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CHAPTER 1

Modules over rings of differential operators with
polynomial coefficients

1. Hilbert polynomials

Let A = @ZOEZA” be a graded noetherian commutative ring with identity 1

contained in A. Then A is a commutative ring with identity 1. Assume that
A™ =0 for n < 0.

1.1. LEMMA. (i) AY is a noetherian ring.
(i) A is a finitely generated A°-algebra.

PrOOF. (i) Put Ay =@D,. | A". Then A, is an ideal in A and A° = A/A,.

(ii) Ay is finitely generated. Let z1,za,...,2s be a set of homogeneous gen-
erators of A, and denote d; = degzx;, 1 < i < s. Let B be the Ag-subalgebra
generated by z1,zs,...,z,. We claim that A" C B, n € Z,. Clearly, A° C B.
Assume that n > 0 and y € A". Then y € Ay and therefore y = Y;_, y;z; where
y; € A4 Tt follows that the induction assumption applies to y;, 1 < i < s. This
implies that y € B. [

The converse of 1.1 follows from Hilbert’s theorem which states that the poly-
nomial ring A°[ X7, Xo, ..., X,] is noetherian if the ring A° is noetherian.
Let M = @, c;, M" be a finitely generated graded A-module. Then each M",

n € Z, is an A%module. Also, M™ = 0 for sufficiently negative n € Z.
1.2. LEMMA. The A°-modules M™, n € Z, are finitely generated.

ProOOF. Let m;, 1 <14 < k, be homogeneous generators of M and deg m; = r;,
1 <i<k. For j € Z; denote by z;(j), 1 <i < £(j), all homogeneous monomials in
T1,%2,...,Ts of degree j. Let m € M™. Then m = Zle yim; where y; € A"~
i < i<k Byll y =3 a5z(n—r) with a;; € A®. This implies that
m =3, aizj(n—r;) m;; hence M™ is generated by (z;(n—r;) ms; 1 < j < l(n—r;),
1<i<h). O

Let My,(A°) be the category of finitely generated A%-modules. Let A be a
function on M 4(A°%) with values in Z. The function X is called additive if for any
short exact sequence:

0—M —M-—M —0

we have
AM) = MM+ XM").
Clearly, additivity implies that A(0) = 0.

1



2 I. DIFFERENTIAL OPERATORS WITH POLYNOMIAL COEFFICIENTS

1.3. LEMMA. Let
0—-My—-M —-My,—---— M, =0

be an ezact sequence in My,(AY). Then

ProoF. Evident. O

Let Z[[t]] be the ring of formal power series in ¢ with coefficients in Z. Denote
by Z((t)) the localization of Z[[t]] with respect to the multiplicative system {¢" |
n e Z+}

Let M be a finitely generated graded A-module. Then the Poincaré series
P(M,t) of M (with respect to A) is

P(M,t) =Y NM")t" € Z((t)).

nez

For example, let A = k[X1,Xs,...,Xs] be the algebra of polynomials in s
variables with coefficients in a field k graded by the total degree. Then, A° = k and
for every finitely generated graded A-module M, we have dimy M,, < co. Hence,
we can define the Poincaré series for A\ = dimy. In particular, for the A-module A
itself, we have

. nnioo s+n—1\ , 1
P(A,t) =) dimj A"t Z( o1 )t =T

nez n=0

The next result shows that Poincaré series in general have an analogous form.

1.4. THEOREM (Hilbert, Serre). For any finitely generated graded A-module M
we have
Q)

POLY) = o g

where f(t) € Z[t,t71].

PROOF. We prove the theorem by induction in s. If s =0, A = Ay and M is
a finitely generated A%-module. This implies that M™ = 0 for sufficiently large n.
Therefore, \(M™) = 0 except for finitely many n € Z and P(M,t) is in Z[t,t~1].

Assume now that s > 0. The multiplication by x, defines an A-module endo-
morphism f of M. Let K =ker f, I =im f and L = M/I. Then K, I and L are
graded A-modules and we have an exact sequence

0—K-—>MLm—L—0
This implies that
0— K" — M™ 22 Mntds o [nfds 4
is an exact sequence of A%-modules for all n € Z. In particular, by 1.3,

ME™) = XM(M™) + A\(M"Fds) — \(L"H) =0,
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for all n € Z. This implies that

(1—t¢ =D MMM =Y A (M) e

neEz nez

= (MM ) = N(Mm)) gt
nez

= D (L) = A(K™)) £
nez

= P(L,t) — P(K,t)t¢
B (1 —t%)P(M,t) = P(L,t) — t% P(K,1).

From the construction it follows that x, act as multiplication by 0 on L and K, i.e.,
we can view them as A/(zs)-modules. Hence, the induction assumption applies to
them. This immediately implies the assertion. (]

Since the Poincaré series P(M,t) a rational function, we can talk about the
order of its pole at a point. Let dx(M) be the order of the pole of P(M,t) at 1.

By the theorem, f(t) =", ., apth with ar, € Z and ay, = 0 for all k € Z except
finitely many. Let p be the order of zero of f at 1. Assume that p > 0. Then
f(t) = (1 —t)g(t) where g(t) = >, oy bit®, with b, € Q and by, = 0 for all k € Z
except finitely many. Moreover, we have ay = by, — b1 for all k¥ € Z. By induction
in k this implies that b, € Z. By repeating this procedure if necessary, we see that
f(t) = (1 = t)Pg(t) where g(t) = 3, cp bit®, with by € Z and by, = 0 for all k € Z
except finitely many. Moreover, g(1) # 0.

1.5. COROLLARY. Ifd; =1 for 1 <i < s, the function n — A(M™) is equal
to a polynomial with rational coefficients of degree dx(M) — 1 for sufficiently large
nez.

PROOF. Let p be the order of zero of f at 1. Then we can write f(t) =
(1 —t)Pg(t) with g(1) # 0. In addition, we put d = d)(M) = s — p, hence

P(M,t) = ugg)d.

_ 2 dd+1)...(d+ k-1 = (d+k—1
(1—1) d:Z ( ) k|( )tk:Z( o )tk7

k=0 k=0

Now,

and if we put g(t) = Z,[CV:fN apt® we get

AM™) = ZN: ak(d+3:f_l>

k=—N

for all n > N. This is equal to

(d+n—Fk—-1)! n—k+1)n—k+2)...(n—k+d-1
Z “k‘ n—k))! - Z ! . (d—)l)! : 3



4 I. DIFFERENTIAL OPERATORS WITH POLYNOMIAL COEFFICIENTS

hence \(M™) is a polynomial in n with the leading term

( > ak) = =gy #

k=—N

]

We call the polynomial which gives \(M™) for large n € Z the Hilbert polyno-
mial of M (with respect to ). From the proof we see that the leading coefficient

of the Hilbert polynomial of M is equal to ¢ 591))!.

Returning to our example of A = k[X1, X, ..., X], we see that
s+n—1 ns~1
dimy A™ = =—+4....
F ( s—1 > (s —1)!

Hence, the degree of the Hilbert polynomial for A = k[X1, X, ..., X;] is equal to
s—1.

Now we are going to prove a characterization of polynomials (with coefficients
in a field of characteristic 0) having integral values for large positive integers. First,
we remark that, for any s € Z; and ¢ > s, we have

q° = s! <Z> +Q(q)

where @ is a polynomial of degree s — 1. Therefore any polynomial P of degree d,
for large ¢, can be uniquely written as

P =af)+e(,)) s e (!) re

with suitable coefficients ¢;, 0 < ¢ < d. Since binomial coefficients are integers, if
¢, 0 <1 < d, are integers, the polynomial P has integral values for integers n > d.
The next result is a converse of this observation.

1.6. LEMMA. If the polynomial

Q’—>P(q>:CO<§) +Cl(dq1>+-~-+cdl(i1)+cd

takes integral values P(n) for large n € 7Z, all its coefficients ¢;, 0 < i < d, are
integers.

PROOF. We prove the statement by induction in d. If d = 0 the assertion is
obvious. Also

P(q+1)—P(q)—§:ci<dt1> —Ed:q(dfi)

=0 =0

(1) () S )

= 7

(-0 (")

for ¢ > s > 1. Therefore, g — P(q+ 1) — P(q) is a polynomial with coefficients
€0,C1,- -, Cd—1, and P(n) € Z for large n € Z. By the induction assumption all ¢;,
0 <i<d—1, are integers. This immediately implies that ¢4 is an integer too. [

a |l

using the identity
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We shall need another related remark. If F'is a polynomial of degree d with
the leading coefficient ay,
G(n)=F(n)— F(n—1)
= (apn® + a1n® +...) = (ap(n — D%+ a1(n — D+ = apdn® 4 ...

is polynomial in n of degree d — 1 with the leading coefficient dag. The next result
is a converse of this fact.

1.7. LEMMA. Let F be a function on Z such that
G(n) = F(n) — F(n—1),

is equal to a polynomial in n of degree d — 1 for large n € Z. Then F is equal to a
polynomial in n of degree d for large n € Z.

PROOF. Assume that G(n) = P(n—1) for n > N > d, where P is a polynomial
in n of degree d — 1. Then by 1.6 we have

d

Pn) = Z:c’(d? 1)

2

Hence, forn > N + 1,

n n n

F(n)= Y (F(k)=F(k—1)+F(N)= Y Gk)+F((N)=>Y_ Pk-1)+C

k=N+1 k=N+1 k=d
where C' is a constant. Also, by the identity used in the previous proof,
()= 2(0)-C))= 2 (7)) --x(0)
s i \\S S S \s— 1 Ti\s— 1

for ¢ > s > 1. This implies that

for some constant C”. O

In particular, it follows that the sum anN A(M™) is equal to a polynomial of
degree dy(M) for large N € Z. In addition, if we put

S OAMM") =aoN* + ay N + ...+ as_1N +aq

n<N

for large N € Z, then d!ag is an integer.
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For example, if A = k[X1, Xs,...,X;], the dimension of the space of all poly-
nomials of degree < N is equal to

N N

. " s+n—1 s+ N N*
E dlmk(A):E ( .1 ):( ] ):s'+
n=0 ’

n=0

2. Dimension of modules over local rings

2.1. LEMMA (Nakayama). Let A be a local ring with the mazimal ideal m. Let
V' be a finitely generated A-module such that mV =V. Then V = 0.

PrOOF. Assume that V # 0. Then we can find a minimal system of generators

V1,,...,0s of V as an A-module. By the assumption, vy = Y ;_ m;v; for some
m; € m. Therefore, (1 — my)v, = Zf:—ll m;v;. Since 1 — my is invertible, this
implies that v1,...,v5_1 generate V, contrary to our assumption. (]

In the following we assume that A is a noetherian local ring, m its maximal
ideal and k = A/m the residue field of A.

2.2. LEMMA. dimg(m/m?) < +oc.

ProoF. By the noetherian assumption m is finitely generated. If aq,...,a,
are generators of m, their images a1, ...,a, in m/ m? span it as a vector space over
k. (]

Let s = dimy(m/m?). Then we can find ai,...,as € m such that ai,...,as

form a basis of m/m?2. We claim that they generate m. Let I be the ideal generated
by ai,...,as. Then I + m? = m and m(m/I) = m/I. Hence, by 2.1, we have
m/I = 0. Therefore, we proved:

2.3. LEMMA. The positive integer dimg (m/m?) is equal to the minimal number
of generators of m.

Any s-tuple (aq,...,as) of elements from m such that (@, ...,as) form a basis
of m/m? is called a coordinate system in A.

Clearly, m?, p € Z., is a decreasing filtration of A. Therefore, we can form
GrA= @;OZO m?/mP*!. We claim that Gr A is a finitely generated algebra over k
and therefore a noetherian graded ring. Actually, the map X; — a@; € m/m? C
Gr A extends to a surjective morphism of k[X7, ..., X;] onto Gr A.

Let M be a finitely generated A-module. Then we can define a decreasing
filtration of M by mP?M, p € Z., and consider the graded Gr A-module Gr M =
B,2 mPM/mPT M.

2.4. LEMMA. If M is a finitely generated A-module, Gr M is a finitely generated
Gr A-module.

PrOOF. From the definition of the graded module Gr M we see that m -
GrP M = GrP*™ M for all p € Z,. Hence Grg M = M/mM generates Gr M.
On the other hand, M/mM is a finite dimensional linear space over k. ]

This implies, by 1.2, that dimy(m?M/mPT1M) < +oo, in particular, the A-
modules mPM/mPT1M are of finite length. Since length is clearly an additive
function, by 1.5 we see that p — length , (m? M/mP+1 M) = dimy (m? M/mP+1 M)
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is equal to a polynomial in p with rational coefficients for large p € Z,. Moreover,
the function

p—1

p +— length ,(M/mPM) = Z length 4 (m?M /m?* M)

q=0
is equal to a polynomial with rational coefficients for large p € Z,, and its leading
coefficient is of the form e%, where e,d € Zy. We put d(M) = d and e(M) = e,
and call these numbers the dimension and multiplicity of M.

Now we want to discuss some properties of the function M —— d(M). The

critical result in controlling the filtrations of A-modules is the Artin-Rees lemma.

2.5. THEOREM (Artin, Rees). Let M be a finitely generated A-module and N

its submodule. Then there exists mg € Z4 such that
m?T" M AN =mP(m™ M N N)

forallpeZy.

PrOOF. Put A* = @7 ;m™. Then A* has a natural structure of a graded ring.
Let (ai,...,as) be a coordinate system in A. Then we have a natural surjective
morphism Alay,...,as] — A*, and A* is a graded noetherian ring. Let M* =
@7 ,m"M. Then M* is a graded A*-module. It is clearly generated by Mj = M
as an A*-module. Since M is a finitely generated A-module, we conclude that M*
is a finitely generated A*-module.

In addition, put N* =@, (N Nm"M) C M*. Then

m?(NNm"M) C m’NNm"™?M Cc NNm"?M

implies that N* is an A*-submodule of M*. Since A* is a noetherian ring, N* is

finitely generated. There exists mo € Z4 such that @) (N Nm™M) generates
N*. Then for any p € Z,

mo
NmPP™M =3 " mP™ T (N Nm* M) € mP(N Nm™ M) C N NmPTmo M.
s=0
0

This result has the following consequence — the Krull intersection theorem.

2.6. THEOREM (Krull). Let M be a finitely generated A-module. Then

oo

() m?M = {0}.

p=0
PrOOF. Put F = ﬂ;io mPM. Then, by 2.5,
E=mP"MNE=m’(m™MNE)=m"E,
in particular, mF = E, and E = 0 by Nakayama lemma. O
2.7. LEMMA. Let
0—M —M-—M —0

be an exact sequence of finitely generated A-modules. Then
(i) d(M) = max(d(M"),d(M"));
(i) if d(M) =d(M') =d(M"), we have e(M) = e(M') + e(M").
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ProOF. We can view M’ as a submodule of M. If we equip M with the
filtration mPM, p € Z,, and M’ and M" with the induced filtrations M’ N mP M,
p€Z,,and mPM" pe Z,, we get the exact sequence

0—GrM — GrM — GrM" — 0.
This implies that for any p € Z,
length 4 (m? M /mP 1 M)
= length 4 (M’ "m? M) /(M' N mPT*M)) + length , (m? M" /mP T M")
and, by summation,
length , (M /mP M) = length , (M’ /(M' N m?M)) + length 4 (M" /mPM").

Therefore the function p — length 4 (M'/(M’' NmPM)) is equal to a polynomial
in p for large p € Z;. On the other hand, by 2.5,

mPT™o N Cc mPT™OM N M C mPM;

hence, for large p € Z, the functions p — length ,(M’/(M' N mPM)) and p —
length 4, (M’ /mPM’) are given by polynomials in p with equal leading terms. O

2.8. COROLLARY. Let A be a noetherian local ring with s = dimy(m/m?).
Then, for any finitely generated A-module M we have d(M) < s.

PROOF. By 2.7 it is enough to show that d(A) < s. This follows immediately

from the existence of a surjective homomorphism of k[X1,..., X] onto Gr 4, and
the fact that the dimension of the space of polynomials of degree < n in s variables
is a polynomial in n of degree s. O

A noetherian local ring is called regular if d(A) = dimy,(m/m?).

2.9. THEOREM. Let A be a noetherian local ring and (a1, as,. .., as) a coordinate
system in A. Then the following conditions are equivalent:
(i) A is a regular local ring;
(ii) the canonical morphism of k[ X1, Xa, ..., Xs] into Gr A defined by X; —
a;, 1 <i<s, is an isomorphism.

PRrOOF. By definition, the canonical morphism of k[X7,..., X] into Gr A is
surjective. Let I be the graded ideal which is the kernel of the natural surjection
of k[X1,...,Xs] onto Gr A. If T # 0, it contains a homogeneous polynomial P of
degree d > 0. Let J be the ideal in k[X7, Xs,..., X,] generated by P. Then its

Poincaré series is P(J,t) = % Clearly,

P(k[Xy,Xo, ..., Xs]/J,t) = P(k[ X1, Xa,...,X],t) — P(J,t)
1—tt  1+t4--- 407!
(1—t)s (1 —t)s—t
The order of the pole of the Poincaré series P(k[X1, Xo,..., Xs|/J,t) at 1is s — 1,
and by 1.5 the function dimy (k[X1, X3, ..., Xs]/J)n is given by a polynomial in n of
degree s—2 for large n € Z,. It follows that the function dimy (k[ X7, ..., X/, =

dimy, Gr™ A is given by a polynomial in n of degree < s — 2 for large n € Z,. This
implies that d(A) < s — 1. Therefore, I = 0 if and only if d(A4) = s. O

2.10. THEOREM. Let A be a reqular local ring. Then A is integral.
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PROOF. Let a,b € A and a # 0, b # 0. Then, by 2.6, we can find p,q € Z4
such that @ € mP, a ¢ mP*! and b € m9, b ¢ m9T!. Then their images a € Gr” A
and b € Gr? A are different form zero, and since Gr A is integral by 2.9, we see that
ab # 0. Therefore, ab # 0. O

Finally we want to discuss an example which will play an important role later.
Let k be a field, A = k[X;, Xa, ..., X,] be the ring of polynomials in n-variables
with coefficients in k and A = k[[X1, X, ..., X,]] the ring of formal power series
in n-variables with coefficients in k. It is easy to check that A is a local ring with
maximal ideal m generated by X7, Xo,...X,. Also, the canonical morphism from
k[X:1,Xs,...,X,] into Gr A is clearly an isomorphism.

For any = € k™ we denote by m, the maximal ideal in A generated by X; — x;,
1 < i < n. Then its complement in A is a multiplicative system in A, and we
denote by A, the corresponding localization of A. It is isomorphic to the ring of
all rational functions on k" regular at x. This is clearly a noetherian local ring.
The localization of m, is the maximal ideal n, = (m,), of all rational functions
vanishing at x. The automorphism of A defined by X; — X; —x;, 1 < i < n, gives
an isomorphism of Ay with A, for any = € k™. On the other hand, the natural
homomorphism of A into A extends to an injective homomorphism of Ag into A.
This homomorphism preserves the filtrations on these local rings and induces a
canonical isomorphism of Gr Ay onto Gr A. Therefore we have the following result.

2.11. PROPOSITION. The rings A;, © € k™, are n-dimensional reqular local
TiNgs.

3. Dimension of modules over filtered rings

Let D be a ring with identity and (D,, ; n € Z) an increasing filtration of D by
additive subgroups such that
(i) D, = {0} for n < 0;
(i) Unez =D;
(iii) 1 € Do;
(iv) Dy - Dy, C Dypap, for any n,m € Z;
(V) [Dn, D] C Dypgm—1, for any n,m € Z.
Then GrD =@, ., G1" D = @, .y, Dn/Dyn—1 is a graded ring with identity. The
property (v) implies that it is commutative. In particular, Dy = Gr° D is a com-
mutative ring with identity. Therefore, we can view Gr D as an algebra over Dy.
Let’s assume in addition that D satisfies
(vi) GrD is a noetherian ring;
(vii) Gr' D generates Gr D as a Dg-algebra.
Then, by 1.1, Dy is a noetherian ring. Moreover, by (vi), (vii) and 1.2 we know
that we can choose finitely many elements z1, zo, . .., z, € Gr' D such that Gr D is
generated by them as a Dg-algebra. Clearly, by (vii), we also have

Gr"™'D=Gr'D-Gr" D forn € Z,

and therefore
Dn+1 = Dn . D1 forn € Z+.
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Let D° be the opposite ring of D. Then the filtration (D, ; n € Z) has the
same properties with respect to the multiplication of D°. Moreover, the identity
map D — D° induces an isomorphism of graded rings Gr D and Gr D°.

Let M be a D-module. An increasing filtration F M = (F,, M ; n € Z) of M by
additive subgroups is a D-module filtration if D, - Fp,, M C Fppiyry M, for n,m € Z.
In particular, F,, M are Dy-modules.

A D-module filtration F M is hausdorffif (,,, F,M = {0}. It is evhaustive if
Unez F, M = M. It is called stable if there exists mqg € Z such that D,, - F,, M =
Fogn M for all n € Z4 and m > my.

A D-module filtration is called good if

(i) F,, M = {0} for sufficiently negative n € Z;

(ii) the filtration F M is exhaustive;
(iii) F,, M, n € Z, are finitely generated Dp-modules;
(iv) the filtration F M is stable.

In particular, a good filtration is hausdorff.

3.1. LEMMA. Let F M be an exhaustive hausdorff D-module filtration of M.
Then the following statements are equivalent:
(i) F M is a good filtration;
(ii) Gr D-module Gr M is finitely generated.

