plies that A is regular and that ag = 0. The latter condition this is equivalent
with the equality of ranks and, by 7.1, it also implies that A is real. O

Harish-Chandra’s enumeration of the discrete series is thus equivalent
to the following result. By 12.4, we assume that rankg = rank K. As we
remarked in the proof of 12.4, if I'(X, £L(Q, 7)) is square-integrable, we have
ag = 0 and og = 1. Hence, all Borel subalgebras in () are o-stable. By
6.16, the K-orbit () is necessarily closed. The stabilizer of a point in @ in
K is a Borel subgroup of K. Therefore, on @) there exists an irreducible
K-homogeneous connection 7g \ compatible with A + p if and only if A +
p specializes to the differential of a character of this Borel subgroup. The
connection 7g y is completely determined by A+ p. In this case, the standard
module Z(Q, 7¢,») is irreducible.

Since 0 is real, it contains a unique strongly antidominant A. It deter-
mines a subset Oy of closed K-orbits (Q in X which allow an irreducible
K-homogeneous connection compatible with A 4+ p. For @ € Oy, the global
sections of Z(Q), 7o) form an irreducible Harish-Chandra module by the
equivalence of categories. By 11.5.(ii), I'(X, Z(Q, 7g,»)) is square-integrable.

Theorem 12.5. The map Oy — I'(X,Z(Q,7g.x)) is a bijection between
closed K-orbits in X and equivalence classes of irreducible square-integrable
Harish-Chandra modules in Myq,(Up, KK).

By definition, the discrete series is the set of equivalence classes of irre-
ducible square-integrable Harish-Chandra modules.

Now we relax the regularity condition. Then we have to consider vanishing
of global sections of irreducible Harish-Chandra sheaves. The next result is
an obvious consequence of 9.1.

Theorem 12.6. Suppose that rank g = rank K. Let A be strongly antidomi-
nant, Q@ a closed K-orbit in X and 7 an irreducible K-homogeneous connec-
tion compatible with A\ + p. Then:

(i) T(X,Z(Q, 7)) # 0 if and only if there exists no compact Q-imaginary
root o € 11 such that o”(\) = 0;

(ii) if (X, Z(Q, 7)) # 0, this is a tempered irreducible Harish-Chandra
module.

These Harish-Chandra modules constitute the limits of discrete series
[18].



114

1]

Henryk Hecht et al.

References

Shoroé Araki. On root systems and an infinitesimal classification of ir-
reducible symmetric spaces. Jour. of Math. Osaka City Univ., 13:1-34,
1962.

Alexander Beilinson. Localization of representations of reductive Lie al-
gebras. In Proceedings of the International Congress of Mathematicians,
Vol. 1, 2 (Warsaw, 1983), pages 699-710. PWN, Warsaw, 1984.

Alexander Beilinson and Joseph Bernstein. Localisation de g-modules.
C. R. Acad. Sci. Paris Sér. I Math., 292(1):15-18, 1981.

Alexander Beilinson and Joseph Bernstein. A generalization of Cassel-
man’s submodule theorem. In Representation theory of reductive groups
(Park City, Utah, 1982), pages 35-52. Birkhduser Boston, Boston, Mass.,
1983.

Armand Borel. Algebraic D-modules. Academic Press Inc., Boston, MA,
1987.

Walter Borho and Jean-Luc Brylinski. Differential operators on homo-
geneous spaces. III. Characteristic varieties of Harish-Chandra modules
and of primitive ideals. Invent. Math., 80:1-68, 1985.

Nicolas Bourbaki. Groupes et algébres de Lie. Hermann, 1968.

William Casselman and Dragan Mili¢i¢. Asymptotic behavior of matrix
coefficients of admissible representations. Duke Math. J., 49(4):869-930,
1982.

Jacques Dixmier. Enveloping algebras. American Mathematical Society,
Providence, RI, 1996.

Harish-Chandra. Discrete series for semisimple Lie groups. II. Explicit
determination of the characters. Acta Math., 116:1-111, 1966.

Henryk Hecht and Dragan Mili¢i¢. On the cohomological dimension of
the localization functor. Proc. Amer. Math. Soc., 108(1):249-254, 1990.

Henryk Hecht, Dragan Mili¢i¢, Wilfried Schmid, and Joseph A. Wolf.
Localization and standard modules for real semisimple Lie groups. I.
The duality theorem. Invent. Math., 90(2):297-332, 1987.

R. P. Langlands. On the classification of irreducible representations of
real algebraic groups. In Representation theory and harmonic analysis



[16]

[17]

[18]

[19]

[20]

Irreducibility and classification 115

on semisimple Lie groups, pages 101-170. Amer. Math. Soc., Providence,
RI, 1989.

Toshihiko Matsuki. The orbits of affine symmetric spaces under the
action of minimal parabolic subgroups. J. Math. Soc. Japan, 31:331—
357, 1979.

Dragan Milicié. Localization and representation theory of reductive Lie
groups. Unpublished manuscript available at http://www.math.utah.
edu/~milicic.

Dragan Mili¢i¢. Asymptotic behaviour of matrix coefficients of the dis-

crete series. Duke Math. J., 44(1):59-88, 1977.

Ivan Mirkovi¢. Classification of irreducible tempered representations of
semisimple Lie groups. PhD thesis, University of Utah, 1986.

Wilfried Schmid. Lecture at the Institute for Advanced Study, January
1976.

Wilfried Schmid. Construction and classification of irreducible Harish-
Chandra modules. In Harmonic analysis on reductive groups (Brunswick,
ME, 1989), pages 235-275. Birkhduser Boston, Boston, MA, 1991.

Birgit Speh and David A. Vogan. Reducibility of generalized principal
series representations. Acta Math., 145:227-299, 1980.

Henryk Hecht
Department of Mathematics, University of Utah, Salt Lake City, UT 84112,

USA

E-mail: hecht@math.utah.edu

Dragan Milici¢
Department of Mathematics, University of Utah, Salt Lake City, UT 84112,

USA

E-mail: milicic@math.utah.edu

Wilfried Schmid
Department of Mathematics, Harvard University, Cambridge, MA 02138,

USA

E-mail: schmid@math.harvard.edu


http://www.math.utah.edu/~m ilicic
http://www.math.utah.edu/~m ilicic
mailto:hecht@math.utah.edu
mailto:milicic@math.utah.edu
mailto:schmid@math.harvard.edu

	Introduction
	Generalities on intertwining functors
	Supports and n-homology
	Calculations for s l(2,C)
	Some results on root systems with involution
	K-orbits in the flag variety
	Intertwining functors and standard Harish-Chandra sheaves
	Irreducibility of standard Harish-Chandra sheaves
	Geometric classification of irreducible Harish-Chandra modules
	Decomposition of global sections of standard Harish-Chandra sheaves
	n-homology of Harish-Chandra modules
	Tempered Harish-Chandra modules
	References