PrOOF. First we prove (i)=(ii). There exists mg € Z such that D,, - F,,,0 M =
Frim, M for all n € Z,. Therefore Gr™ D - Gr™ M = Gr" ™™ M for all n € Z,..
It follows that P, <,,,, Gr" M generates Gr M as a Gr D-module. Since F,, M are
finitely generated Dy-modules, Gr™ M are finitely generated Dg-modules too. This
implies, since F,, M = {0} for sufficiently negative n € Z, that , ., Gr" M is a
finitely generated Dy-module.

(ii)=(i). Clearly, Gr™ M = {0} for sufficiently negative n € Z. Also, by 1.2, all
Gr™ M are finitely generated Dy-modules. The exact sequence

0—F,. 1M —F,M—G"M—0

n<m

implies that F,, M = F,,_1 M for sufficiently negative n, hence there exists nyg € Z
such that (), o, Fry M = F,,; M. Since the filtration F M is hausdorff, F,,, M = {0}.
This implies, by induction in n, that all F,, M are finitely generated Dy-modules.
Let mo € Z be such that Gr" M generates Gr M as Gr D-module. Let
m > mg. Then

n<mg

Gr™t M = @ Gtk p.GrF M

k<mg

= @ Gr'D-Gr™ *D.Gr"* M c Gr' D-Gr™ M c Gr™ " M,

k<mg
ie., Gr' D.Gr™ M = Gr™" M. This implies that
F"“'M=D, - F,,M+F,, M =D, -F,, M
and by induction in n,
FosnM=D,-Dy-...-D;-F,, M C D, -F,, M C Fpy, M.

Therefore, Fpin M = D, - Fp,, M for all n € Z. Hence, F M is a good filtration.
O
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In particular, (D, ; n € Z) is a good filtration of D considered as a D-module
for left multiplication.

3.2. REMARK. From the proof it follows that the stability condition in the
definition of a good filtration can be replaced by an apparently weaker condition:

(iv)” There exists mg € Z such that D,, - Fip,y M = Fyo1nM for all n € Z,.

3.3. LEMMA. Let M be a D-module with a good filtration F M. Then M is
finitely generated.

PRrOOF. By definition, {J,,c;, Fn M = M and Fp g M = Dy, - FipyM for n €
Z4 and some sufficiently large mg € Z. Therefore, F,,, M generates M as a D-
module. Since F,,, M is a finitely generated Dy-module, the assertion follows. U

3.4. LEMMA. Let M be a finitely generated D-module. Then M admits a good
filtration.

PrOOF. Let U be a finitely generated Dy-module which generates M as a D-
module. Put F,, M =0 for n < 0 and F,, M = D,, - U for n > 0. Then U = Gr° M,
and

Gr"M =F,M/F, «M = (D, -U)/(D,_1-U)CGt" D -Gt° M c Gr" M,

ie, Gr" M = Gr" D - Gr’ M for all n € Z,. Hence, Gr M is finitely generated as
a Gr D-module. The statement follows from 3.1. O

The lemmas 3.1 and 3.3 imply that the D-modules admitting good filtrations
are precisely the finitely generated D-modules.

3.5. PROPOSITION. The ring D is a left and right noetherian.

PROOF. Let L be a left ideal in D. The natural filtration of D induces a
filtration (L, = LN D, ; n € Z), on L. This is evidently a D-module filtration. The
graded module Gr L is naturally an ideal in Gr D, and since Gr D is a noetherian
ring, it is finitely generated as Gr D-module. Therefore, the filtration (L, ; n € Z)
is good by 3.1, and L is finitely generated by 3.3. This proves that D is left
noetherian.

To get the right noetherian property one has to replace D with its opposite
ring D°. O

If we have two filtrations F M and F’ M of a D-module M, we say that F M is
finer than F' M if there exists a number k € Z, such that F,, M C ¥, M for all
n € Z. If F M is finer than F' M and F’ M finer than F M, we say that they are
equivalent.

3.6. LEMMA. Let F M be a good filtration on a finitely generated D-module M .
Then F M s finer than any other exhaustive D-module filtration on M.

Proor. Fix mg € Z4 such that D,, - ¥,y M = Fpypp, M for all n € Z,. Let
F' M be another exhaustive D-module filtration on M. Then F,,, M is finitely
generated as a Do-module. Since F' M is exhaustive, it follows that there exists
p € Z such that F,,, M C F; M. Since F M is a good filtration, there exists
ng such that F,, M = {0}. Put k& = p + |ng|. Clearly, for m < ng, we have
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FoM =0 C F, M. For ngp < m < mg, we have —|ng| < ng < m and
p = —|ngo| + & < m + k. This yields

F,,M CF,, M CF,MCF, M.

m

Finally, for m > mg, we have m — mg < m since my is positive, and p < k. It
follows that

Fou M = Dypyrng - Frpg M C Dy -F, M CF; , M CF, . M.

O

3.7. COROLLARY. Any two good filtrations on a finitely generated D-module are
equivalent.

Let M be a finitely generated D-module and F M a good filtration on M.
Then Gr M is a finitely generated Gr D-module, hence we can apply the results on
Hilbert polynomials from §1. Let A be an additive function on finitely generated
Dg-modules. Assume also that A takes only nonnegative values on objects of the
category Mq(Dy) of finitely generated Do-modules. Then, by 1.5,

AF, M) = AF, o1 M) = XNG" M)
is equal to a polynomial in n for large n € Z,. By 1.7 this implies that A\(F,, M) is
equal to a polynomial in n for large n € Z,.. If F' M is another good filtration on
M, by 3.7 we know that F M an F’ M are equivalent,i.e., there is a number k € Z
such that
F,MCF,  MCFpionM
for all n € Z. Since )\ is additive and takes nonnegative values only, we conclude
that
A(F, M) < A(F, M) < A(Fpa M)
for all n € Z. This implies that the polynomials representing A(F,, M) and \(F], M)
for large n have equal leading terms. We denote the common degree of these
polynomials by dy (M) and call it the dimension of the D-module M (with respect to
A). By 1.6 the leading coefficient of these polynomials has the form e (M)/dx(M)!
where ey (M) € N. We call ex (M) the multiplicity of the D-module M (with respect
to A).
Let
0-—MLME M 0
be an exact sequence of D-modules. If M is equipped by a D-module filtration F M,
it induces filtrations F M’ = (f~1(f(M') N F, M);n € Z) on M’ and FM" =
(g(F,M); n €Z) on M". Clearly, these filtrations are D-module filtrations.
Moreover, the sequence

0—GrM E grm E59% GrM” — 0

is exact. If the filtration F M is good, Gr M is a finitely generated Gr D-module,
hence both Gr M’ and Gr M" are finitely generated Gr D-modules. By 3.1, F M’
and F M" are good filtrations. Therefore, we proved the following result.

3.8. LEMMA. Let
0— M —M-—M'—0

be an ezxact sequence of D-modules. If F M is a good filtration on M, the induced
filtrations F M’ and F M" are good.
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By the preceding discussion
AMGr"™ M) = MGr™ M) + X(Gr™ M)
for all n € Z. This implies, by induction in n, that
ANF, M) =\F, M)+ XF, M")
for all n € Z. This leads to the following result.

3.9. PROPOSITION. Let
0—M —M-—M"—0

be an exact sequence of finitely generated D-modules. Then
(i) dx(M) = max(dx(M'), dx(M"));
(ll) Zfd)\(M) = d)\(M/) = d)\(MH), then 6,\(M) = e)\(M’) + 6)\(M”),

Finally, let ¢ be an automorphism of the ring D such that ¢(Dg) = Dy. We
can define a functor ¢ from the category M(D) of D-modules into itself which
attaches to a D-module M a D-module ¢(M) with the same underlying additive
group structure and with the action of D given by (T, m) — ¢(T)m for T € D

and m € M. Clearly, ¢ is an automorphism of the category M(D), and it preserves
finitely generated D-modules.

3.10. PROPOSITION. Let M be a finitely generated D-module. Then

dx(¢(M)) = dx(M).

PROOF. Let Ty,T5,...,T, be the representatives in Dy of classes in Gr' D
generating Gr D as a Dg-algebra. Then there exists d € N such that ¢(T;) € Dy
for 1 <4 <s. Since T1,T5,...,Ts and 1 generate Dy as a Dy-module, we conclude

that ¢(D1) C Dg. )
Let F M be a good filtration of M. Define a filtration F ¢(M) by

F, ¢(M) = Fg, M for p € Z.

Clearly, F ¢~)(M ) is an increasing filtration of gg(M ) by finitely generated Do—submodules.l
Also,

Dy -Fpd(M) = ¢(D1)Fam M C DgFay M C Fynyny M = Frpi1 (M)
for m € Z. Hence, by induction, we have
Dy, - Fpd(M) =Dy -Dyy-Fpy ¢(M) C Dy Frpyro1 ¢(M) C Foyy 6(M)
for all n,m € Z, i.e., qu;(M) is a D-module filtration. By 3.6, there exists a good

filtration F’ (M) which is finer than this filtration, i.e, there exists k € Z, such
that
for all n € Z. Therefore,

A(F;, ¢(M)) < MF g(nn) M)

for n € Z. For large n € Z, N(Fy(n+x) M) is equal to a polynomial in n with the
leading term equal to
ex(M)dh ) 1da (M)
dx(M)! '
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Since A\(F), p(M)) is also given by a polynomial of degree dx(¢(M)) for large n € Z,

we conclude that dy(¢(M)) < dx(M). By applying the same reasoning to ¢~1 we
also conclude that

d\(M) = dx(67(6(M))) < dr((M)).

4. Dimension of modules over polynomial rings

Let A =k[Xy,...,X,] where k is an algebraically closed field. We can filter A
by degree of polynomials, i.e., we can put A,, = {3 csz! | ¢; € k,|I| < m}. Then
GrA = k[Xy,...,X,], hence A satisfies properties (i)-(vii) from the preceding
section.

Since Ay = k we can take for the additive function A the function dimyg. This
leads to notions of dimension d(M) and multiplicity e(M) of a finitely generated
A-module M.We know that for any p € Z,, we have

dimy, A, — (n—l—p) _p

— + lower order terms in p,
n n!
ie., d(A) = n and e(A) = 1. In addition, for any finitely generated A-module M
we have an exact sequence

0—K—A" — M — 0,

hence, by 3.9, d(M) < n. We shall give later a geometric interpretation of d(M).

Let € k™ and denote by m, be the maximal ideal in k[X7,...,X,] of all
polynomials vanishing at z. We denote by A, the localization of A at z, i.e., the
ring of all rational k-valued functions on k" regular at x. As we have seen in
2.11, A, is an n-dimensional regular local ring with the maximal ideal n, = (m,),
consisting of all rational k-valued functions on k™ vanishing at z. Let M be an
A-module. Its localization M, at x is an A,-module. We define the support of M
by supp(M) = {x € k™ | M,, # 0}.

4.1. LEMMA. Let
0—M —M-—M —0
be an exact sequence of A-modules. Then
supp(M) = supp(M") U supp(M").
PRrROOF. By exactness of localization we see that
0— M, — M, — M) —0
is an exact sequence of Az-modules. This immediately implies our statement. [
For anideal I C k[X1,...,X,] wedenote V(I) = {x € k" | f(z) =0 for f € I}.
4.2. PROPOSITION. Let M be a finitely generated A-module and I its annihilator
in A. Then supp(M) =V (I).

PROOF. We prove the statement by induction in the number of generators of
M.

Assume first that M has one generator, i.e., M = A/I. Then M, = (A4/I), =
Ag/I,. Let x € V(I). Then I C m, and I, C n,. Hence I, # A,. It follows that
(A/I); # 0 and = € supp(M). Conversely, if © ¢ V(I), there exists f € I such
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that f(x) # 0, ie., f ¢ m,. Therefore, f is invertible in the local ring A, and
f € I, implies that I, = A,. Hence (A/I), = 0 and = ¢ supp(A/I). Therefore,
supp(4/1) = V(I).

Now we consider the general situation. Let my,...,m, be a set of generators
of M. Denote by M’ the submodule generated by my, ..., m,_1. Then we have the
exact sequence

0—M —M-—M"—0

and M" is cyclic. Moreover, by 4.1, supp(M) = supp(M’) U supp(M"). Hence,
by the induction assumption, supp(M) = V(I') U V(I"”) where I’ and I are the
annihilators of M’ and M" respectively.

Clearly, I' - I is in the annihilator I of M. On the other hand, I annihilates
M’ and M”, hence I C I' N I". Tt follows that

I''rcrcrnr”.
This implies that
vryuvI"ycvd'nIycvd)cv{ -1").

Let ¢ V(I')UV(I"”). Then there exist f € I’ and g € I such that f(z) # 0 and
g(z) # 0. Tt follows that (f - g)(x) = f(x)-g(x) # 0 and = ¢ V(I' - I"). Hence,
V({I'-1") c V(I'YUV(I") and all inclusions above are equalities. Hence, we have
V({I)=V({I')UV(I") and supp(M) = V(I). O

This immediately implies the following consequence.

4.3. COROLLARY. Let M be a finitely generated A-module. Then its support
supp(M) is a Zariski closed subset in k™.

The next lemma is useful in some reduction arguments.

4.4. LEMMA. Let B be a noetherian commutative ring and M # 0 be a finitely
generated B-module. Then there exist a filtration 0 = My C M, C --- C M,_1 C
M, = M of M by B-submodules, and prime ideals J; of B such that M;/M;_1 =
B/J;, for1 <i<n.

PROOF. For any © € M we put Ann(z) = {a € B | ax = 0}. Let A be the
family of all such ideals Ann(z), € M, x # 0. Because B is a noetherian ring,
A has maximal elements. Let I be a maximal element in A. We claim that I is
prime. Let € M be such that I = Ann(z). Then ab € I implies abx = 0. Assume
tha b ¢ I, i.e.,, bx # 0. Then I C Ann(bx) and a € Ann(bz). By the maximality
of I, a € Ann(bz) = I, and [ is prime. Therefore, there exists x € M such that
J1 = Ann(x) is prime. If we put My = Bz, M; = B/J;. Now, denote by F the
family of all B-submodules of M having filtrations 0 = Ng C N1 C -+ C Ny = N
such that N;/N;_; = B/J; for some prime ideals J;. Since M is a noetherian
module, F contains a maximal element L. Assume that L # M. Then we would
have the exact sequence:

0—L—M-—L —0,

and by the first part of the proof, L’ would have a submodule N’ of the form B/J’
for some prime ideal J’, contradicting the maximality of L. Hence, L = M. This
proves the existence of the filtration with required properties. (I
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4.5. THEOREM. Let M be a finitely generated A-module and supp(M) its sup-
port. Then d(M) = dim supp(M).

This result has the following companion local version. The localization A, of
A at x € k™ is a noetherian local ring. Moreover, its maximal ideal n, is the ideal
generated by the polynomials X; — 2;, 1 < i < n, and their images in n,/n2 span
it as a vector space over k. Therefore, X; —xz;, 1 < i < n, form a coordinate system
in A,. For any finitely generated A-module M, its localization M, at x is a finitely
generated A,-module, hence we can consider its dimension d(M,).

For any algebraic variety V over k and x € V we denote by dim, V" the local
dimension of V at zx.

4.6. THEOREM. Let M be a finitely generated A-module and x € supp(M).
Then d(M,) = dim, (supp(M)).

We shall simultaneously prove 4.5 and 4.6. First we observe that if we have an
exact sequence of A-modules:

0— M —M-—M —0

and 4.5 and 4.6 hold for M’ and M", we have, by 3.9 and 4.1, that

d(M) = max(d(M"),d(M")) = max(dim supp(M’), dim supp(M""))
dim(supp(M’) U supp(M")) = dim supp(M).

Also, for any z € supp(M), by the exactness of localization we have the exact
sequence:

0— M, — M, — M) — 0;
hence, by 2.7 and 4.1,

d(M,) = max(d(M,),d(M.)) = max(dim, supp(M'), dim, supp(M"))
= dimg (supp(M’) U supp(M")) = dim, supp(M).

Assume that 4.5 and 4.6 hold for all M = A/J where J is a prime ideal. Then
the preceding remark, 4.4 and an induction in the length of the filtration would
prove the statements in general.

Hence we can assume that M = A/J with J prime. Assume first that J is such
that A/J is a finite-dimensional vector space over k. Then A/J is an integral ring
and it is integral over k. Hence it is a field which is an algebraic extension of k. Since
k is algebraically closed, A/J = k and J is a maximal ideal. In this case, by Hilbert
Nulstellenatz, supp(M) = V(J) is a point z in k", i.e., dimsupp(M) = 0. On the
other hand, since M, is one-dimensional linear space, d(M,) = 0, and the assertion
is evident. It follows that we can assume that J is not of finite codimension in A,
in particular it is not a maximal ideal. Let J; O J be a prime ideal different form
J. Then there exists f € Jq such that f ¢ J. It follows that J C (f)+ J C J; and
J # (f) + J. Therefore, A/J; is a quotient of A/((f) + J), and A/((f) + J) is a
quotient of A/J. In addition, A/((f)+ J) = M/fM. Consider the endomorphism
of M given by multiplication by f. Then, if g + J is in the kernel of this map,
0=f(g+J)=fg+J and fg € J. Since J is prime and f ¢ J it follows that



4. DIMENSION OF MODULES OVER POLYNOMIAL RINGS 17

g€ J, g+ J =0 and the map is injective. Therefore, we have an exact sequence of
A-modules:
0— ML M — M/fM — 0.
This implies, by 3.9, that d(M/fM) < d(M). If d(M/fM) = d(M), we would have
in addition that e(M) = e(M) + e(M/fM), hence e(M/fM) = 0. This is possible
only if d(M/fM) = 0, and in this case it would also imply that d(M) = 0 and M is
finite-dimensional, which is impossible by our assumption. Therefore, d(M/fM) <
d(M). Since A/Jy is a quotient of M/ fM, this implies that d(A/J1) < d(A/J).
Let x € V(J1). Then, by localization, we get the exact sequence:

0— M, s My, — M, /fM, — 0

of Az-modules. This implies, by 2.7, that d(M,/fM,) < d(M,). If d(M,/fM,) =
d(M,), we would have in addition that e(M,) = e(M,) + e(M,/fM,), hence
e(M,/fM,) = 0. This is possible only if d(M,/fM,) = 0, and in this case it would
imply that m, (M, /fM,) = M,/ fM, and, by Nakayama lemma, M, /fM, = 0. It
would follow that the multiplication by f is surjective on M,, and, since f € my,
by Nakayama lemma this would imply that M, = 0 contrary to our assumptions.
Therefore, d(M,/fM,) < d(M). Since A/Jy is a quotient of M/ fM this implies
that d((A/J1)z) < d((A/J).).
Let
ZQZ{JJ}CZlC"'CZn,lCZn:kn
be a maximal chain of nonempty irreducible closed subsets of k™. Then
I(Zo) =m, D I(Z1) DD I(Zn-1) D 1(Z,) = {0}

is a maximal chain of prime ideals in A. By the preceding arguments we have the
following sequences of strict inequalities

0 < d(A/I(Zy)) < d(AJI(Z1)) < -+~ < d(AJI(Z,)) = d(A) = n,
and
0 < d((A/1(Zo))z) < d((A/I(Z1))a) < -+ < d((A/1(Zy))) = d(As) = n,
by 2.11. Tt follows that
d((A/1(Z)))a) = d(A/1(Z;)) = j = dim Z;

for 0 < j < n. Since every closed irreducible subset Z can be put in a maximal
chain, it follows that d((A/I(Z)).) = d(A/I(Z)) = dim Z for any closed irreducible
subset Z C k™ and any « € Z. On the other hand, this implies that d((A/J),) =
d(A/J) = dim V(J) for any prime ideal J in A and x € V(J). By 4.2, this ends
the proof of 4.5 and 4.6.

Next result follows immediately from 4.5 and 4.6.

4.7. COROLLARY. Let M be a finitely generated A-module. Then

d(M)= sup d(M,).
xesupp(M)

Finally, we prove a result we will need later.

4.8. LEMMA. Let be I an ideal in A. Then dimV (I) = dim V(GrI).
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PROOF. The short exact sequence of A-modules
0—I—A— A/ —0,

where the modules are equipped with the filtrations induced by the natural filtration
of A leads to the short exact sequence

0—Grl—A— Gr(A/I) —0
of graded A-modules. Hence, we have

P
dimy Fp(A/) = (dimy Fo(A/I) — dimy Fy_1(A/))
q=0
P p
= Z dimy GrP(A/I) = Z(dimk GrP A —dim Gr? 1)
q=0 q=0
= dimy, FpA — dimy F,, Gr I = dimy, Fj,(A/ Gr ).

Therefore, d(A/I) = d(A/ GrI). The assertion follows from 4.4 and 4.5. O

5. Rings of differential operators with polynomial coefficients

Let k be a field of characteristic zero. Let A be a commutative algebra over k.
Let Endg(A) be the algebra of all k-linear endomorphisms of A. It is a Lie algebra
with the commutator [S,T] = ST — T'S for any S,T € Endy(A). Clearly, Endy(A)
contains, as a subalgebra, the set Enda(A) of all A-linear endomorphisms of A.
To any element a € A we can attach the A-linear endomorphism of A defined by
b+ ab for b € A. Since this endomorphism takes the value a on 1, this map is
clearly an injective morphism of algebras.

On the other hand, if T € End 4(A), we have

T(b) = bT(1) = T(1)b

for any b € A, i.e., T is given by multiplication by T'(1). This implies the folowing
result.

5.1. LEMMA. The algebra homomorphism which attaches to an element a € A
the A-linear endomorphism b —— ab, b € A, is an isomorphism of A onto End 4 (A).

In the following, we identify A with the subalgebra £nd4(A) of Endy(A).
A k-derivation of Ais a T € Endy(A) such that
T(ab) = T(a)b+ aT(b)

for any a,b € A. In particular, [T,a](b) = T(ab) — aT'(b) = T(a)b, i.e., [T,a] =
T(a) € A for any a € A. This implies that [[T, ag],a1] = 0 for any ag,a; € A.

This leads to the following definition. Let n € Z,. We say that an element
T € Endg(A) is a (k-linear) differential operator on A of order < n if

[ [[T,ao],al},... ,Cln] =0

for any ag,aq,...,a, € A. We denote by Diff;(A) the space of all differential
operators on A.

5.2. LEMMA. Let T, S be two differential operators of order < n, < m respec-
tively. Then T o S is a differential operator of order < n + m.
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PRrROOF. We prove the statement by induction in n +m. If n = m = 0,
T,S € Enda(A), hence T o S € End,(A) and it is a differential operator of order 0.
Assume now that n +m < p. Then

[ToS,a] =TSa—aTS =TI[S,a]+[T,a]S,

and [T, a] and [S, a] are differential operators of order < n —1 and < m — 1 respec-
tively. By the induction assumption, this differential operator is of order < n+m—1.
Therefore T o S is of order < n + m. [l

Therefore Diffy(A) is a subalgebra of Endy(A). We call it the algebra of all
k-linear differential operators on A. Also, we put F,, Diff,(4) = {0} for n < 0 and

F,, Diff;(A) = {T € Diff;,(A) | order(T) < n}

for n > 0. clearly, this is an increasing exhaustive filtration of Diffx(A) by vector
subspaces over k. This filtration is compatible with the ring structure of Diffy(A),
i.e., it satisfies

F,, Diff;(A) o F,,, Diff,(4) C F,p Diff(A)

for any n,m € Z.

5.3. LEMMA. (i) FoDiffx(A) = A.

(ii) Fq Dlﬁk(A) = Derk(A) o A.

(iii) [F, Diffy(A), F,, Diff(A)] C Frpm—1 Diff(A) for any n,m € Z ..

PROOF. (i) is evident.

(i) As we remarked before, Dery(A) C Fy Diffx(A). Also, for any T € Dery(A),
we have T'(1) = T'(1-1) = 27'(1), hence T'(1) = 0. This implies that Derx(A)NA = 0.

Let S € Fy Diff;(A) and T = S — S(1). Then T'(1) = 0, hence T'(a) = [T, a](1),
and

T'(ab) = [T, ab](1) = ([T’ a]b)(1) + (a[T',b])(1)
= (b[Ta])(1) + (a[T,b])(1) = T(a)b + aT'(b),
ie., T € Dery(A).
(iv) Let T, S be of order < n, < m respectively. We claim that [T, 5] is of order

< n+m—1. We prove it by induction on n + m. If n = m = 0, there is nothing
to prove. In general, by Jacobi identity, we have

HT> S]v a] = HT7 a]v S] + [T’ [Sv a]]
where [T, a] and [S,a] are of order < n — 1 and < m — 1 respectively. Hence, by
the induction assumption, [[T,S],a] is of order < n+m — 2 and [T, S] is of order
<n-+m-—1. O
This implies that the graded ring GrDiff;(A4) is a commutative A-algebra. In
addition, Diff(A) satisfies properties (i)-(v) from §3.
Let n > 1. Let T be a differential operator on A of order < n. Then we can
define a map from A™ into Diff(A) by
on(T)(ar,az,...,an—1,a,) =[[...[[T,a1],a2], ..., an-1], an]
Since 0,,(T)(a1,az,. .., an-1,ay) is of order < 0, we can consider this map as a map
from A" into A.
5.4. LEMMA. Let T be a differential operator on A of order < n. Then:
(i) the map 0,(T) : A — A is a symmetric k-multilinear map;
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(ii) the operator T is of order < n — 1 if and only if 0,,(T) = 0.
PROOF. (i) We have to check the symmetry property only. To show this, we
observe that, by the Jacobi identity, we have
[[S’ a]’ b] = [[57 b]v a]
for any S € Diff;(A) and a,b € A. This implies that

on(T)(a1,a2, ... 05 Qix1y .y p1,ay)
=1..0--[[Tya1],a2], ..., ai]sais1] - - - s an-1], an]
=1[[..[[.-[[T,a1],a2],-..,aix1],ai] - . ., @n-1], an)
=0,(T)(a1,a2,...,0i41,Qiy...,Qn_1,0n),
hence o(T) is symmetric.
(ii) is obvious. O
Now we want to discuss a special case. Let A = k[X;, Xo,...,X,,]. Then we

put D(n) = Diff,(A). We call D(n) the algebra of all differential operators on k™.
Let 01, 02,...,0y, be the standard derivations of k[X, Xs,..., X,,]. For I,J € Z
we put

X = XXl  Xin
and

87 =ol'a) ... a0

Then X107 € D(n), and it is a differential operator of order < |J| = ji+jo+- - -+Jn-
Moreover, if T is a differential operator given by

T=Y P(Xy,Xp,...,X,)0,
[II<p

with polynomials P; € k[X7, Xo, ..., X,], we see that T is of order < p.

5.5. LEMMA. The derivations (0;; 1 < i < n) form a basis of the free k[ X1, ..., X,]}
module Dery (k[ X1, Xo, ..., X,]).

ProOOF. Let T € Dery(k[X1, X2,...,X,]). Put P, =T(X;) for 1 <i <n, and
define S =" | P,09;. Clearly,

S(X;) = zn:Pj 0;(X;) = P =T(X;)

for all 1 <i < n. Since X1, Xs,..., X, generate k[X1, Xs,..., X,,] as a k-algebra it
follows that T = S. Therefore, (0;; 1 < i < n) generate the k[X1, Xa,..., X,]-
module Dery(k[X1, Xs,...,X,]). Assume that > . Q;0; = 0 for some Q; €
k[XhXQ,...,Xn]. Then 0 = (2?21 Qjﬁj)(X,) = Ql for all 1 S ) S n. This
implies that 9;, 1 <i < n, are free generators of Dery (k[X1, Xa,..., X,]). O

Let T be a differential operator of order < p on k[X1, Xo,...,X,]. If p <0,
T =0 and we put Symb,(T) =0. If p=0, T € A, and we put Symb,(T") = T'. For
p > 1, we define a polynomial Symb,(T') in k[X1, Xo,..., Xpn, 1,82, .., &,] in the
following way. Let (£1,&2,...,&,) € k™. Then we can define a linear polynomial
le =" &X; € k[X1,Xs,...,X,] and the function

1
(fl,fg, . ,fn) — HUP(T)(EE,KE, e ,65)
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on k™ with values in k[ X1, X5, ..., X,,]. Clearly, one can view this function as a poly-
nomial in X1, Xo,..., X, and &1, &o, .. ., &, homogeneous of degree pin &1, &, ..., &y,
and denote it by Symb,(T). The polynomial Symb,(T) is called the p-symbol
of the differential operator 7. By its definition, Symb,(T") vanishes for T of
order < p. Therefore, for p > 0, it induces a k-linear map of Gr, D(n) into
kX1, Xo, ..., Xn,&1,8,...,&]. We denote by Symb the corresponding k-linear
map of Gr D(n) into k[X1, Xa,..., Xn,&1,82,...,&x].

5.6. THEOREM. The map Symb : Gr D(n) — k[X1, Xo,..., X, &1, &, ..., &)
is a k-algebra isomorphism.

The proof of this result consists of several steps. First we prove the symbol
map is an algebra morphism.

5.7. LEMMA. Let T,S € D(n) of order < p and < q respectively. Then
Symb,,, ,(T'S) = Symb,(T) Symb,(S).

p+q
PROOF. Let ¢ € k™, and define the map 7¢ : D(n) — D(n) by 7e(T) = [T, {¢].
Then
Tg(TS) = [TS, fg] = TSK,E - ngS = [T7 65]5 + T[S7 Eé] = Tg(T)S + TTE(S)
Therefore, for any k € Z, we have
k .
=> ( ) “U(T) TH(S).
=0
This implies that
1 1

SYmbp+q(TS) = mUerq(T)(gg, Zg, .. 7£§) (p - q) §+q(TS)
p1q| 7 (T) 7¢(S) = Symb,(T') Symb,(5).

d

Since Symby(X;) = X; and Symb, (9;) = &;, 1 < i < n, we see that for X797

with p = |.J| we have

Symbp(Xlﬁ‘]) =2.¢3
In particular, for

T=Y Pr(Xy,Xp...,X,)0",

[J]<p

with polynomials Py € k[X1, Xs,...,X,], we see that
Symb,,(T) = Y Pr(X1,Xa,...,X,)¢".
[I|=p

Hence, the symbol morphism is surjective. It remains to show that the symbol map
is injective.

5.8. LEMMA. LetT € F), D(n). Then Symb,(T) = 0 if and only if T is of order
<p—1
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PROOF. We prove the statement by induction in p. It is evident if p = 0.
Therefore we can assume that p > 0. Let £ € k™, and define the map 7¢ :
D(n) — D(n) by 7¢(T) = [T, £¢]. Then, for any X € k and n € k™, we have

Teaan(T) = [T lenn] = [T le] + [T, 4] = 7¢(T) + Ay (T).
Since 7¢ and 7, commute we see that, for any k € Z,, we have

k
kN vi ki i
o) =3 ()Nt
i=0
By our assumption, Tg an(T) = 0 for arbitrary A € k. Therefore, since the field k is

infinite, Tgii(Té(T)) =0 for 0 <4 < p. In particular, we see that Tgil(Tn(T)) =0
for any &, € k™. This implies that Symb, ([T, ¢,;]) = 0 for any n € k", in

particular
Symb, (7. X,]) = 0

for 1 <4 < n, and by the induction assumption, [T, X;], 1 < ¢ < n, are of order
<p-—2. Let P,Q € k[X1,X2,...,X,]. Then

[T, PQ] = TPQ — PQT = [T, P|Q + P[T, Q).

hence the order of [T, PQ)] is less than or equal to the maximum of the orders of
[T, P] and [T, Q). Since X;, 1 <4 < n, generate k[X7, Xo,..., X,] we conclude that
the order of [T, P] is < p — 2 for any polynomial P. This implies that the order of
Tis<p-—1. ([l

This also ends the proof of 4.6. In particular, we see that D(n) satisfies prop-
erties (i)-(vii) from §3. From 3.5 we immediately deduce the following result.

5.9. THEOREM. The ring D(n) is right and left noetherian.

5.10. COROLLARY. (X'87; I,J € Z1) is a basis of D(n) as a vector space over
k.

PROOF. If |J| = p, the p-symbol of X197 is equal to X'¢/ and (X1¢7 5 I,J €
7% ) form a basis of k[X1,...,X,,,&1,...,&,] as a vector space over k. ([l

The following caracterization of D(n) is frequently useful.

5.11. THEOREM. The k-algebra D(n) is the k-algebra generated by X1, Xo, ..., X,l}
and 01,04, ...,0, satisfying the defining relations [X;,X;] = 0, [0;,0;] = 0 and
(05, Xj] = 645 for all1 <i,j <n.

PROOF. Let B be the k-algebra generated by X1, Xo,..., X,, and 01,02,...,0,
satisfying the defining relations [X;, X;] = 0, [9;,0;] = 0 and [0;, X;] = ¢;; for
all 1 < 4,j < n. Since these relations hold in D(n) and it is generated by
X1, Xs5,..., X, and 01, 0o, ..., 0, we conclude that there is a unique surjective mor-
phism of B onto D(n) which maps generators into the corresponding generators.
Clearly, B is spanned by (X807 ; I,J € Z7). Therefore, by 5.10, this morphism is
also injective. O

5.12. PROPOSITION. The center of D(n) is equal to k - 1.



5. RINGS OF DIFFERENTIAL OPERATORS WITH POLYNOMIAL COEFFICIENTS 23

PROOF. Let T be a central element of D(n). Then, [T, P] = 0 for any polyno-
mial P, and T is of order < 0. Therefore, by 5.3, T € k[ X1, Xs,...,X,]. On the
other hand, 0 = [9;,T] = 9;(T) for 1 < i < n. This implies that T is a constant
polynomial. [

Let D(n)° be the opposite algebra of D(n). Then, by 5.11, there exists a unique
isomorphism ¢ : D(n)° — D(n) which is defined by ¢(X;) = X; and ¢(9;) = —0;
for 1 < ¢ <mn. The morphism ¢ is called the principal antiautomorphism of D(n).
This proves the following result.

5.13. PROPOSITION. The algebra D(n)° is isomorphic to D(n).

Moreover, by 5.11, we can define an automorphism F of D(n) by F(X;) =
0; and F(0;) = —X; for 1 < i < n. This automorphism is called the Fourier
automorphism of D(n). The square F2 of F is an automorphism ¢ of D(n) which
acts as 1(X;) = —X; and +(9;) = —0; for 1 <i <n. Clearly, /2 = 1.

In contrast to the filtration by the order of differential operators, D(n) has
another filtration compatible with its ring structure which is not defined on more
general rings of differential operators. We put

Dy(n) = {ZaIJXlaJ ‘ [ I] + |J| §p}

for p € Z. Clearly, (Dp(n) | p € Z) is an increasing exhaustive filtration of D(n) by
finite-dimensional vector spaces over k.
5.14. LEMMA. For any p,q € Z we have
() Dy(n) o Dy(n) € Dyyn);
(i) [Dp(n), Dg(n)] C Dptq—2(n).
PrROOF. By 5.10 and the definition of the filtration (D,(n); p € Z), it is enough
to check that
(0", X7] € Di14151-2(n).
We prove this statement by an induction in |I|. If |I| = 1, we have §7 = 9; for some
1 <i<nand [0;,X']=0;(X7) € Djy_1(n). If |I| > 1, we can write &' = o' 9,
for some I' € Z} and 1 < i < n. This leads to
07, x7] = 0" 0;, X7 = 0" 0, X7 — X70" 9,
= 0" (01, X7+ (0" X710, = 9", 10:, X)) + [0, X 10" + [0, X )0,
hence, by the induction assumption, [0, X’] € Dy1j4151—2(n). O
This implies that (D,(n); p € Z) is a filtration compatible with the ring struc-

ture on D(n). In addition, the graded ring Gr D(n) is a commutative k-algebra. If
we define the linear map ¥, from D,(n) into k[X1, Xo,..., Xpn,&1,&2,...,8&] by

‘1/p< Z CL[JX18J> = Z aIJXI§J
[T]+|J|<p [T|+|J|=p

we see that it is a linear isomorphism of Gr,, D(n) into the homogeneous polynomials
of degree p. Therefore, it extends to a linear isomorphism

U GI‘D(TL) — k[XlaXZ,“'7Xn7£17§2a"'a§n]'
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By 5.14 we see that this map is an isomorphism of k-algebras. Therefore, the ring
D(n) equipped with the filtration (D,(n); p € Z) satisfies the properties (i)-(vii)
from §3. The filtration (D, (n); p € Z) is called the Bernstein filtration of D(n).

Evidently, the principal antiautomorphism and the Fourier automorphism of
D(n) preserve the Bernstein filtration.

6. Modules over rings of differential operators with polynomial
coefficients

In this section we study the category of modules over the rings D(n) of differen-
tial operators with polynomial coefficients. Denote by ML (D(n)), resp. MT(D(n))
the categories of left, resp. right, D(n)-modules. These are abelian categories. The
principal antiautomorphism ¢ of D(n) defines then an exact functor from the cat-
egory ME(D(n)) into the category MZ(D(n)) which maps the module M into its
transpose M*, which is equal to M as additive group and the action of D(n) is given
by the map (T,m) — &(T)m for T € D(n) and m € M. An analogous functor
is defined from M%(D(n)) into ME(D(n)). Clearly these functors are mutually
inverse isomorphisms of categories. If we denote by ./\/l]%g(D(n)) and M?g (D(n))
the corresponding full subcategories of finitely generated modules, we see that these
functors also induce their equivalence. Therefore in the following we can restrict
ourselves to the discussion of left modules and drop the superscript L from our no-
tation (except in the cases when we want to stress that we deal with right modules).
Since D(n) is a noetherian ring, the full subcategory Ms,(D(n)) of M(D(n)) is
closed under taking submodules, quotient modules and extensions.

First we consider D(n) as a ring equipped with the Bernstein filtration. Since in
this case Dy(n) = k we can define the dimension of modules from MJch(D(n)) and
M?g(D(n)) using the additive function dimy on the category of finite-dimensional
vector spaces over k. This dimension d(M) and the corresponding multiplicity
e(M) of a module M are called the Bernstein dimension and the Bernstein multi-
plicity respectively. Since the principal antiautomorphism preserves the Bernstein
filtration we see that d(M) = d(M?) for any finitely generated D(n)-module M.

For any finitely generated D(n)-module M we have an exact sequence D(n)? —|j
M — 0, hence d(M) < d(D(n)). In addition, from 5.6 we conclude the following
result.

6.1. LEMMA. For any finitely generated D(n)-module M we have d(M) < 2n.

6.2. EXAMPLE. Consider the algebra D(1) of polynomial differential operators
in one variable. Let M be a finitely generated D(1)-module different from 0. Then
its Bernstein dimension d(M) can be 0, 1 or 2. Clearly, d(M) = 0 would imply
that for any good filtration F M of M, the function p — dim F, M is constant for
large p € Z. Since F M is exhaustive, this would mean that M is finite dimensional.
Denote by 7(z) and w(9) the linear transformations on M induced my the action
of x and 0 respectively. Then we have [r(z), 7(9)] = 1ps. Taking the trace of both
sides of this equality we would get dimg M = 0, i.e., contradicting our assumption
that M # 0. It follows that d(M) is either 1 or 2.

The main result of the dimension theory of D(n) is the following statement
with generalizes the above example.

6.3. THEOREM (Bernstein). Let M be a finitely generated D(n)-module and
M #0. Then d(M) > n.
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PROOF. Since M is a finitely generated D(n)-module, by 3.4, we can equip
it with a good filtration. Also, by shift in indices, we can clearly assume that
Fo,M =0 forn <0and FoM # 0.

For any p € Z we can consider the linear map D,(n) — Homy (F, M, Fa, M)
which attaches to T' € D,(n) the linear map m —— T'm. We claim that this map
is injective. For p < 0 this is evident. Assume that it holds for p — 1 and that
T € D,(n) satisfies Tm = 0 for all m € F,M. Then, for any v € F,_1 M and
1 <4 <n we have X;v € F, M and 0;v € F\, M, hence

[Xi,T]U = XlTU - TXZ"U =0
and
[(%T}v = &Tv - Taﬂ) =0
and [X;,T),[0;,T) € Dp—1(n) by 5.14. By the induction assumption this implies
that [X;,T] =0 and [9;,T] =0 for 1 <4 < n, and T is in the center of D(n). Since
the center of D(n) is equal to k by 5.12, we conclude that T'= 0. Therefore,

dimg(Dp(n)) < dimg(Homy (F, M, Fop M) = dimg (Fp M) - dimg (Fop M)

for any p € Z. On the other hand, for large p € Z, the left side is equal to a
polynomial in p of degree 2n with positive leading coefficient and the right side is
equal to a polynomial in p of degree 2d(M) with positive leading coeflicient. This
is possible only if d(M) > n. O

In the next section we are going to give a geometric interpretation of the Bern-
stein dimension.

Finally, if M is a D(n)-module, we can define its Fourier transform F (M) as the
module which is equal to M as additive group and the action of D(n) is given by the
map (T,m) — F(T)m for T € D(n) and m € M. Clearly the Fourier transform is
an automorphism of the category M(D(n)). It also induces an automorphism of the
category Myy(D(n)). From the fact that the Fourier automorphism F preserves
the Bernstein filtration (or 3.9) we conclude that the following result holds.

6.4. LEMMA. Let M be a finitely generated D(n)-module. Then d(F(M)) =
d(M).

7. Characteristic variety

Now we want to study an invariant of finitely generated D(n)-modules which
has a more geometric flavor. In particular, it will be constructed using the filtration
F D(n) of D(n) by the degree of differential operators instead of the Bernstein
filtration. In contrast to the Bernstein filtration, the degree filtration makes sense
for rings of differential operators on arbitrary smooth affine varieties.

First, since any D(n)-module M can be viewed as a k[X7, Xo, ..., X,;]-module,
we can consider its support supp(M) C k™.

7.1. PROPOSITION. Let M be a finitely generated D(n)-module. Then supp(M)
s a closed subvariety of k™.

ProOF. Fix a good filtration F M on M. Then, for x € k™, M, = 0 is equiva-
lent to (F, M), = 0 for all p € Z. Therefore, by the exactness of localization, it is
equivalent to (GrM), = 0. Let I, be the annihilator of the k[X1,Xo,...,X,]-
module Gr, M, p € Z. Since Gr, M are finitely generated k[X1,Xo,...,X,]-
modules, by 4.2 their supports supp(Gr, M) are equal to V(I,). This implies
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that supp(M) = U, ez V(Ip). Let mi,ma,...,ms be a set of homogeneous gen-
erators of Gr D(n)-module Gr M. Then the annihilator I of mq,ma,...,ms in
k[X1, Xa,...,X,] annihilates whole Gr M. Therefore, there is a finite subset S of
Z such that Npesl, = I C I, for all ¢ € Z. This implies that UpesV (I,) = V(I) D
V(1) for all ¢ € Z, and supp(M) =V (I). O

Let D be a filtered ring with a filtration F D satisfying the properties (i)-(vii)
from the beginning of 3. Let M be a finitely generated D-module and F M a good
filtration of M. Then Gr M is a graded Gr D-module. Let I be the annihilator of
Gr M in GrD. This is clearly a graded ideal in Gr D. Hence, its radical r(I) is
also a graded ideal. In general, I depends on the choice of the good filtration on
M, but we also have the following result.

7.2. LEMMA. Let M be a finitely generated D-module and F M and F' M two
good filtrations on M. Let I, resp. I’ be the annihilators of the corresponding graded
Gr D-modules Gr M and Gr' M. Then r(I) = r(I').

PRrROOF. Let T € »(I) N Gr? D. Then there exists s € Z, such that T° € I. If
we take Y € F, Dsuch that Y +F, 1D =T, weget Y°F, M C Fyq5p—1 M for all
q € Z. Hence, by induction we get

Y™ Fy M C Fysmspm M

for all m € N and g € Z. On the other hand, by 3.7, we know that F M and F' M
are equivalent. Hence there exists | € Z such that F, M C F;_H M C Fgyo M for
all ¢ € Z. This leads to

Y™ FE M CY™ Foy M CFoyipmsp-m M CFp o m M

for all ¢ € Z and m € N. If we take m > 21, it follows that Y"* F; M C F;erqu M
for any ¢ € Z, i.e., T™° € I'. Therefore, T' € r(I') and we have r(I) C r(I'). Since
the roles of I and I’ are symmetric we conclude that r(I) = r(I"). O

Therefore the radical of the annihilator of Gr M is independent of the choice
of a good filtration on Gr M. We call it the characteristic ideal of M and denote
by J(M).

Now we can apply this construction to D(n). Since Gr D(n) = k[X1,..., X, &1, ...

by 5.6, we can define the closed algebraic set
Ch(M) =V (J(M)) C k*"

which we call the characteristic variety of M.
Since J(M) is a homogeneous ideal in last n variables, we immediately obtain
the following result.

7.3. LEMMA. The characteristic variety Ch(M) of a finitely generated D(n)-
module M has the following property: if (x,€) € Ch(M) then (x,\§) € Ch(M) for
any \ € k.

We say that Ch(M) is a conical variety.
7.4. PROPOSITION. Let
0—M —M-—M —0

be an exact sequence of finitely generated D(n)-modules. Then
Ch(M) = Ch(M')u Ch(M").

&l
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PROOF. Let F M be a good filtration on M. Then it induces a filtration F M’
on M’ and FM"” on M". By 3.8 we know that these filtrations are also good.
Moreover, we have the exact sequence

0—GrM —GrM —GrM'"—0

of finitely generated k[X1,...,Xp,&1,...,&]-modules, and their supports are, by
4.2, the characteristic varieties of D(n)-modules M, M’ and M" respectively.
Therefore the assertion follows from 4.1. O

The next two results shed some light on the relationship between the charac-
teristic variety and the support of a finitely generated D(n)-module.
Let 7 : k> — k™ be the map defined by 7(z, &) = x for any z, & € k™.

7.5. PROPOSITION. Let M be a finitely generated D(n)-module. Then supp(M) =}
w(Ch(M)).

PROOF. Denote by mi,ms,..., ms a set of homogeneous generators of Gr M.
Then, as in the proof of 7.1, the annihilator I of my,ma, ..., ms in k[ X1, Xs, ..., X,]
satisfies supp(M) = V(I). On the other hand, if J is the annihilator of my, ma, ..., mlj}
in k[X1, Xa,..., Xn,&1,&,...,&], it is a homogeneous ideal in &, &a, ..., &, which
satisfies I = k[X1, Xo,...,X,] N J, and Ch(M) = V(J). This implies that = €
V(I) = supp(M) is equivalent with (x,0) € V(J) = Ch(M). Since Ch(M) is
conical this implies the assertion. (Il

Let M be a finitely generated D(n)-module. Define the singular support of M
as

sing supp(M) = {x € k" | (x,&) € Ch(M) for some £ # 0}.
Clearly, we have sing supp(M) C supp(M).

7.6. LEMMA. Let M be a finitely generated D(n)-module. Then sing supp(M)
is a closed subvariety of supp(M).

PROOF. Let p: k™ — {0} — P"~1(k) be the natural projection. Then
Lxp:k™x (K" —{0}) — k™ x P"" (k)

projects Ch(M)— (k™ x {0}) onto the closed subvariety of k™ x P"~1(k) correspond-
ing to the ideal J(M') which is homogeneous in &1, &s, . . ., &,. Finally, the projection
to the first factor k™ x P*~1(k) — k™ maps it onto sing supp(M). Since P"~*(k) is
a complete variety, the projection k™ x P"~1(k) — k™ is a closed map. Therefore,
sing supp(M) is closed. O

The fundamental result about characteristic varieties is the following theorem.
It also gives a geometric description of the Bernstein dimension.

7.7. THEOREM. Let M be a finitely generated D(n)-module. Then
dim Ch(M) = d(M).

To prove the theorem we need some preparation.
We shall consider first the D(n)-module M = D(n)/L where L is a left ideal
in D(n). The exact sequence of D(n)-modules

0—L—Dn)—M-—0
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with filtrations induced by the filtration by the degree of the differential operators
on D(n) the leads to the exact sequence

0—GrL—GrD(n) —GrM —0

of A-modules, where A = GrD(n) = k[X1,...,Xn,&1,...,&]. Therefore, Gr M
is the quotient A/ Gr L and the annihilator of Gr M is equal to Gr L. Hence, by
definition, V(Gr L) is the characteristic variety of M. Hence, we have to establish
that dim V(Gr L) = d(D(n)/L) in this case.

To prove this we start with some general remarks. Let A = k[X1, Xo,..., X,].
Let t = (¢1,...,t,) € N*. We define the grading Gr® 4 by putting Grg,tl) A to be
the linear span of X' such that Z?Zl tji; = m. Clearly, in this way A becomes a
graded ring. Moreover, we can define the corresponding filtration F®) A by F{") A =

> m<p Gr® A. Clearly, if we denote by F A the natural filtration of A by degree of
polynomials and put ¢ = maxi<;<y, t;, we have

FMACF,Aand F,ACF\) A
for any p € Z.
Let I be an ideal in A. Then we can consider the exact sequence
0—I—A— A/ —0

of A-modules equipped with the filtrations induced by the filtrations on A. Then
we have
t
F®(A/I) C Fp(A/T) and Fy(A/I) C F(A/T)
for any p € Z. This in turn implies the following lemma.

7.8. LEMMA. For any p € Z, we have
dimy, F (A/T) < dimy, Fy(A/I) and dimy F,(A/1) < dimy, FLY (A/T).
Let s € N. Then we define a filtration F*) D(n) of the algebra D(n) by

FG) D(n) = {T € D(n) ’ T= 3 X0 ey ek}
[T|+s|J|<m
Clearly, FY) D(n) is the Bernstein filtration of D(n). The filtrations F®) D(n)
have the properties (i)-(iii) of the ring filtrations considered in §3. Moreover, T' €
F®) D(n) if and only if T € Fg) D(n) and the order of T is < ¢ for some p and
q satisfying m = p + (s — 1)g. Therefore, if T € F(¥) D(n) and S € FS? D(n),
there exist p,p’ and ¢,¢’ such that m = p+ (s — 1)g and m' = p' + (s — 1)¢/,
T € Fl()l)D(n), S € F;})D(n), and the orders of T and S are < ¢ and < ¢

respectively. This implies that the order of T'S is < ¢+ ¢’ and T'S € F;lﬁp, D(n).

It follows that T'S € F£2)+m/ D(n). Hence, the filtration F*) D(n) satisfies also
(iv), i.e., it is a ring filtration. In the same way we can check that (v) holds, i.e.,
the graded ring Gr(® D(n) is commutative. Moreover, the graded ring Gr'®) D(n)
is isomorphic to the graded ring A = k[X1,..., X, &1, .., &) with the graded
structure corresponding to s = (1,...,1,s,...,s). We denote that graded module
by Gr® A and its associated filtration by F®) A.

Moreover, we have

s 1 1 s
F(*) D(n) ¢ FY D(n) and FV D(n) C F() D(n)



7. CHARACTERISTIC VARIETY 29

for any p € Z.
Consider again the exact sequence

0—L— D(n) — D(n)/L —0

of D(n)-modules equipped with the filtrations induced by the filtrations on D(n).
Then we have

s 1 1 s
F{)(D(n)/L) C FY)(D(n)/L) and FY(D(n)/L) C F§)(D(n)/L)
for any p € Z. This in turn implies the following lemma analogous to 7.8.
7.9. LEMMA. For any p € Z, we have
dimy, F(D(n)/L) < dim F{V(D(n)/L)

and
dimy, F"(D(n)/L) < dim F&) (D (n)/L).

7.10. LEMMA. Let L be a left ideal in D(n). Then
d(D(n)/L) = dim V(Gr® L)
for any s € N.
PROOF. The exact sequence
0— L — D(n) — D(n)/L — 0,

where D(n) is equipped with the filtration F*) D(n) and L and D(n)/L with the
induced filtrations F*) L and F*)(D(n)/L) respectively, leads to the exact sequence

0 — Gr® L — Gr™® D(n) — Gr'®(D(n)/L) — 0.
Clearly, as a graded ring Gr(®) D(n) = Gr® A. This implies that

P
dimy F(D(n)/L) = > (dimy F$? (D(n) /L) — dimy, F\Y, (D(n) /L))
q=0
p q
= Z dimy, Gr n)/L) = Z dimg, Gr((ls) D(n) — dimg, Grf]‘q) L)
q=0 q=0
P P
Z(dlmk Gr(s A — dimy, Gr Z dimg, Grgs)(A/ Gr¥ L)

Q
I
o

q=0
= dim;, F{¥(A/ Gt L)
for any p € Z. This in turn implies, using 7.8 and 7.9 that
dimy F) (D(n)/L) < dimy F§)(D(n)/L) = dimy F§)(A/ G L)
< dimy Fyp(A/ G L)
and
dimy, F,(A/ Gr® L) < dimy FE)(A/ Gr'®) L) = dim () (D(n)/L)
< dimy FO) (D(n)/L).

Since the functions p — dimy Fz(gl)(D(n)/L) and p — dimg F,(A/ Gr'® L) are
represented by polynomials for large p € Z, these polynomials have to have equal
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degrees. This in turn implies that d(D(n)/L) = d(A/Gr'® L). Since Gr®) L is the
annihilator of A/ Gr'®) L, the statement follows from 4.5. O

For any s € N, we denote by 0_2(75) (T') the projection of T € F;S)D(n) in
Gr}(f) D(n) = A. Also, for the natural filtration on A given by the degree of the
polynomials, we denote by o, the map which attaches to a polynomial of degree p
its homogeneous component of degree p.

7.11. EXAMPLE. Let D = D(1) and T € D given by T' = 2309 + §*. Then the
degree of T is equal to 2 and Symb,(T) = £2. Hence, o3 (Symb,(T)) = £2.

On the other hand, we have ail)(T) = 23¢; Ué2) (T) = 3¢, Ué?’) (T) = x3¢ + €2
and aéz)(T) = &2 for s > 3.

Hence, for large s, the o(*)(T) becomes equal to o(Symb(T)). This holds in
general, more precisely we have the following result.

7.12. LEMMA. Let T be a differential operator in D(n) of order < m such that
its symbol Symb,, (T) is a polynomial of degree p. Then there exists sg such that

0 (Symby, (1) = o) _1y,,(T)
for s > sq.

Proor. By our assumption

T= Z CI,JXla'].

[J|<m

Also, we can fix g such that ¢; ; # 0 implies that |I| < go. Then we have

Symbm(T) = Z C[JXIgJ
|J|=m

is a polynomial of degree p and its leading term is

UP(Symbm(T)) = Z C[,JXI{].

[I|=p—m,|J|=m

On the other hand, the terms X797 are in FI(;I)JrSIJI D(n). Assume that c7,; # 0.
Then we have the following possibilities:

(i) |[J|=m and |I| =p—m: X107 isin F](;g(sfl)m D(n).
(i) [J] =m and |I] <p—m: X807 m FS) _, ~ D(n).
(iii) m > 1, |[J| <m and |I| < go: X107 isin Fflzlrs(mfl) D(n). Moreover,

got+sm—1)=qg+sm—s=qg+m—s+(s—1)m.

Hence, if s > s = g+ m —p+ 1, we have go + s(m — 1) < p+ (s —
1)m — 1. Tt follows that in this case the differential operator X197 is also

i ()
inF0 D(n).
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This implies that for s > sg we have

() _ () 1o
Tpr(s—1ym (L) = i (s 1ym > asXx'o

Tl=p—m|J|=m
= Z cr,gX'€7 = 0p(Symb,, (T)).
|Nl=p—m|J|=m

O

In particular, we can pick finitely many D; € L, 1 < i < k, such that
o(Symb(D;)) generate Gr(Gr L). By 7.12, there exists s such that o(Symb(D;)) =
o&)(D;) for any 1 < i < k. Therefore, we have Gr(Gr L) € Gr®) L and V(Gr(Gr L)) df}
V(Gr® L). This in turn implies that dim V (Gr(Gr L)) > dim V(Gr® L). By 4.8
and 7.10, we finally see that dim V(Gr L) > d(D(n)/L).

The converse inequality is much simpler. First, let D € F](Dl)(D(n)). Then,
its degree is < p, and Symb(D) is a polynomial of degree < p. Therefore, Fg,l)(L)
contains only differential operators of degrees < p, and Gr FZ()l)(L) C Fy(GrL).

Since FZ(,l)(L) is finite dimensional, and its filtration by the degree of differential
operators if hausdorff and exhaustive, we have

dimy, F{Y(L) = dimy, GrF{Y (L) < dimy, F,,(Gr L).
Therefore, it follows that
dimy, F$V(D(n)/L) = dimy, Dy(n) — dimy, F{V (L)
> dimy Fp A — dim F,(Gr L) = dimy, F,(A/ Gr L)

for any p € N. This in turn implies that d(D(n)/L) > d(A/Gr L). Since Gr L is
the annihilator of A/ Gr L, from 4.5 we conclude that d(D(n)/L) > dim V(Gr L).
Hence we proved that

d(D(n)/L) = dim V(Gr L).
To prove the theorem in the general case we consider the exact sequence
0— M —M-—M"—0

where M has ¢ generators, M’ has q — 1 generators and M" is cyclic. Therefore,
M’ is isomorphic to D(n)/L for some left ideal L.

By the first part of the proof, we have d(M") = dim Ch(M"). In addition, by
the induction assumption, we have d(M’) = dim Ch(M’). From 3.9 and 7.4 we see
that

d(M) = max(d(M"),d(M")) = max(dim Ch(M"), dim Ch(M"))
= dim(Ch(M') UCh(M")) = dim Ch(M).

This completes the proof of 7.7.
In particular, by combining 6.3 and 7.7, we get the following result.

7.13. THEOREM. Let M be a finitely generated D(n)-module, M # 0, and
Ch(M) its characteristic variety. Then dim Ch(M) > n.
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8. Holonomic modules

Let M be a nontrivial finitely generated D(n)-module. Then, by 7.13, the
dimension of its characteristic variety Ch(M) is > n.

We say that a finitely generated D(n)-module is holonomic if the dimension of
its characteristic variety Ch(M) is < n. Therefore, M is holonomic if either M = 0
or dim Ch(M) = n.

Roughly speaking, holonomic modules are the modules with smallest possible
characteristic varieties.

The following result is the fundamental observation about holonomic modules.

8.1. THEOREM. (i) Holonomic modules are of finite length.
(ii) Submodules, quotient modules and extensions of holonomic modules are
holonomic.

PrOOF. (ii) follows immediately from 3.9.

(i) Let M be a holonomic D(n)-module different from zero. Then, by definition,
its the dimension of its characteristic variety Ch(M) is equal to n. By 7.7, its
Bernstein dimension d(M) is also equal to n. Since M is finitely generated and D(n)
is a noetherian ring, there exists a maximal D(n)-submodule M’ of M different from
M. Therefore we have an exact sequence

0— M — M — M/M — 0.

By (ii), M’ and M/M’ are holonomic and M/M’ is an irreducible D(n)-module.
If M' # 0, we conclude from 3.9 that e(M’) < e(M). Therefore, by induction in
e(M), it follows that M has finite length. O

Therefore, the full subcategory Hol(D(n)) of the category Mq(D(n)) is closed
under taking submodules, quotient modules and extensions. Moreover, if we denote
by My (D(n)), the full subcategory of M,(D(n)) consisting of D(n)-modules of
finite length, we see that Hol(D(n)) is a subcategory of M (D(n)). One can show
that Hol(D(n)) is strictly smaller than My (D(n)) for n > 1.

In addition, the transpose functor and the Fourier functor map holonomic mod-
ules into holonomic modules.

Now we are going to discuss some examples of holonomic modules.

8.2. EXAMPLE. Let O, = k[X1, Xo,...,X,]. Then O,, = D(n)/(D(n)(01,0a,...,0,))}
is a finitely generated D(n)-module. Moreover, if we put F,, O,, = 0 for p < 0 and
F, 0, = O, for p > 0, the filtration F O, is a good filtration for the degree filtra-
tion of D(n). The corresponding graded module Gr O,, is such that Gr? O,, = 0
for p # 0 and Gr° O,, = k[X1, Xo, ..., X,,]. Tt follows that the annihilator of GrO,,
is equal to the ideal in k[X1, Xo,..., X, &1, &2, ..., &) generated by &1,&,...,&,.
This implies that Ch(O,,) = k™ x {0} C k?". In particular, dim Ch(O,,) = n and
O,, is holonomic. Moreover, supp(O,,) = k™ and the projection 7 : k2" — k" is
an bijection of Ch(O,,) onto O.

By differentiation, we see that any submodule of O,, has to contain contants.
Therefore, O,, is irreducible.

8.3. EXAMPLE. Consider now A,, = F(O,,). Then, we have A,, = D(n)/(D(n)(X1,X2,...,Xn)) 1
Clearly, A,, is holonomic and irreducible. Let d be the vector corresponding to
1€ O;. Then X;6 =0 for any 1 < i < n. Clearly, A, is spanned by §() = 97,
I e Zi. Let F A, be a filtration of A, such that: F, A, = {0} for p < 0
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and Fp A, is spanned by U |I] < p, for p > 0. Denote be ¢; the multiindex
(0,...,0,1,0,...,0) with 1 ant i-th position. Then, by the definition of the Fourier
transform, we have

aj(;(l) — sU+¢) and Xjé(f) _ _Z.jts(f,ej)

foralll < j<mnandlI € Zﬁ_. This implies that F, A,, are k[X1,Xo,...,X,]-
submodules of A,,. Moreover, 0;F, A, C Fpi1 A, forall 1 <i <nandp e Z
Hence, F A,, is an exhaustive D(n)-module filtration for D(n) filtered by the order
of differential operators. Let 6(/) be the cosets represented by 6(!) in Grl!! A,
Then Gr? A,, is spanned by 6(!) for I € Z, such that |I| = p. Clearly, X; act
as 0 on GrA,, and & map 6) into 6(/+¢). Therefore, § generates GrA,, as a
kX1, Xa, ..., Xn,&1,82,...,&]-module, and F A, is a good filtration. Moreover,
the annihilator of GrA,, is the ideal generated by X;, 1 < i < n. Hence the
characteristic variety of A,, is Ch(A,) = {0} x k™ C k*". The support supp(A,,)
of A, is {0} C k™.

Now we want to construct more holonomic modules. We start with a simple
criterion for holonomicity.

8.4. LEMMA. Let D(n) be equipped with the Bernstein filtration. Let M be a
D(n)-module and F M an exhaustive D(n)-module filtration on M. If

c
dimy, Fp M < — p" + (lower order terms in p)
n!

forallp € Zy, M is a holonomic D(n)-module and its length is < c.
In particular, M is a finitely generated D(n)-module.

PROOF. Let N be a finitely generated D(n)-submodule of M. Then F M in-
duces an exhaustive D(n)-module filtration on N. By 3.6 there exists a good
filtration F' N of N and s € Z,. such that F, N C Fj4, N for any p € Z. It follows
that

dimy F; N <dimp Fpys N <dimp Fpo M < 5]}" + (lower order terms in p)

for p € Z,. Therefore, d(N) < n and N is holonomic. If N # 0, we have
e(N) < ¢. Clearly this implies that the length of N is < e(N) < ¢. Tt follows that
any increasing sequence of finitely generated D(n)-submodules of M stabilizes, and
that M itself is finitely generated. O

8.5. EXAMPLE. Let n =1 and put D = D(1). Consider the D-modules M, =
D/D(20 — &) for any o € k.

Let E = 20. Asin the proof of 5.10, we see that the operators (2? E%, 0P E?; p, q €]}
Z4) form a basis of D as a linear space over k. Moreover, the ideal D(z0 — ) is
spanned by the elements (:?EY(E — «),0PEY(E — a); p,q € Z,). Hence, M, is
spanned by the cosets corresponding to (27,07 ; p € Z).

Clearly,

[E,2] = 202 — 2°0 = 2
and
[E,0] = 20* — 020 = —0.
Therefore, we have

Ez=2zE+1)and EJ=0(F —1).
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This immediately implies that the coset of 2™ is an eigenvector of E with eigenvalue
a+ n for any n € Z,. On the other hand, the coset of 0" is an eigenvector of F
with eigenvalue o —n for any n € Z,. Therefore, the spectrum of E on M, is equal
to {a+n; n € Z}, and the multiplicity of each eigenvalue is equal to 1.

The Fourier transform of M, is isomorphic to

D/D(—=0z—a)=D/D(z0+a+1)=M_, 1.

Assume first that o ¢ Z. Then, F is a linear isomorphism and z must be sur-
jective. Since z maps the eigenspace for the eigenvalue oo + n onto the eigenspace
for the eigenvalue ao +n + 1, z is also injective. Therefore, we can construct in-
ductively a family of vectors 2™ n € Z, such that Ez%™" = (a + n)z*™ and
220%n = zotn+l Clearly, these vectors form a basis of M,. Moreover,

azaJrn _ 8zza+n71 — [a’ Z]Za+n71 + Eza+n71 _ (O[ +n)za+n71

for any n € Z. This immediately implies that M, = M4, for any integer p € Z.

Moreover, any nonzero D-submodule of M is invariant under F, so it contains
an eigenvector of E. This in turn implies that it contains z®™? for some p € Z.
It follows that it contains all 2%t", n € Z, i.e., it is equal to M,. Hence, M, are
irreducible D-modules.

We define a filtration F M, of M, by: F, M, = {0} for p < 0; and F, M, is
the span of {2*T"; |n| < p} for p > 0. Clearly, F M,, is an increasing exhaustive
filtration of M, by linear subspaces. Moroever, by the above remarks, z F, M, C
Fpi1 My and 0F, My, C Fpp1 M, for any p € Z. Therefore, F M, is a D-module
filtration for D equipped by Bernstein filtration. Since dimy F, M, = 2p 4 1 for
p >0, by 8.4, we see that M, is holonomic.

To calculate its characteristic variety, consider the another filtration F M, such
that F, M, = {0} for n < 0 and F,, M,, is spanned by {z*?; p > —n} for n >
0. Clearly, this is an exhaustive fitration of F M, by modules over the ring of
polynomials in z. Moreover, 0F, M, = Fpy1 M, for any p € Z4, and this a a
good D-module filtration for the filtration of D by the order of differential operators.
The graded module Gr M, is a direct sum of Gr? M,,, where Gr™ M, = 0 for n < 0;
Gr’ M, is equal to the span of z*™? for p > 0; and Gr? M, is spanned by the
coset of 2P modulo {z%%9; ¢ > —p}. Therefore, z annihilates Gr” M, for p # 0,
and the symbol & of & annihilates Gr¥ M, and maps Gr? M, onto GrP™! M, for
p > 0. It follows that the annihilator of Gr M,, is the ideal generated by z¢{ in
k[z,£]. Hence, the characteristic variety Ch(M,) is the union of lines {z = 0} and
{¢€ =0} in k2.

Assume now that o € Z. Then the eigenvalues of E are integers. If v is a
nonzero eigenvector of E for an eigenvalue m # 0, dv is an eigenvector of E for
eigenvalue m — 1 and z0v = mwv # 0. Therefore, z maps all eigenspaces of E with
eigenvalues ¢ # —1 onto the eigenspaces for the eigenvalue g + 1.

Assume first that n = —a > 0. Then the coset of "1, is an eigenvector of
FE for the eigenvalue —1. Therefore, z maps the eigenspace of E for eigenvalue —1
onto the eigenspace for the eigenvalue 0. Hence, in this case, we can select basis
vectors v™ for the eigenspaces for the eigenvalues m € Z, such that zv™ = v™+!
for m € Z. We have

o™ = 9z = [0, 2Jv™ ! 4 Ev™ Tt = mo™ !

for all m € Z. This implies that all M_,,, n > 0, are mutually isomorphic.
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Moreover, by an inspection of the action of z and J, we see that the vectors
™, m € Zy, span a D-submodule N_,, isomorphic to O; from 8.2. In particular
M_,, is reducible.

Clearly, zv_1 € N_,,. It follows that the coset § € M_,,/N_, of v_; satisfies
z0 = 0.

The spectrum of F on L_,, = M_,,/N_,, consists of all strictly negative integers.
Therefore, 9 is injective on L_,. Hence 6(™ = 9™§ are nonzero eigenvectors of
E for eigenvalues —(m + 1), m € Z,, i.e., they are proportional to the cosets of
V_(m+1)- Clearly, we have

20(m) = 295(m=1) = —m(m=1)

m

for all m > 0. It follows immediately that L_,, is isomorphic to the D-module A,
described in 8.3. Hence we have the exact sequence

00— 0 —M_, — A —0

and this exact sequence doesn’t split. In particular, all these D-modules are iso-
morphic to M_;.

By Fourier transform, we see that D-modules M,,, n > 0, are isomorphic to
My. Moreover, we have the exact sequence

0—A — M, —0; —0

which also doesn’t split.
Since O; and A; are holonomic by 8.2 and 8.3, by 8.1 we see that M,,, n € Z,
are holonomic. Moreover, from 7.4 we conclude that we have

Ch(M,) = Ch(O1) UCh(A,)

for all n € Z. Hence, by 8.2 and 8.3, they are equal to the union of lines {z = 0}
and {£ =0} in k°.

From the above example we see that the characteristic varieties do not de-
termine the corresponding D-modules. Moreover, the characteristic variety of an
irreducible holonomic D(n)-module can be reducible.

Now we are going to generalize the construction of the module M_; from the
above example.

Let M be a D(n)-module and P € k[X;, X3, ..., X,]. Then on the localization
Mp of M we can define k-linear maps 0; : Mp — Mp by

m m oym
0i(5p) = —POi(P) 5 + 55

for any m € M and p € Z,. By direct calculation we can check that
m
[0:,0(5,) =0

and
m

m

[@'Jj](ﬁ) = 5z‘jﬁ
for any 1 < 4,5 <mand p € Z;. By 5.11 this defines a structure of D(n)-module
on Mp.

8.6. PROPOSITION. Let M be a holonomic D(n)-module and P € k[X1, X, ..., X,] .}
Then Mp is a holonomic D(n)-module.
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ProOOF. We can clearly assume that P # 0. Let F M be a good filtration on
M such that F,, M = 0 for p < 0 and m = deg P. Define F, Mp = 0 for p < 0 and

v
F, Mp = {ﬁ ’ ve F(mH)Z,M}

for p € Z. Clearly F,, Mp, p € Z, are vector subspaces of Mp.

Let w € F, Mp, p > 0. Then w = 55 = % for some v € F,, 41y, M. Since
Pv e Finiyprm M CFing1yper) M, we see that w € Fy1q Mp. This proves that
the filtration F Mp is increasing.

Let v € Fg M. Then 55 = % for any s € Zy. Also, P°v € Fyigm M for
any s € Z4. Moreover, (m+1)(p+s) —(g+sm) =s+ (m+1)p—q > 0 for

s> q—(m+1)p. Hence
Pv e Fq+sm M C F(m+1)(p+s) M

and 55 € Fpys Mp. Therefore, the filtration F Mp is exhaustive.
It remains to show that it is a D(n)-module filtration. First, for v € F,,41), M,

i Pv € F(mi1)(p+1) M, hence x; 55 = % € F,41 Mp. Also,
o () — —pd;(P)v + Pov
‘ (ﬁ) - prtl

and —pd;(P)v + POjv € F(y,41)(p+1) M; hence 0; (%) € Fpp1 Mp.

Therefore, we constructed an exhaustive D(n)-module filtration on Mp. Since
((m+ 1)p)"
n!
for p € Z,, Mp is holonomic by 8.4. (]

8.7. COROLLARY. Let P € k[X1,Xo,...,X,]. Then k[X1,Xs,...,X,]p is a
holonomic D(n)-module.

dimy F), Mp < dimy F (1), M < e(M) + (lower order terms in p)

9. Exterior tensor products

Let X = k™ and Y = k™ in the following, and denote by Dx and Dy the
corresponding algebras of differential operators with polynomial coefficients. Then
we can consider the algebra Dx X Dy which is equal to Dx ®; Dy as a vector
space over k, and the multiplication is defined by (T'® S)(T"® S") =TT' ® 5SS’ for
T,T7" € Dx and S,5" € Dy. We call Dx X Dy the exterior tensor product of Dy
and Dy-.

The following result is evident.

9.1. LEMMA. Dx X Dy = Dxxy.

If M and N are Dx-, resp. Dy-modules, we can define Dx «y-module M X N
which is equal to M ®; N as a vector space over k, and the action of Dx X Dy =
Dxxy is given by (T® S)(m®@n) =Tm® Sn forany T € Dx, S € Dy, me M
and n € N.

9.2. LEMMA. Let M be a finitely generated Dx -module and N a finitely gener-
ated Dy -module. Then M X N is a finitely generated D x «y -module.

PROOF. Let e, eg,...,e, and f1, fa,..., f; be generators of M and N respec-
tively. Then for any m € M and n € N, we have m = > Tie;, T; € Dx,
and n = ) S;f;, S; € Dy. This implies that m®n = > > Tie; @ S;f; =
DO T®S;)(ei® f;),and e; ® fj, 1 <i<p,1<j<q, generate M X N. a
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Our main goal in this section is to prove the following result.

9.3. THEOREM. Let M be a finitely generated Dx-module and N a finitely
generated Dy -module. Then d(M X N) =d(M) + d(N).

This result has the following important consequence.

9.4. COROLLARY. Let M be a holonomic D x-module and N a holonomic Dy -
module. Then M X N is a holonomic D x yy-module.

Let Dx and Dy be equipped with the Bernstein filtration. Let M and N
be finitely generated Dx-, resp. Dy-modules with good filtrations F M and F NV
respectively. Define the product filtration on M X N by

Fi(MRN)= > F,M®,F,N
pt+q=j
for any j € Z. Clearly the product filtration on Dx X Dy = Dx xy agrees with the
Bernstein filtration. Therefore, F(MXN) is an exhaustive hausdorff Dx yy-module
filtration.

To prove that this filtration is good we need some preparation in linear algebra.
We start with the following lemma.

9.5. LEMMA. Let M, M', N and N’ be linear spaces over k, and ¢ : M — M’
and v : N — N’ linear maps. Then they define a linear map ¢ @ : M Q@ N —
M’ @ N'. We have

(i)
im(¢®¢) =im¢ @ imy;
(ii)
ker(¢ ® 1)) = ker ¢ @ N + M ®j, ker ¢).

PRrROOF. (i) This is obvious from the definition.
(ii) By (i), to prove (ii) we can assume that ¢ and v are surjective. In this
case, we have short exact sequences

0—M' — MM —0
where M"" = ker ¢, and
0—N' —NSN —0

where N = ker 1.
Clearly, we have ¢ ® ¥ = (¢ ® idn+) o (idpr ® ). Since the tensoring with N’
is exact, the first exact sequence implies that the sequence

00— M" @y N' — M @p N 229 0 @0 N —5 0

is exact. Hence, ker(¢ ® idn/) = M" @ N’ = ker ¢ ®j N’. Therefore, an element
z in M ®j N is in the kernel of ¢ ® ¢ if and only if (idys ® 1)(z) is in ker ¢ @ N'.
Since '
0— M@ N — Mg N 2% Mo N —0
is also exact, ker ¢ ® N maps surjectively onto ker ¢ ®; N’ and ker(idy; ® ) =
M ®, N” = M ® kerv. Therefore, z is in the kernel of ¢ ® ¢ if and only if
z €kerp ®p N + M ®j ker 1. [
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9.6. LEMMA. Let X1, Xo,...,X,, be linear subspaces which span a linear space
X. If

XNy X; = {0}

J#i
for 1 <i <mn, the linear space X is the direct sum of X1, Xs,..., X,.

PRrOOF. Let x; € X;, 1 < i < n, be such that 1 + 25 + --- + z,, = 0. Then
xT; = —Z#i z; € X; N Z#i X, and by our assumption is equal to 0, for any
1< <n. U

Now we want to describe Gr(M X N). Let j € Z. If p+ g = j we have a well-
defined k-linear map F, M @, F; N — F;(M K N). Hence, we have a well-defined
k-linear map F, M @, F, N — Gr/ (MXN). By 9.5, the kernel of the natural map
F, M®,Fy N — Gr? M@, Gr? N is Fp_; M@, Fy N+F, M@, F,_1 N, ie., it is
contained in F;_; (M X N). Hence, the linear map F, M ®; F;, N — Gr/ (M X N)
factors through Gr? M ®j Gr? N. This leads to the linear map

m: P G’ M@z Gr'N — G/ (MR N).
p+a=j

Clearly, by its construction, this map is surjective. Moreover, its restriction to each
summand Gr? M @ Gr? N in the direct sum is injective. Let X, , be the image of
GrP M ®;, Gr? N in G’ (M K N). Since we have

Fpo1 M@y F, N+F, M@F, 1 N = (F, M&F, N)m( > F, M@yF, N) I
p'+q'=j, p'#p, 4'#q

we see that
Xp,q n < Xp’,q’) = {O}
p’'+q'=j, p'#p, ' #q

Hence, by 9.6 the map is an isomorphism. This implies that Gr;(M X N) =
D, —; Grp M ®; Grg N for any j € Z.

If we define analogously the algebra Gr Dx K Gr Dy with grading given by the
total degree, we see that Gr Dx X Gr Dy = Gr Dx«y. In addition, Gr M X Gr N
becomes a graded Gr Dy xy-module isomorphic to Gr(M X N) by the preceding
discussion. Since the filtrations F M and F N are good, Gr M and Gr N are finitely
generated Gr Dx-, resp. Gr Dy-modules by 3.1. By an analogue of 9.2, Gr(M X N)
is a finitely generated Gr D x «y-module. This implies that the product filtration is
a good filtration on M X N.

Let

P(M,t) =" dimy(Gr, M) t*
PpEZ
and

P(N,t) = dimy(Gry N)t?

qEL
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be the Poincaré series of Gr M and Gr N. Then

P(M,t) P(N,t) =Y ) " dimy(Gr, M) dimg (Gry N) 749
PpEZL qEZ

= Z Z dimy,(Gr, M) dimy(Gr, N) | ¢/

JEZ \p+q=j

- Z Z dimy (Grp, M ®;, Gry N) I

JEZ \p+qa=j
= dimj, Gr;(M B N)# = P(M R N,t)
JEZ

is the Poincaré series of M X N. Therefore, the order of the pole at 1 of P(MX N, t)
is the sum of the orders of poles of P(M,t) and P(N,t). From 1.5, we see that this
immediately implies 9.3.

We can deduce 9.3 also by considering characteristic varieties. Consider Dy,
Dy and Dx vy as rings filtered by the order of differential operators. Let M and NV
be finitely generated Dx-, resp. Dy-modules, equipped with good filtrations F M
and FN. As above, we define a Dy xy-module filtration F(M X N) on M X N.
Then, as in the above argument, we see that F(M XK N) is a good filtration of
M X N. Let I be the annihilator of Gr M in Gr Dx and J the annihilator of Gr NV
in Gr Dy. Then, by 9.5, we see that the annihilator of Gr(M K N) is equal to the
ideal I ®, GrDy +GrDx ® J in Gr Dxyy = Gr Dx X Gr Dy

We can identify Gr Dx with the polynomial ring k[z1,...,zn,&1,...,&,] and
Gr Dy with the polynomial ring k[y1, - - -, Ym, M1, - - - » Dm]. Moroever, we can identify
Gr Dxxy with the polynomial ring k[z1,...,Zn, Y1, -« s Ums &1y oy Ens My« s Nim)-
Then the annihilator of Gr(MXN) corresponds to the ideal in k[z1, ..., Zn, Y1, -« Ym}
&,y &, M, - - -, Mm] generated by the images of I and J in that ring. If we define
the map ¢ : k2" x k2" — k2(ntm) by

Q(mla"'axfmgla"'7£nay17'"7y7n7’r]17""7777l)
= (xlw-~7xn7y17~"7yma€1a"'a€na7]17~-~777m)7

we have the following result.

9.7. THEOREM. Let M and N be finitely generated Dx-, resp. Dy -modules.
Then we have

Ch(M B N) = q(Ch(M) x Ch(N)).

This in turn implies that dim Ch(M K N) = dim Ch(M) + dim Ch(N), and by
7.7, we get another proof of 9.3.

Either by using (the proof of) 7.1 and arguing like in the above proof, or by
using 7.5 we also see that the following result holds.

9.8. PROPOSITION. Let M and N be finitely generated Dx -, resp. Dy -modules.
Then we have

supp(M K N) = supp(M) x supp(N).
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10. Inverse images

Let X = k™ and Y = k™ and denote by x1,2s,...,2, and y1,y2,...,Ym the
canonical coordinate functions on X and Y respectively. Let R(X) = k[z1,z2, ..., zu]ll
and R(Y) = kly1,v2, - - -, Ym] denote the rings of regular functions on X and Y re-
spectively.

Let F: X — Y be a polynomial map, i.e.,

F(z1,29,...,2n) = (F1(T1,%2, ..., Zn), Fo(T1,%2,. .., Tpn )y ooy P (21,22, ..., 2y))

with F; € R(X). Then F defines a ring homomorphism ¢r : R(Y) — R(X) by
¢r(P) = Po F for P € R(Y). Therefore we can view R(X) as an R(Y)-module.
Hence, we can define functor F* from the category M(R(Y)) of R(Y)-modules into
the category M(R(X)) of R(X)-modules given by the following formula

F*(N) = R(X) ®gvy N

for any R(Y)-module N. Clearly F* : M(R(Y)) — M(R(X)) is a right exact
functor. We call it the inverse image functor from the category M(R(Y")) into the
category M(R(X)).

Now we want to extend this functor to D-modules. Denote now by Dx and
Dy the algebras of differential operators with polynomial coefficients on X and Y
respectively. If N is a left Dy-module, we want to define a D x-module structure on
the inverse image F™*(N). (As we remarked at the beginning of §6, the transposition
functor is an equivalence of the category of left D-modules with the category of right
D-modules, hence we can analogously treat right modules.) First we consider the
bilinear map

(P7 U) awz ay]
from R(X) x N into R(X) ®py) N. Smce
OP(QoF) ) OF; 8
8P 0 OF; F 8
Q+ZP<Q F>® +ZP 57"
Yj
8P 3F aQ
+ JE—
8% Q )
5‘P 0

for any @Q € R(Y"), this map factors through a linear endomorphlsm of F* (N ) which
we denote by % By direct calculation we get

0 0
Oz;’ Ox;

}(P@v) 0

and 5
o] (Pov) =ay(P o)
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hence, by 5.11, we see that F*(IN) has a natural structure of a left Dx-module.
Its structure can be described in another way. Let

Dx_,y = F*(Dy) = R(X) ®g(y) Dy.

Then, as we just described, Dx_,y has the structure of a left Dx-module. But
it also has a structure of a right Dy-module given by the right multiplication on
Dy . These two actions clearly commute, hence Dx_,y is a (left Dx, right Dy )-
bimodule. Moreover, for any Dy-module N we have

F*(N) = R(X) ®py) N = (R(X) ®r(y) Dy) ®py N = Dxy ®@p, N

and the action of Dx on F*(N) is given by the action on the first factor in the last
expression.

We denote this Dx-module by FT(N) and call it the inverse image of the
Dy-module N.

It is evident that the inverse image functor F'* is a right exact functor from
ML (Dy) into ME(Dx). Tts left derived functors L'F* are given by

L'FT(N) = Tor®Y (Dx .y, N)

for a left Dy-module N.

Let For denote the forgetful functor from the category of Dx-modules (resp.
Dy-modules) into the category of R(X)-modules (resp. R(Y)-modules). Then the
following diagram of functors commutes

M(Dy) — M(Dx)

Forl lFor

M(R(Y)) = M(R(X))

We claim that analogous statement holds for the left derived functors, i.e., we
have the following statement.

10.1. PROPOSITION. The following diagram of functors commutes

M(Dy) EE5 M(Dy)

ForJr lFor

M(R(Y)) =5 M(R(X))
for any i € Z.

PROOF. Let F" be a left resolution of a Dy-module N by free Dy-modules.
Since a free Dy-module is also a free R(Y)-module by 5.10, by the above remark,
we have

For(L'F*(N)) = For(H (F*(F"))) = H'(For(F*(F")))
= H'(F*(For F")) = L'F*(For N)
for any i € Z. [

Now we want to study the behavior of derived inverse images for compositions
of morphisms. First we need an acyclicity result.
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10.2. LEMMA. Let P be a projective left Dy -module. Then F*(P) is a projective
R(X)-module.

PrROOF. Let P be a projective Dy-module. Then it is a direct summand
of a free Dy-module (Dy)(I). This implies that FT(P) is a direct summand of
FH(D{). Since Dy is a free R(Y)-module, For(F+ (D)) = R(X) @p(y) DY is
a free R(X)-module. O

10.3. THEOREM. Let X = k™, Y = k™ and Z = kP, and F : X — Y and
G :Y — Z polynomial maps. Then
(i) the the inverse image functor (G o F)* from MY (Dy) into M¥(Dx) is
isomorphic to F+ o GT;
(ii) for any left Dz-module N there exist a spectral sequence with Ea-term
EY = LPF*(LIGT(N)) which converges to LPT4(G o F)™(N).
PROOF. (i) We consider first the polynomial ring structures. In this case
(GoF)"(N) = R(X) ®r(z) N = R(X) @r(y) (R(Y) @r(z) N) = F*(G"(N))

for any Dz-module N.
On the other hand,

d
oz, (P®v) =

for any P € R(X) and v € N. Hence the Dx-actions agree.

(i) By 10.1 and 10.2, for any projective Dz-module P, the inverse image G (P)
is Ft-acyclic. Therefore, the statement follows from the Grothendieck spectral
sequence. U

This result has the immediate following consequence.

10.4. COROLLARY. Let X = k™, Y = k™ and Z = kP, and F : X — Y and
G :Y — Z polynomial maps. Then

(l) DX_>Z = DX_>Y ®Dy DY—)Z;’
(ll) TOI‘jDY (DX_>y, Dy_>2) =0 for j € N.

PRrROOF. (i) By 10.3.(i) we have

Dx_z=(GoF)Y(Dz)=F"(G"(Dz)) = F"(Dy-z) = Dx_y ®p, Dy_7.
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(ii) As we remarked in the proof of 10.3.(ii), by 10.1 and 10.2, we see that
Dy _ .7z = GT(Dgz) is FT-acyclic. Hence, for j > 0, we have
0=L9F"(G"(Dz)) = Tor}" (Dx_y,G*(Dz)) = Tor?" (Dx_y, Dy z).
(I

Now we consider two simple examples. First, let p be the projection of X x Y
defined by p(x,y) =y for x € X, y € Y. Then, as it is well known, R(X xY) =
R(X)X R(Y). Therefore, for a R(Y)-module N we have

P"(N)=R(X xY)®pgy)N =(R(X)XR(Y)) ®ryy N = R(X)X N

as a module over R(X xY) = R(X) X R(Y). On the other hand, if N is a

Dy -module, it follows immediately that the actions % and % also agree, i.e.,
i j

pT(N) = R(X)X N. From 9.3 and 9.4 we immediately get the following result.

10.5. PROPOSITION. Letp: X XY — Y be the canonical projection. Then,
(i) p* is an evact functor from ML (Dy) into MY (Dxxy);
(i) pT(N) = R(X)X N for any left Dy -module N ;
(iii) pT(N) is a finitely generated Dx xy-module if N is a finitely generated;
(iv) d(pT(N)) = d(M) +n for any finitely generated left Dy -module N.
In particular, a finitely generated Dy -module N is holonomic if and only if p™(N)
is holonomic.

Now we consider another example. Let ¢ be the canonical injection of X into
X xY given by i(z) = (z,0) for any z € X. Then
Dx_xxy =i"(Dxxy) = R(X)®rx)®rv)(DxXDy) = Dx®Dy /((y1,y2,- -, Ym)Dy )}
with the obvious actions of Dx by left multiplication in the first factor and Dx xy =
Dx X Dy by the right multiplication.

Assume in addition that m = 1. Then we have the exact sequence

0— Dy y_1> Dy — Dy/ley —0

where the second arrow is given by left multiplication by y;. By tensoring with
Dx, we get the short exact sequence

Y1
0 — Dxxy — Dxxy — Dx_xxy —0

of left D x-modules for left multiplication and right D x xy-modules for right mult-
plication. Therefore, we can consider the first two terms of this exact sequence as a
left resolution of Dx_, xxy by (left Dx, right Dx xy )-bimodules which are free as
Dx wy-modules. Therefore, for a Dx xy-module NV, the cohomology of the complex

0— NI N—0
computes the derived inverse images. In particular, we have the following lemma.

10.6. LEMMA. LetdimY = 1. Leti be the canonical injection of X into X xY.
Then, for any Dx xy-module N we have

(i) iT(N) = cokery;
(i) L=YH(N) = kery;;
(iii) LPiT(N) =0 for p different from 0 or —1.
In particular, the left cohomological dimension of iT is < 1.

The last statement has an obvious generalization for arbitrary Y.
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10.7. LEMMA. Let i be the canonical injection of X into X xY. Then, the left
cohomological dimension of it is < dimY.

PROOF. The proof is by induction in dim Y. We already established the result
for dimY = 1. We can represent ¥ = Y’ x Y where Y/ = k™! and Y" = k.
Denote by ¢ the canonical inclusion of X into X x Y’ and by j the canonical
inclusion of X x Y’ into X x Y’ xY” = X xY. Then i = jo04'. Moreover, by 10.6,
the left cohomological dimension of 57 is < 1, and by the induction assumption the
left cohomological dimension of 7’ *is < dimY’. Therefore, from the Grothendieck
spectral sequence in 10.3.(ii) we conclude that derived inverse images L™P:% vanish
forp>dimY’ +1=dimY. |

Let FF: X — X be an isomorphism of X and G its inverse. Then the map
a: R(X) — R(X) defined by a(f) = f o F is an automorphism of the ring R(X).
Its inverse is B given by 8(f) = fo G for f € R(X). If M is a R(X)-module,
F*(M) is isomorphic to M as a linear space over k via the map ¢ : m — 1 @ m.
On the other hand, for f € R(X), we have

fom) =fom=foGoF®m=1®(foG)m=¢(B(f)m)

for any m € M, i.e., the R(X)-module F*(M) is isomorphic to M with the R(X)-
module structure given by (f,m) — B(f)m. for f € R(X) and m € M.

Now we want to give an analogous description of F*(M). First we want to
extend the automorphism 3 to Dx.

Let T be a differential operator on X, and put S(T)(f) = B8(Ta(f)) for any
f € R(X). Clearly, 3(T) is a k-linear endomorphism of R(X). Moreover, T —
B (T) is a linear map. In addition, for two differential operators T and S in Dx, we
have

B(TS)(f) = B(TSa(f)) = B(Ta(B(Sa(f))))
= B(Ta(B(Sa(f))) = BTa(B(S)(f)) = BT)BS)()))

for all f € R(X), i.e., f3 is a homomorphism of the k-algebra Dx into the algebra
of k-linear endomorphisms of R(X). Since for g € R(X) we have

Blg)f = Blga(f)) = Blg)f

for all f € R(X), we see that 3 extends the automorphism 8 of R(X). This in

turn implies that w(7T') € Dx for T € Dy, i.e., B is an automorphism of Dx which

extends the automorphism g of R(X). Therefore, we can denote it simply by 5.
Let 1 <4 <n. Then we have

BO)(f) = B(9ia(f)) = B(Oi(f o F))

=B (D (@) e F)aiF; | = ((0:F;) 0G0, f = ZﬂaF (f)-
Jj=1 j=1
Consider now the bimodule Dx_,x attached to the map F. The linear map ¢ :

f®Tv+— B(f)T, identifies it with Dx. The Dx-module structures given by right
multiplication are identical. On the other hand,

0(B;(1®T)) ZﬁF ® 0;T :iﬂ(aiFj)aszﬂ(ﬁi)QOu@T)

Jj=1
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for any T € Dx and 1 < i < n. Therefore, the bimodule Dx_, x is isomorphic to
Dx with right action by right multiplication and left action of by the composition
of B and left multiplication. This in turn implies that F'*(M) is isomorphic to
M with the Dx-module structure given by (T',m) — B(T)m for T € Dx and
m e M.

Therefore, by 3.10, we established the following result.

10.8. LEMMA. Let F': X — X be an isomorphism of X.

(i) Let M be a Dx-module. Then FT (M) is equal to M as a linear space
with the Dx-action given by (T, m) —— B(T)m for T € Dx and m € M.

(ii) The functor F* : MY(Dx) — M¥(Dx) is ezact.

(iii) The functor F* maps finitely generated Dx-modules into finitely gen-
erated Dx-modules. If M is a finitely generated Dx-module, we have
d(F*(M)) = d(M).

In particular, F™ maps holonomic modules into holonomic modules.

We can make the above statement more precise by describing the characteristic
variety Ch(FT(M)) for a finitely generated Dx-module M. First, from the above
calculations we see that the automorphism (§ of Dx induces an automorphism Gr 3
of Gr Dx = k[X1, Xo,..., X, 61,8, ..., &,] which is defined by X; — B(X;) = G;
and fz — Z?:l B(&F])fj = Z;’:l((a,FJ) o] G) gj for 1 <i<n.

Now we want ot describe this construction in more geometric terms. If z =
(x1,%2,...,2,) is a point in X = k™, we identify the cotangent space T} (X) at x
with k™ via the map df (z) — ((01f)(x), (O2f)(x),...,(Onf)(x)). Therefore, the
cotangent bundle 7%(X) of X can be identified with k2" via the map (z, df (7)) —
(@1, sy, (O1)(@),..., (Onf)(2)) for € X. Let F : X — X be an isomor-
phism of X and G its inverse. Then the map G maps a point z in X into G(x) and
F maps G(X) into . Their differentials T,(G) and T (,)(F) are mutually inverse
linear isomorphisms between the tangent spaces T, (X) and T (y)(X). Therefore,
their adjoints T, (G)* : ¢y ) (X) — T3(X) and Tg ) (F)* : Ti(X) — Tgp (X)
are mutually inverse linear isomorphisms. This implies that we can define an iso-
morphism 7 of the cotangent bundle 7% (X) of X by (x,&) — (G(x), Tz (F)*§)
for ¢ € T#(X) and x € X. If we identify T*(X) with k2", by inspecting the above
formulas, we see that (Gr 8)(P) = Povy forany P € k[X1, Xo,..., X, &1,82, ..., &)

Let M be a finitely generated D x-module with a good filtration F M. Then we
can realize F'* (M) as M with the action described above. Clearly, F M is a good
filtration of F*(M) realized that way. Therefore, Gr (M) can be identified with
Gr M equipped with the action (Q, m) — (Gr 8)(Q)m for Q € k[X1, Xa,..., Xn, 1,82, .., &l
and m € GrM. Hence, if Q is in the annihilator of Gr F™ (M) if and only if
(GrB)(Q) is in the annihilator of Gr M. If I is the annihilator of Gr F* (M),

(GrB)I is the annihilator of Gr M. Hence, (x,€) is in Ch(FT(M)) if and only if
v (2, €) is in Ch(M).

10.9. LEMMA. Let M be a finitely generated D x-module. Then
Ch(F*(M)) = (Ch(M)).

Finally, this allows to give an estimate of the left cohomological dimension of
the inverse image functor.

10.10. THEOREM. Let X = k™, Y = k™ and F : X — Y a polynomial map.
Then the left cohomological dimension of FT is < dimY.
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PROOF. To prove this statement we use the graph construction. Let ¢ : X x Y
be the morphism given by i(x) = (2,0) forx € X. Let ® : X XY — X XY be
the morphism given by ®(z,y) = (z,y + F(x)) for x € X and y € Y. Finally, let
p: X xY — Y be the projection given by p(z,y) =y forallz € X and y € Y.
Then F = po ® oi. Moreover, ® is an isomorphism of X x Y with the inverse
(2,y) — (z,y — F(x)).

By 10.3, F* =i o ®* o p™. Moreover, by 10.5 and 10.8, the functors p™ and
®T are exact. Therefore, LIFT = L%+ o ®¥ o p™ for all ¢ € Z. By 10.7, it follows
that LIFT =0 for ¢ < —dimY. O

11. Direct images

Let X = k™ Y =k" and F : X — Y a polynomial map, as in the last section.
The composition with F' defines a natural ring homomorphism F : R(Y) — R(X).
This homomorphism in turn defines a functor Fy form the category of R(X)-
modules into the category of R(Y)-modules. For any R(X)-module M we define
F.(M) as the module which is equal to M as a linear space over k, and the action
of R(Y) is given by (f,m) —s F(f)-m, for any f € R(Y) and m € M. The functor
F,: M(R(X)) — M(R(Y)) is called the direct image functor. Clearly, F is an
exact functor.

Unfortunately, if M is a Dx-module, the direct image F.(M) doesn’t allow
a Dy-module structure in general. For example, if we consider the inclusion ¢ of
X = {0} into Y = k, Dx = R(X) is equal to k and Dy is the algebra of all
differential operators with polynomial coefficients in one variable. The category of
D x-modules is just the category of linear spaces over k. By 6.2, the inverse image
of a nonzero finite-dimensional D x-module M cannot have a structure of a Dy-
module. Therefore, the direct images for D-modules will not be related to direct
images for modules over the rings of regular functions, as in the case of inverse
images.

If we apply the transposition to the both actions on Dx_,y we get the (left
Dy, right Dx)-bimodule Dy, x. This allows the definition of the left Dy-module

Fy (M) =Dyx ®py M

for any left Dx-module M. Clearly, F is a right exact functor from M*(Dx) into
ME(Dy). We call it the direct image functor. The left derived functors L'F of
F, are given by
L7F{(M) = Tor?* (Dy . x, M)
for a left Dx-module M.
Let X =k", Y =FK"and Z =k, and F: X — Yand G:Y — 7
polynomial maps. If we transpose the actions 10.4 implies the following statements

Dzex =Dzey ®py Dyex
and
Tor?¥ (Dzcy, Dy x) =0
for j € N.
If P is a projective left Dx-module, P ® Q = Dg) for some left D x-module Q

and some I. Therefore, F\ (P) & F(Q) = F+(Dg§)) = (Dyx)®. This implies
the following result.
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11.1. LEMMA. Let P be a projective left Dx-module. Then
Tor}Y (Dzqy, Fy(P)) =0
for g eN.
11.2. THEOREM. Let X = k™, Y = k™ and Z = kP, and F : X — Y and

G:Y — Z polynomial maps. Then

(i) the direct image functor (G o F), from MY (Dx) into M¥*(Dy) is iso-
morphic to G4 o Fy;

(ii) for any left Dx-module M there exist a spectral sequence with Ea-term
E¥?" = L[PG (LIF(M)) which converges to LPT%(G o F)(M).

PRrROOF. (i) For any left Dx-module M by 10.4.(i) we have

(GoF)y(M)=Dzx ®pxy M =(Dzey ®py Dyx)®py M
=Dzcy ®@py (Dyex @px M) = Dzey @p, F (M) = G (Fy(M)).
(ii) By 11.1, for any projective Dx-module P, the direct image Fy(P) is G-

acyclic. Therefore, the statement follows from the Grothendieck spectral sequence.
O

Now we consider a simple example. Let ¢ be the canonical injection of X into
X x Y given by i(x) = (z,0) for any = € X. Then

Dx_xxy =i (Dxxy) =i"(Dx ® Dy) = Dx ® Dy /(41,92 ,Ym)Dy)
and

Dxyxy«x = Dx XDy /(Dy(y1,y2,--,Ym))-
This implies that

’L+(M) =MHKX DY/(DY(y17y27 s 7ym))

for any left Dx-module M. Moreover, the module Dy /(Dy (y1,Y2,---,Ym)) is
isomorphic to 4A,, discussed in 8.3.

11.3. PROPOSITION. Leti: X — X XY be the injection defined by i(z) = (z,0)
for x € X. Then,
(i) iy is an ezact functor from ML (Dx) into ME(Dxyy);
(ii) i (M) = M X Dy /(Dy(y1,Y2,---,Ym)) for any left Dx-module M ;
(iii) @4 (M) is finitely generated Dx xy -module if M is a finitely generated D x -
module;
(iv) d(ip(M)) =d(M)+ m for any finitely generated left Dx-module M.
In particular, a finitely generated D x -module M is holonomic if and only if is (M)
s holonomic.

PROOF. We already proved (ii), and it immediately implies (i). As we remarked
in 8.3, Dy /(Dy (y1, Y2, --,Ym)) is an irreducible holonomic Dy -module, hence (iii)
follows from 9.2. To prove (iv) we first remark that by 9.3, we have

d(iy(M)) = d(M) + d(Dy /(Dy (y1,Y2, - - - »Ym)))-

Since (Dy /(Dy (y1,Y2,---,Ym)) is holonomic, its dimension is equal to m. a
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Now we want to study the direct image of a projection p: X x Y — Y given
by p(z,y) =y forz € X andy €Y.
Consider first the case of dim X = 1. Then

Dxxy—y =p (Dy) = Dx/Dx(0;) X Dy.

Hence, Dy xxy = Dx/((01)Dx) X Dy. We have an exact sequence

01
0— Dxxy — Dxxy — Dyxxy — 0

of (left Dy, right Dx «y )-bimodules, where the second arrow represents left multi-
plication by 0;. Clearly, this is a left resolution of Dy . xxy by free right Dxxy-
modules, hence the cohomology of the complex

e 00— MM 50—

is Tor”**Y (Dy  xxy, M) = L'py (M) for any Dy y-module M. It follows that
that Lp, (M) = 0 for ¢ ¢ {0,—1}.
Therefore, we established the following result.

11.4. LEMMA. Let dim X = 1. Let p be the canonical projection of X XY onto
Y. Then, for any Dx «y-module M we have
(i) p+(M) = coker 0y ;
(i) L7 py(N) =kerdy;
(iii) Lipy(N) =0 for q different from 0 or —1.

In particular, the left cohomological dimension of p1 is < 1.
The last statement has the following generalization for arbitrary X.

11.5. LEMMA. Let p be the canonical injection of X XY ontoY. Then, the left
cohomological dimension of py is < dim X.

PrOOF. Let X' = {x,, = 0} C X, and denote by p’ the canonical projection
of X’ xY onto Y. Also, denote by p” the canonical projection of X x Y onto
X’ xY. Then p = p' o p”. Hence, by 11.2.(ii), 11.4 and the induction assumption
we conclude that Lipy (M) = for ¢ < —dim X. O

Let FF: X — X be an isomorphism of X and G its inverse. As in §10, we
define the automorphisms « and 3 of Dyx. We identified there the bimodule Dx _, x
attached to F with Dx equipped with actions given by right multiplication and left
multiplication composed with 8. Applying « to it, we see that it is also isomorphic
to Dx equipped with actions given by right multiplication composed with « and
left multiplication. By applying the principal antiautomorphism we see that the
bimodule Dx. x is isomorphic to Dx with actions given by left multiplication
composed with a and right multiplication. This in turn implies that for any Dx-
module M, the direct image F (M) is isomorphic to M with the action given by
(T,m) — «(T)m. In particular, F'y (M) = GT(M).

Therefore, from 10.8, we immediately deduce the following result.

11.6. LEMMA. Let F : X — X be an isomorphism of X and G : X — X its
muerse.
(i) Let M be a Dx-module. Then Fy(M) is equal to M as a linear space
with the Dx-action given by (T, m) — a(T)m for T € Dx and m € M.
(ii) The functor Fy : MY (Dx) — ML (Dx) is exact.
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(iii) The functor Fy maps finitely generated Dx-modules into finitely gen-
erated Dx-modules. If M is a finitely generated Dx-module, we have
d(Fy (M) = d(M).
In particular, F+ maps holonomic modules into holonomic modules.
In addition, Fy = G and F* = G, and these functors are mutiually quasi-
inverse equivalences of categories.

As in the last section, this allows to give an estimate of the left cohomological
dimension of the direct image functor.

11.7. THEOREM. Let X = k™, Y = k™ and F : X — Y a polynomial map.
Then the left cohomological dimension of Fy is < dim X.

PROOF. As in the proof of 10.10, we use the graph construction. Let i : X x Y
be the morphism given by i(z) = (2,0) for x € X. Let ® : X xY — X x Y be
the morphism given by ®(z,y) = (v,y + F(x)) for z € X and y € Y. Finally, let
p: X xY — Y be the projection given by p(z,y) =y forallz € X andy € Y.
Then F = po ® oi. Moreover, ® is an isomorphism of X x Y with the inverse
(x,y) — (LL', Y= F({,C))

By 11.2, F, = p4 o ®, oi,. Moreover, by 11.3 and 11.6, the functors ¢4 and
®, are exact. Therefore, LYFy = Lip, o &, oiy for all ¢ € Z. By 11.5, it follows
that LIF, =0 for p < —dim X. ]

12. Kashiwara’s theorem

Let X = k" and Y = {z, =0} C X. Weputalso Z = {; =29 =--- =
Zp—1 =0} 2 k. Hence X =Y x Z. This also implies that Dx = Dy K Dy. Let M
be a Dx-module and put

Liyy(M) = {m € M | %,m = 0 for some p € N}.

12.1. LEMMA. Let M be a Dx-module. Then:
(i) Ty)(M) is a Dx-submodule of M;
(i) supp(I'y1(M)) C Y5
(iii) if N is a Dx-submodule of M with supp(N) CY, then N C Ty (M).

PrOOF. (1) Let m € F[y] (M) Then z;m € F[y] (M) and 8jm S F[y](M) for

1<i<mnand1<j<n. It remains to check that d,m € I';y1(M). We have
2310, m = (22T, 0, )m 4 Ol Tim = —(j + Dadm 4 9,20 Tim

for any j € N. Hence, if 22 m = 0, we see that 719, m = 0.

(ii) If x ¢ Y, 2, ¢ m, and the localization I'y(M), = 0.

(iii) Assume that N is a Dx-submodule of M with supp(N) C Y. Let m € N
and denote by N’ the R(X)-submodule generated by m. Then supp(N') C Y.
Since N’ is finitely generated, by 4.2, its support is equal to the variety determined

by its annihilator I in R(X). By Nullstelensatz we see that r(I) D (x,). This
implies that 27, annihilates N’ for some j € N, i.e., m € iy (M). O

Therefore I'iy (M) is the largest Dx-submodule of M supported in Y.
The multiplication by x,, defines an endomorphism of M as Dy-module. Let

My = kerx, C T'iy)(M)
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and
My = cokerz,, = M /x, M.

Denote by 4 the natural inclusion of Y into X. As we established in 10.6, it (M) =
My, L= (M) = My and all other inverse images vanish.

Consider the biadditive map Dx x My —> M. Clearly, it factors through
Dx ®p, My — M. Moroever, by the definition of My, the latter morphism
vanishes on the image of Dxz, ®p, M, in Dx ®p, M,. As we remarked in §11,

o0

DX<_y = DY X Dz/Dzl‘n = @a%Dy
7=0

Therefore, the above morphism induces a natural D x-module morphism
i+(M0) =Dx.y ®p, My — M.

Clearly, its image is contained in I'ly(M). It is easy to check that this is actually
a morphism of the functor iy o L™1T into Iy
The critical result of this section is the next lemma.

12.2. LEMMA. The morphism iy (My) — T'jy)(M) is an isomorphism of Dx -
modules.

PROOF. We first show that the morphism is surjective. We claim that
{me M |zPm =0} C Dx - M,
for any p € N. This is evident for p = 1. If p > 1 and 22m = 0 we see that
0 = 0p(z2m) = 22~ (pm + £,0,m),
and by the induction hypothesis,
pm + x,0p,m € Dx - M.
Also, by the induction hypothesis, z,m € Dx - My. This implies that
(p—1)m = pm+ [xn, Op]m = pm + x,0,m — Opzp,m € Dx - My

and m € Dx - My. Hence the map is surjective.
Now we prove injectivity. By the preceding discussion

o0
iy (Mo) = Dx«y ®p, My = @3ZLM0-
=0

Let (mg, Opymi,...,0%m,,0,...) be a nonzero element of this direct sum which maps
into 0, i.e.,

mo+ Oymi + -+ 01mg =0,
with minimal possible g. Then

q

a q
0=2,(Y 00m;) = [wn,0]m; = = joi~"m;
j=0 j=1

Jj=1

and we have a contradiction. Therefore, the kernel of the map is zero. O

12.3. COROLLARY. x,I'y)(M) = 'y (M).
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PROOF. By 12.2 any element of 'y (M) has the form )
My. On the other hand,

Zn Z jﬁaﬁlm]— =— Z dIm;.

JELy JEL4

Jm.: Wi .
jez, Ohm; withm; €

O

12.4. COROLLARY. Let M be a Dx-module. Then
(i) Ty)(M) is a finitely generated Dx-module if and only if My is a finitely
generated Dy -module;
(i) d(Tyy)(M)) = d(Mo) + 1.
In particular, Ty (M) is holonomic if and only if L' (M) = My is holonomic.

PROOF. (i) From 12.2 and 11.3.(iii) we see that I'iy;(M) is finitely generated if
My is finitely generated. Assume that I'jy)(M) is a finitely generated Dx-module.
Let Nj, j € N, be an increasing sequence of Dy-submodules of My. Then they
generate D x-submodules i; (N;) = EB;io OhNj of T'y)(M). Since I'iy)(M) is a
finitely generated Dx-module, the increasing sequence iy (N;), j € N, stabilizes.
Moreover, N; is the kernel of x,, in i4 (NN;) and the sequence N;, j € N, must also
stabilize. Therefore, M is finitely generated.

(ii) Follows from 12.2 and 11.3.(iv). |

12.5. COROLLARY. Let M be a holonomic D x-module. Then Mgy is a holonomic
Dy -module.

PROOF. If M is holonomic, I'iy)(M) is also holonomic. Therefore, the assertion
follows from 12.4. O

Let My (Dx) be the full subcategory of M(Dx) consisting of D x-modules
with supports in Y. Denote by M,y (Dx) and Holy(Dx) the corresponding
subcategories of finitely generated, resp. holonomic, D x-modules with supports in
Y. Then, by 12.1, we have M = I'iy(M) for any M in My (Dx). By 10.6 and 12.3
we see that iT(M) = 0 for any M in My (Dx), hence L=t is an exact functor
from My (Dx) into M(Dy). On the other hand, i, defines an exact functor in
the opposite direction, and by 12.2 the composition iy o L= is isomorphic to the
identity functor on My (Dx). Also it is evident that L=1i* o i, is isomorphic to
the identity functor on M(Dy).

This leads us to the following basic result.

12.6. THEOREM (Kashiwara). The direct image functor iy defines an equiva-
lence of the category M(Dy) (resp. Myq4(Dy ), Hol(Dy)) with the category My (Dx )i}
(resp. M,y (Dx), Holy(Dx)). Its inverse is the functor L= .

PROOF. It remains to show only the statements in parentheses. They follow
immediately from 12.4. O

13. Preservation of holonomicity

In this section we prove that direct and inverse images preserve holonomic
modules. We start with a simple criterion for holonomicity.

Let X = k™ and Y = k™. Let FF: X — Y be a polynomial map. We want
to study the behavior of holonomic modules under the action of inverse and direct
image functors.
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First we use again graph construction to reduce the problem to special maps.
As in the proof of 10.10 and 11.7:

x £, vy

{ pT
XxY —25 XxY
where i(z) = (x,0) for all x € X, p(z,y) = y for all z € X and y € Y; and
O(z,y) =(r,y+ F(z))forre XandyeY.

By 10.5, we know that p™ is exact and maps holonomic modules into holonomic
modules. By 11.3, we know that iy is exact and maps holonomic modules into
holonomic modules. Moreover, by 10.8 and 11.6 we know that ®* and ®, are
exact and map holonomic modules into holonomic modules.

Therefore, it remains to study the derived functors of i™ and p. .

We first discuss the immersion i : X — X x Y.

13.1. LEMMA. Let N is a holonomic Dxyy-module. Then the Dx-modules
L%+ (N), q € Z, are holonomic.

Since the submodules, quotient modules and extensions of holonomic modules
are holonomic by 8.1.(ii), as in the proof of 10.7 by the spectral sequence argument
we can reduce the proof to the case dimY = 1. In this situation, if we denote by
y the natural coordinate on Y, and consider the Dx-module morphism N 5N ,
we have it(N) = cokery and L~1iT(N) = kery and all other derived inverse
images vanish, as we established in 10.6. Moreover, if N is holonomic L=t (N) is
holonomic by 12.4. Hence, it remains to treat i ™ (N).

13.2. LEMMA. Let N be a holonomic Dx xy -module. Then it (N) is holonomic.
PROOF. Let N = N/I'ix)(N). Then ve can consider the short exact sequence
0 —Ix(N) — N — N —0.
Since it is a right exact functor, this leads to the exact sequence
i*(F[X](N)) — it(N) — i (N) — 0.

On the other hand, by 12.3, we see that i*(I'x)(V)) = 0. Therefore, the natural
map iT(N) — it (N) is an isomorphism.

Let v € 'y (N) C N and denote by v € N the representative of ¥. Then
yPv = 0 for sufficiently large p € Z,. Therefore, y?v € I'ix)(N). This in turn
implies that y?*9v = y?(yPn) = 0 for sufficiently large ¢ € Z,.. Hence, v € T'ix)(N)
and © = 0. It follows that I'jx)(N) = 0.

In addition, if N is a holonomic Dxxy-module, N is a holonomic Dxxy-
module.

Therefore, we can assume from the beginning that I'ix)(/N) = 0. This means
that the multiplication by y is injective on N, and N imbeds into its localization
N,. Consider the exact sequence

0—N-—N,—L—0.

Since N is a holonomic Dy xy-module, from 8.6 we know that N, is a holo-
nomic. Hence, L is a holonomic Dx xy-module. By the above discussion, this
implies L=1i*(L) is a holonomic Dx-module.
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Applying the long exact sequence of inverse images of ¢ to our short exact
sequence, we get

o= LTHT(N,) = LTNT(L) — i H(N) = i (N,) = it (L) = 0.
Since the multiplication by y on N, is invertible, by 10.6 we see that
it(N,) = L™ (N,) = 0.

Hence, it follows that it (V) = L=1iT(L). By the preceding discussion we conclude
that ¢+ () is a holonomic Dx-module. O

Therefore, by 10.3, we get the following result.

13.3. THEOREM. Let F : X — Y be a polynomial map and M a holonomic
Dy -module. Then LYFY (M), q € Z, are holonomic D x-modules.

Now we want to study the direct images of p.

13.4. LEMMA. Let M s a holonomic Dxyy-module. Then the Dy -modules
Lip, (M), q € Z, are holonomic.

PROOF. Since the submodules, quotient modules and extensions of holonomic
modules are holonomic by 8.1.(ii), as in the proof of 11.5 by the spectral sequence
argument we can reduce the proof to the case dim X = 1. In this situation, if we
denote by 0 the derivative with respect to the coordinate x on X, and consider the

Dy-module morphism M 9, M, we have py (M) = coker @ and L™ 'p, (M) = ker d
and all other derived inverse images vanish, as we established in 11.4. By applying
the Fourier transform we get the complex

i =0 — F(M) S F(M) — 0 — ...

which calculates F(L'p4 (M)). By the arguments from the proof of 13.2, we see that
this complex calculates the inverse images of the canonical inclusion j : ¥ — X xY
given by j(y) = (0,y) for y € Y. Therefore, its cohomologies are holonomic by 13.2.
By 6.4, we see that Lip, (M) are holonomic for all ¢ € Z. O

Therefore, by 11.2, we get the following result.

13.5. THEOREM. Let F : X — Y be a polynomial map and M a holonomic
Dx-module. Then L1F, (M), q € Z, are holonomic Dy -modules.

13.6. REMARK. The statements analogous to 13.4 and 13.5 for finitely generated
modules are false. For example, if we put X = {0}, Y = k and denote by i : X —
Y the natural inclusion, the inverse image i*(Dy ) is an infinite-dimensional vector
space over k. Analogously, if p is the projection of Y into a point, po(Dy) is an
infinite-dimensional vector space over k.






CHAPTER II

Sheaves of differential operators on smooth
algebraic varieties

1. Differential operators on algebraic varieties

Let X be an affine variety over an algebraically closed field k of characteristic
zero. Let Ox be the structure sheaf of X, and denote by R(X) its global sections,
i.e. the ring of regular functions on X. Then R(X) is a commutative k-algebra
and we can define the ring D(X) of k-linear differential operators on the ring R(X)
as in ?7?7. We call this ring the ring of differential operators on X. The order of
differential operators defines an increasing ring filtration (D, (X);p € Z) on D(X)
which satisfies the properties (i)—(v) from the beginning of 3 in Ch. 1.

As we discussed in 77, in the case X = k" we know that D(X) = D(n) is the
ring of differential operators with polynomial coefficients in n-variables.

We can realize X as a closed subset of some affine space k™ for some n € Z.
Let I(X) be the ideal of all polynomials in k[ X7, X5, ..., X,,| vanishing on X. Then
R(X) = k[X1,Xo,...,X,]/I(X) and we denote by r the restriction homomorphism
of the ring k[X7, Xo,..., X,] onto R(X). Define

A={T € D(n) | TU(X)) C I(X)}.

Clearly A is a subalgebra of D(n).

Let T € A. Then T induces a linear endomorphism ¢(T) of k[ X1, X2, ..., X,,]/I1(X).}
The map ¢ is a homomorphism of A into the ring of all linear endomorphisms of
R(X). Clearly, A equipped with the filtration by the order of differential operators
is a filtered ring.

Moreover, k[ X1, Xo, ..., X,] is a subring of A. Therefore, we have the following
commutative diagram

k[X1,..., X, ——  R(X)

l l

A —— Endy(R(X).

In particular, for any polynomial P € k[Xy,..., X,], ¢(P) is the multiplication by
r(P)on X. Let T € AN D,(n) and a (p + 1)-tuple fo, f1,..., fp of elements from
R(X). Then we can pick Py, Pi,..., P, € k[X1,Xs,...,X,] such that r(P;) = f;
for 0 < i < p. Hence,

[ DT, fols Al - fpal fol = (1T, Bol Pl -, Byl Ppl) = 0.

Hence, ¢(T) is a differential operator of order < p on X. It follows that ¢ :
A — D(X) is a ring homomorphism compatible with the filtrations by the order
of differential operators.

55
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In addition,
J(X)={T € D(n) | T(k[X1,X2,...,Xy]) CI(X)}
is a two-sided ideal of A. Clearly, J(X) is in the kernel of ¢.

1.1. LEMMA. Let T € D(n). Then the following conditions are equivalent:

(i) T e J(X);
(il) T =3 P;o! with Py € I(X).

PROOF. It is clear that if the coefficients Pr of T vanish on X, the differential
operator T' is in J(X). Conversely, if T'is in J(X), Py = T(1) vanishes on X, i.e.,
Py € I(X). Assume that Py € I(X), [I| <m. Then, T" =3%"; _,, Prolisin J(X).
Therefore, 7" =T —T" € J(X). On the other hand, for any J € Z7}, |J| = m,

T"(X7) = ZP,@I (X7)=J'P;
[1]>m

vanish on X, i.e., Py € I(X). Hence, by induction on m we conclude that Py € I(X)
for all I € Z7. g

Denote by D the quotient ring A/J(X). The filtration of A by the order of
differential operators induces a quotient ring filtration (D,;p € Z) on D which
satisfies the conditions (i)—(v) from the beginning of 1.3.

Since J(X) is in the kernel of ¢, it defines a homomorphism ® of D into D(X).
Clearly, ® is a homomorphism of D into D(X) compatible with their ring filtrations.

1.2. PROPOSITION. The morphism ® : D — D(X) is an isomorphism of
filtered rings.

First we show that @ is injective. Let T € A be such that ¢(T") = 0. This
implies that ¢(T)(P + I(X)) = T(P) + I(X) = 0, ie, T(P) € I(X) for any
P € k[X1,Xo,...,X,]. Hence, T € J(X) and ® is injective.

To begin the proof of surjectivity we make the following remark.

1.3. LEMMA. Letp € Zy and let Pr € k[X1,Xo,...,X,], I € Z7, |I| < p. Then
there exists a differential operator T € D(n) of order < p such that T(X') = P;
forall I € 2%, |I| < p.

PROOF. Evidently, the assertion is true for p = 0. Assume that p > 0 and that
the assertion holds for p—1. By the induction assumption there exists a differential
operator T” of order < p — 1 such that T"(X!) = Py for all T € Z", |I| < p — 1.
Put T"(X') = Qr, Qr € k[X1,Xo,...,X,], for all I € Z", |I| = p. Obviously 9”7,
|J| = p, annihilate X?, |I| < p — 1, and 87 (X!) = I'6; ; for |I| = |J| = p. This
implies that if we define T" = ZIJIZP PJ;!Q“’ 97, T" annihilates X!, |I| < p —1,
and

Pr—Qy
XN = > 5ot | (XD =P
[7l=p
for any I € Z", |I| = p. Therefore (T" + T")(X!) = Py for I € Z, |I| = p, and
(T"+T")(X") =T'(X") = P for I € 27, |I]| < p. O



1. DIFFERENTIAL OPERATORS ON ALGEBRAIC VARIETIES 57

Now we claim that for any 7' € D,(X) and S € D(n) of order < p, T(r(X1)) =
r(S(X1)) for I € Z7, |I| < p, implies that Tor =r o S. If p = 0 there is nothing
to prove. Assume that p > 0. Then, for 1 < j < n, we have

[T, r(X;))(r(X7T)) = Tr(X;X7) — r(X;)T(r(X"))
=r(S(X;X7)) = r(X;S(XT)) = r([S, X;)(XT))
for all I € Z7, |I| < p — 1, and the orders of [T,7(X;)] and [S, X;] are < p — 1.
]

S,
Therefore, by the induction assumption [T, r(X;)] or = r o [S,X;]. In particular,
for any I € Z% , we have

T(r(X;X7) = [T, r(X)I(r (X)) +r(X)T(r(XT))
= r([8, X;)(XT) +r(X)T(r(XT)) = r(S(X; X)) +r(XH)[T(r(XT) =r(S(X)).

Hence, by the induction on || it follows that T'(r(X')) = r(S(X')) for all I € Z7,
which proves our assertion.

Let T be a differential operator of order < p on X. Then we can choose
Pr € k[X1,Xa,...,X,), I € Z", |I| < p, such that T(r(X')) = r(Py) forall I € Z7,
|I| < p. By 1.3, there exists a differential operator S € D(n) of order < p such that
S(XT)y = Py for all I € Z7, |I| < p. This implies that T'(r(X')) = r(S(X')) for
Iezy, I <p.

By the previous result this yields T'or = r o S. In particular, we see that
r(S(I(X))) =T(r(I(X))) =0, ie. S € A. Evidently, ¢(S) =T and ® is surjective.
This ends the proof of 1.2.

1.4. COROLLARY. Let X be an affine algebraic variety. For anyp € Z,, Dp(X)
is a finitely generated R(X)-module for left (and right) multiplication.

PRrROOF. We can assume that X is a closed subset in k™. From 1.8.9. we know
that the statement holds for X = k™. Since k[X1, Xs,...,X,] is a noetherian ring,
ANF,D(n) is a finitely generated k[X1, Xo, ..., X,]-module for the left (and right)
multiplication, and D, is a finitely generated R(X)-module for left (and right)
multiplication for any p € Z. The assertion follows from 1.2. (]

Let f € R(X), f # 0, and Xy = {z € X | f(x) # 0} the corresponding
principal open set in X. Then Xy is an affine variety, and R(Xy) = R(X)y.
Denote by r; the restriction map from R(X) into R(X).

L.5. PROPOSITION. Let T' € Dy(X). Then there exists a unique differential
operator T € D, (Xy) such that the following diagram is commutative:

R(X) —— R(X)
g g
T
R(X;) —— R(Xy).
First we show the uniqueness of T. It is enough to prove the following lemma.

1.6. LEMMA. Let S € D(Xy) be such that S(g) = 0 for any g € ry(R(X)).
Then S = 0.

PRrROOF. We prove this statement by induction on the order p of S. If p = 0,
S € R(Xy) and the condition immediately leads to S = 0. Assume now that
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p > 0. Then S’ = [S, f] € Dp—1(Xy) and it annihilates ry(R(X)). Hence, by
the induction assumption, S’ = 0. This implies that S commutes with f. Let
h € R(X¢). Then there exists n € Z, such that f"h € r¢(R(X)). This implies that
frS(h) = S(f"h) = 0. Since % € R(Xy) we conclude that S(h) = 0. Therefore,
S =0. (I

It remains to show the existence of T.

First, we discuss the case of X = k™. Since D(n) is generated by X,,d;,
1 < i < n, as a k-algebra, it is enough to show the existence of T for T = 0;,
1 <4 < n. But the derivations 9; extend to the field k(X;, Xs, ..., X,) of rational

functions and satisfy
N <g> _ u(g)f — mgdi()
v fm fmtl
for any g € k[X1, Xo,...,X,] and m € Z,. Therefore, they induce derivations of
k[X1,Xs,...,X,]s. This ends the proof of existence for D(n).

It remains to show the existence of T in the general situation. We can assume
that X is imbedded in some k™ as a closed subset. Let P be the polynomial in
k[X1, Xa,...,X,] which restricts to f on X and denote by U the affine open set in
k™ which is the complement of the set of zeros of P. Then X NU = X;. By 1.2 we
can find S € AN F,D(n) such that ¢(S) = T. This differential operator extends to
the differential operator S on U of order < p.

1.7. LEMMA. Let S € A. Then S maps I(X)p into itself.

PROOF. We prove this statement by induction on the order p of S. If p =0
the statement is evident. Assume that p > 0. Then S’ =[S, P] € A and its order
is < p— 1. Therefore, by the induction assumption, S’ maps I(X)p into itself. Let

Q € I(X). Then
a @ o @ < @
S(P7n> =5 (Pm+1> +PS(Pm+1>

and, by the induction assumption

S <Pfl2+1) - P'S (gﬂ) cI(X)p

for any m € Z,. By induction on m this implies that S (};%) € I(X)p for any

m€Z+. O

Therefore, S induces a linear endomorphism of k[X1, X, ..., X, ]p/I(X)p =
R(X)f = R(Xy). As in the discussion preceding 1.2, we see that this is actually
a differential operator on X;. Also, on r;(R(X)) it agrees with 7. Therefore, we
constructed T'. This ends the proof of 1.5.

Let X be an affine algebraic variety and f € R(X), f # 0. Then, by 1.5, we
have a well-defined restriction map py of D(X) into D(Xy). The uniqueness part
of 1.5 implies that p; is a morphism of rings, hence we have the following result.

1.8. PROPOSITION. The map py : D(X) — D(Xy) is a morphism of filtered
Tings.

In particular, py is a morphism of R(X)-modules for left (and right) multipli-
cation.
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1.9. LEMMA. Let D(X); be the localization of D(X) considered as an R(X)-
module for left multiplication. Then the morphism py induces an isomorphism B
of D(X)y onto D(Xy).

Proor. We first assume that X is dense in X. In this case the natural map

ry: R(X) — R(X/) is injective. Hence, By <f%nT) = flm =0 for some T € D(X)
implies that for any g € R(X) there exists some s € Z, such that f*T(g) = 0.
Therefore, T(g) = 0 for all g € R(X), i.e., T = 0. It follows that 5, is injective.

To show that 5 is surjective, it is enough to prove that for any T' € D(X ) there
exists m € Z4 such that (f™T)(R(X)) C R(X). We shall prove this statement by
induction on the order p of T. If p = 0 the statement is evident.

Assume that p > 0. Denote by g1,¢2,...,9, the generators of the k-algebra
R(X). By the induction assumption, there exists m € Z4 such that f™ [T, g;](R(X))
R(X), 1 <i<n,and f™T(1) € R(X). This implies that, if h € R(X) satisfies
fmT(h) € R(X), we have

f"T(gih) = [T, g:)(h) + 9T (h) € R(X).

Using f™T(1) € R(X) and an induction on the length of monomials gi'gi ... gir
we see that this relation implies that f™T(R(X)) C R(X). Therefore, 8 is an
isomorphism in this case.

Now we can consider the general situation. Assume that X is not dense
in X. We claim that then there exists f’ € R(X) such that X; and Xy are
disjoint and their union is dense in X. First, if X is not dense in X, we can find
a1 € R(X) such that a1 # 0 and it vanishes on X;. This implies that X; and X,,
are disjoint and Xy 4, = Xy U Xq,. If Xf4,, is not dense in X we can repeat
this construction, and since X is a noetherian topological space, after finitely many
steps we construct a sequence ay,as,...,as such that Xy X, , X,,,...,X,, are
mutually disjoint principal open sets in X and their union is dense in X. If we put
f'=a1+as+ -+ as, it evidently has the required property.

Now we claim that D(Xf+f/) = D(Xf) SV D(Xf/) EVideIltly, R(Xf+f/) =
R(Xy)® R(Xy). Let x,x" € R(Xf4y) be the characteristic functions of Xy and
Xy respectively. Then we claim that for any T' € Dp(Xs4 /), [T, x] = [T, x'] = 0.
This is true if T is of order < 0. We proceed by induction on the order of T. Let
p > 0. If the order of T is < p we know, by the induction assumption, that the
assertion holds for [T, x]. Therefore,

0=[[T,x],X] = [T.x]x = X'[T,x] = —xTx' — x'Tx

or XT'x' = —x/Tx. By right multiplication with x we get xTx' = x'Tx = 0.
Therefore, Tx = (x + x')Tx = xTx, and analogously x'T = x'T(x + x') = X'TX .
Because of the symmetry we also have T = xT'x, which finally leads to [T, x] = 0.
Therefore, T(g) = T(xg) = xT(g) for ¢ € R(Xy), and T(R(Xs)) C R(Xy). An
analogous argument using x’ implies that T(R(Xs)) C R(X ). Therefore, T
induces differential operators S and S” on Xy, resp. Xy, and T =S @ S'.

By the first part of the proof, B¢ : D(X)syp — D(Xy) @ D(Xy) is an
isomorphism. Localizing with respect to x we get that 8y : D(X); — D(Xy) is
an isomorphism. ([

Let U be an open set in X. Denote by Py the family of all principal open
sets contained in U ordered by inclusion. If VW € Py and V C W, there exists

@ |
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a natural ring homomorphism r{¥ : D(W) — D(V). Evidently (D(V);r}¥) is an
inverse system of rings. We denote by D(U) its inverse limit. Clearly, Dx : U —
D(U) is a presheaf of rings on X. By 9, this is a sheaf of Ox-modules for left
multiplication. This implies the following result.

1.10. PROPOSITION. Dx is a sheaf of rings on X.
We call Dx the sheaf of local differential operators on X.

1.11. THEOREM. Let X be an affine variety and Dx the sheaf of local differential
operators on X . Then for any affine open subset U C X we have I'(U,Dx) = D(U).

PROOF. The statement is clear if U is a principal open set of X. Let U be any
affine open subset of X. Let f € R(X) be such that Xy C U. Then, if we denote
g = flu, we see that U, = Xy. This implies that

F(UEHDU) = D(Ug) = D(Xf) = F(Xf’DX)'

In addition, these isomorphisms are compatible with the restriction morphisms.
Since principal open sets {X; | f € R(X)} form a basis of topology of X, the ones
contained in U form a basis of the topology of U. Moreover, since Dx |y and Dy
are sheaves on U and agree on a basis of its topology we see that they are equal.
This implies that T'(U, Dx) = T'(U, Dy) = D(U). |

Let X be any algebraic variety over k. For any open set U in X denote by
By the family of all affine open subsets of U ordered by inclusion. If VW € By
and V' C W, there exists a natural ring homomorphism ¥ : D(W) — D(V).
Evidently (D(V);r}Y) is an inverse system of rings. We denote by D(U) its inverse
limit. Again, Dx : U — D(U) is a presheaf of rings on X.

1.12. PROPOSITION. Let X be an algebraic variety over k. Then Dx is a sheaf
of rings on X.

This result, as well as 10, is a special case of the following lemma. Let C be
a category which has the property that any inverse system of objects in C has an
inverse limit in C. Let X be a topological space and B a basis of open sets for the
topology of X. We call a presheaf F on B with values in C a family of objects
F(U), U € B, and a family of morphisms py; : F(V) — F(U) defined for any pair
(U, V) such that U C V, satisfying the conditions
(i) pY =identity for any U € B,
(ii) pt¥ = pY o pl for any U, V,W € B such that U C V C W.
Then we can define a presheaf 7' on X by putting F'(U) to be equal to the
inverse limit of F (V') for all V' € B such that V' C U. Moreover, for any U € B, we
have F'(U) = F(U).

1.13. LEMMA. The presheaf F' on X is a sheaf on X if F satisfies the following
condition:
(F) For any covering (U;;i € I) of U € B by U; € B and for any object
T € C, the map which attaches to f € Hom(T, F(U)) the family pgi of €
[L;c; Hom(T, F(U;)) is a bijection of Hom(T, F(U)) onto the set of all
(fi;i € I) such that pgi ofi = p\[ij o f; for any pair of indices (i,7) and
V € B such that V. .C U;NU;.
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ProOOF. Let B’ be another basis of topology on X contained in B. Then we can
define another presheaf 7"/ which is attached to the presheaf on B’ defined by F.
By the definition of inverse limit, for any open set U on X there exists a canonical
morphism of F'(U) into F”(U). If U € B, this canonical morphism is a morphism
from F(U) into F"(U). We claim that this morphism is an isomorphism. In fact,
by the condition (F), the canonical morphisms of F”(U) into F(V), V € B, V C
U, factor through F(U). Morevover, by the universal property, the compositions
in both orders of this canonical morphism F’(U) — F(U) and the morphism
FU) — F'(U) we described before are the identity morphisms. This proves
our assertion. On the other hand, this also implies that, for any open set U in
X, the morphisms F"(U) — F'(V) = F(V) for V € B and V C U satisfy the
conditions for the inverse limit of the inverse system (F(V);V C U,V € B), hence
F'(U)=F(U).

Assume now that U is an open subset of X, (U;) a covering of U by open
subsets, and let B’ be the subfamily of B consisting of elements contained in at
least one (U;). It is clear that B’ is a basis of the topology on U, hence F'(U) (resp
F'(U;)) is an inverse limit of F(V) for V€ B  and V C U (resp. V C U;). From
the definition of inverse limit now follows that F’ is a sheaf. d

Let U be an open set in X and T' € Dx(U). We say that T is of order < p
if for any affine open set V' C U, the differential operator 7} (T') is a differential
operator of order < p. This defines an increasing filtration F Dx (U) on Dx (U).

1.14. LEMMA. The filtration F Dx(U) on Dx(U) is exhaustive.

PRrROOF. Let T € Dx(U). Since U is quasicompact, we can find a finite open
cover (U;;1 < i < s) of U consisting of affine open sets. Let p € Z be such that
the restrictions of T to the elements of the cover have orders < p. Let V be an
arbitrary affine open subset of U and S = rY(T). We claim that S has order

< p. Let fo, f1,...,fp € R(V). Then R = [...[[S, fol, f1],. .., fp] is a differential
operator on V', and its restrictions to V NU; are zero for all 1 <4 < s. This implies
that R =0, and S is of order < p. O

Therefore, this filtration satisfies the properties (i)-(v) from the beginning of I.3.
Clearly, in this way we get a filtration F Dx of the sheaf Dx of local differential
operators on X by subsheaves of vector spaces over k. We call it the filtration
by the order of differential operators. On any affine open set U in X we have
F,Dx(U) = D,(U) for p € Z. Therefore, we can consider the graded sheaf of rings
GrDx. It is a sheaf of commutative rings and Gro Dx = Ox.

1.15. THEOREM. Let X be an algebraic variety over k. Then:

(i) the sheaf Dx is a quasicoherent Ox-module for left (and right) multipli-
cation;
(ii) the sheaves F, Dx, p € Z, are coherent Ox-modules for left (and right)
multiplication;
(iii) the sheaves Grp Dx, p € Z, are coherent Ox -modules.

PROOF. Since the assertions are local, we can assume that X is affine. Then,
for left multiplication, (i) follows from 8, (ii) from 3. and (iii) from (ii). Since
left and right multiplication on Gr, Dx define the same Ox-module structure, (iii)
follows. On the other hand,

0 —F,_1Dx —F,Dx — Gr,Dx — 0
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is an exact sequence for the right and left multiplication, hence by induction on p
we get (ii) for right multiplication. Since Dx is the direct limit of F, Dx, p € Z,
(i) follows. O

Let X be an algebraic variety. For any affine open set U in X we denote
Tx(U) = Dery(R(U)). By 1.8.2.(iii) we have D1(U) = R(U) ® Tx(U). Let V be an
affine open subset of U. Then, for any T € Tx (U), we have r{/(T)(1) = T(1) = 0,
hence ¥ (T') € Tx(V) and the restriction maps are compatible with this direct sum
decomposition. This implies that the assignment U — Tx (U) defines a presheaf
on the basis B of all affine open sets in X. We denote the corresponding presheaf
on X by Tx. Since F1 Dx = Ox & Tx and both F; Dx and Ox are sheaves, Tx is
a sheaf on X. We call it the tangent sheaf of X. Its local sections over an open set
U C X are called local vector fields on U. Clearly it has a natural structure of an
Ox-module and as such it is isomorphic to Gr; Dx. From 14.(iii) we conclude the
following result.

1.16. PROPOSITION. Let X be an algebraic variety over k. Then:

(i) The tangent sheaf Tx of X is a coherent Ox-module.
(iil) F1Dx = O0x @ Tx.

Clearly, if T, T’ are two vector fields on U, their commutator [T, T’] is a vector
field on U. Therefore, Tx is a sheaf of Lie algebras over k.

2. Smooth points of algebraic varieties

Let X be an algebraic variety over an algebraically closed field k of characteristic
zero. Denote by Ox its structure sheaf. Let € X and denote by O, = Ox , the
stalk of Ox at x. Then O, is a noetherian local ring with the maximal ideal m,
consisting of germs of functions vanishing at x.

2.1. LEMMA. Let x € X. Then d(Ox ;) = dim, X.

PROOF. Since the assertion is local, we can assume that the variety X is a
closed subset of some k™. Then the restriction map defines a surjective homo-
morphism of the ring k[X7, Xa,...,X,,] onto R(X) with kernel I consisting of all
polynomials vanishing on X. We can consider the exact sequence

0 —)I—>I€[X1,X2,...,Xn] —)R(X) — 0
of k[ X1, Xs, ..., X,]-modules and its localization
0— I, —>k[X1,X2,...,Xn]$ —)R(X)a; —0

at x. This identifies the quotient of Ogn , = k[X1, X2, ..., Xpn]z by I, with Ox , =
R(X),. Moreover, if we denote by M, the maximal ideal in k[X7, Xs,..., X;]
generated by the polynomials X; —x;, 1 < i < n, we see that the quotient morphism
maps its localization (M), onto m,. This implies that the filtration (m?;p € Z,)
on Ox , agrees with the filtration (Mgz)2Ox z;p € Z4) of the Ogn z-module Ox 4.
Therefore, the dimension d(Ox ) of the local ring Ox , is equal to the dimension
of the module Ox , over the local ring Oy ;. By 1.4.2. and 1.4.6, we conclude that
d(Ox ) = dim, (supp(R(X))) = dim, V(I) = dim, X. O

We call the vector space T (X) = m,/(m,)? the cotangent space to X at x
and its linear dual T, (X) the tangent space to X at x.
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2.2. PROPOSITION. Letx € X. Then the tangent space T,,(X) is finite-dimensional}
and

dimy, T, (X) > dim, X
PRrROOF. This follows immediately from 1. and 1.2.8. (]
Let f € O,. Then f — f(z) € m, and we denote by df (z) its image in T (X).
2.3. LEMMA. The linear map d: Op — T (X) satisfies

d(fg9)(z) = f(x)dg(x) + g(x)df ()
for any f,g € O,.

ProoF. We have

d(fg)(x) = fg— f(z)g(x) + m2 = fg — f(z)g(z) — (f — f(2))(g — g(z)) + m?
=g(x)(f — f(@) + f(x)(g — g(2)) + m] = f(x)dg(z) + g(x)df (z).

For example, if X = k™, we have

= (0uf)(@)dXi(2)
i=1

for any germ f € k[X1, Xo,...,X,]e, and (dX1(2),dX2(2),...,dX,(z)) form a
basis of T:¥ (k™). Therefore, the map which attaches to any vector (£1,&2,...,&,) €
k™ the tangent vector f —— > &;(9;f)(x) is an isomorphism of k™ with T, (k™).

Let X and Y be two algebraic varieties over k£ and ¢ a morphism of X into
Y. Then, for any z € X it induces a morphism ¢, : Oy 4@n) — Ox,. defined
by gbr(f) = fo <;S for f € Oy ). Clearly, ¢,(mgy(,)) C m,, which implies that
¢z (m z)) C m2, and we get a linear map T (¢) : T5n(Y) — T3(X). If f €
(’)y,¢($) we have

T (9)(df (¢(x))) = d(92(f))(x) = d(f © ¢) ().

The transpose T3 (¢) : To(X) — Ty (Y) of Ty (¢) is called the tangent linear
map of ¢ at x. Let { € T,(X) and f € Oy 4(5). Then
)

(T2(0) () (df (9(x))) = (T (9)(df (#(x)))) = E(d(f © ¢) ().

2.4. LEMMA. (i) Let XY and Z be algebraic varieties and o : X —'Y,
B:Y — Z morphisms of algebraic varieties. Let x € X. Then

Ty(Boa)= Ta(m)(ﬂ) o Tp().

(ii) LetY be a subvariety of X and j : Y — X the canonical injection. Then

Ty(j) : Ty(Y) — Ty(X) is an injection for any y € Y.

PRrooF. (i) This statement follows from the definition.

(ii) The statement is local, so we can assume that Y is closed in X and X is
affine. Let I be the ideal in R(X) consisting of all functions vanishing on Y. Then
Oy 4 is the localization at x of the ring R(X)/I, and by the exactness of localization,
it is a quotient of Ox ,. This implies that the linear map T (j) : T;(X) — T (Y)
is surjective, and its transpose T (j) is injective. ([
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Assume now that X is a closed subspace of some k™. By the preceding discus-
sion and 4.(ii) we see that the tangent linear map T,(j) of the natural inclusion
j X — k" identifies T, (X) with a linear subspace of k™. The following result
identifies precisely this subspace. As before, denote by I the ideal of all polynomials
in k[X1, X2, ..., X,] vanishing on X.

2.5. LEMMA. For any x € X we have
To(X) = {(61, 62, .-, &) €K™ | D _&(0:P)(x) = 0,P € T}
i=1
PROOF. By definition and the discussion in the proof of 4.(ii) we see that

T, (X) is the orthogonal to the kernel of T (j) : k™ — T¥(X). On the other hand,
kerTx(j) = {df(x) | f € I,}. Any germ f € I, is a germ of a rational function

g with Q(z) # 0 and P € I. Therefore, by 3, we have df(z) = ﬁdP(m) and
{df(2) | f € L.} = {dP(z) | P € I}. O

Now we consider the function « — dimy, T,,(X) on an algebraic variety X.

2.6. PROPOSITION. The function x — dimy T,,(X) on an algebraic variety X
1S upper semicontinuous.

PrRoOOF. The statement is local, so we can assume that X is a closed subspace
of some k™. By 6. we can identify the tangent space T, (X) with

{(&1,62,...,&) €K™ | Y &i(0iP)(x) =0,P € T}
1=1

If dim T, (X) = p, there exist polynomials Py, P, ..., P,,—, € I such that the matrix
[ (0;P;)(x) | has rank n — p. This implies that in some neighborhood U of x its
rank is equal to n — p. In particular, dim; T,,(X) < p for y € U N X. O

We say that a point € X is smooth if dimy T,,(X) = dim, X. In different
words, z € X is smooth if and only if the local ring O, is regular.

2.7. THEOREM. Let X be an algebraic variety over k. Then:

(i) The set of all smooth points of X is open and dense in X.
(ii) A smooth point x € X is contained in a unique irreducible component of

X.

PROOF. The second statement follows immediately from 1.2.10. Denote by
Vi, Va, ..., V, the irreducible components of X and let Y = U;«;V; NV;. Then Y is
a closed subset of X and its complement is dense in X. Moreover, by (ii), Y contains
no smooth points of X. Therefore, we can assume that X is a disjoint union of its
irreducible components. This reduces the proof to the case of irreducible variety.

By 2. and 6, the set of all smooth points is open in X, and the proof of the
theorem reduces to showing the existence of a smooth point in an irreducible affine
variety X.

Let n = dim X. By Noether normalization lemma we can find f1, fa,..., fn €
R(X) such that the homomorphism of k[X;, Xs,...,X,] into R(X) defined by
P+— P(f1,..., fn) is injective and R(X) is integral over its image B. Geometri-
cally, this defines a surjective finite morphism p of X onto £". The field of rational
functions R(X) is an algebraic extension of the quotient field L of B which is iso-
morphic to k(X1, Xo,...,X,). Since R(X) is finitely generated k-algebra, R(X)
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is generated over L by finitely many elements of R(X). This implies that the field
R(X) is a finite extension of L. Moreover, since k is of characteristic zero, by the
theorem on the primitive element, we know that there exists an element g € R(X)
which generates R(X) over L.

First we claim that we can assume that g € R(X). Let S be the multiplicative
system B — {0}, and let S~ R(X) be the corresponding ring of fractions. We claim
that ST'R(X) = R(X). Let f € ST'R(X). Since R(X) is an algebraic extension
of L, f is algebraic over L, i.e., there exist by, ba, ..., b, € L such that

fn+b1fn71+"'+bn_1f—|—bnZO

and b,, # 0. This implies that

% = —bi(f"*1 + b f 4 byy) € STIR(X).

Therefore, ST R(X) is a field containing L and R(X). Hence, it is equal to R(X).
It follows that any primitive element is of the form g = % with h € R(X) and
b€ B —{0}. This implies that h € R(X) is also a primitive element.

Therefore we fix in the following a primitive element g € R(X). Let Q be the
algebraic closure of R(X). Then € is the algebraic closure of L. Let s be the degree
of R(X) over L. Then the orbit of g under the action of the group Autz () of
L-automorphisms of () consists of s elements g9 = g, 91,...,9gs—1. Since g is integral
over B and Autr,(Q) leaves B fixed, we see that g;, 0 <1 < s — 1, are integral over
B. Let

VAL Az, A = [ = X))
i<j
Then, for any T' € Autr,(2) we have

T(V(g(hglv ce 798—1)2) = V(go7gla s ags—l)Q'

Therefore, D = V(go, g1,.-.,9s—1)% is in L. Moreover it is integral over B. Since
B is integrally closed, we conclude that D € B.

Clearly 1,g,g%,...,9° ! form a basis of the vector space R(X) over L. There-
fore, for any h € R(X) there exist ag,a1,...,as—1 € L such that

s—1
h = Zaigl.
i=0

If we put
s—1
hy =2 aig]
i=0
for 0 < j < s—1, we see that hg = h, hq,...,hs_1 are integral over B. By Cramer’s
rule
A
G,j =
V(90,915 --59s—1)
with
j—1 j+1 -
g g g he @7 gt
2 =1 g J+1 s—1

g1 91 ‘e g1 g1 NN g1

Loger giq o g her gl . gl
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for 0 < j < s—1. This leads to

AjV(907917 o 79571)
D

for 0 < j < s —1. Since B is integrally closed, a;D € L and A;V (g0, g1,---,9s—1)
is integral over B, we conclude that a; D € B for 0 < j < s — 1. This implies that

s—1 i

0 < i < s—1, generate a B-submodule of R(X) which contains

aj:

Therefore
R(X).

Let Y = {y € k" | D(y) # 0} and X' = {z € X | (Dop)(x) # 0}. Then p
maps X' onto Y. Let y € Y and « € X’ such that p(z) = y. By our construction,
D is the discriminant of the minimal polynomial u of g over L. Moreover,

’D’

s—1
NJ(X) - X* _’_Clefl +it o1 X +eg = H(X—gi)
=0

Therefore its coefficients c;, 1 < j < s are integral over B, and since B is integrally
closed, they are in B. Since D is a symmetric polynomial in g;, 0 <i < s—1,itisa
polynomial in elementary symmetric polynomials ¢y, cs,...,cs. In particular, this
implies that D(y) is the discriminant of the polynomial P(X) = X* +¢;(y) X! +
<4 cs—1(y) X + ¢s(y). Since D(y) # 0, this polynomial has s distinct roots in k.
Clearly, one of its roots in k is g(z). This implies that its derivative P’ satisfies
P'(g(x)) = sg(2)* " + (s = Der(y)g(2)* > + -+ coa(y) # 0.

Therefore, if T € T,(X) is in the kernel of T,,(p), we have

=T(d(g* + (crop)g® ' + -+ (cs—1 0p)g + ¢s o p) ()
= P'(g(x))T(dg(x))+T(g(x)* " d(crop)(x)+- - - +g(z)d(cs—10p)(x)+d(csop)())
= P'(g(x))T(dg(x)) + g(2)* ' Te(p)(T)(dc1(y)) + - - - + g(2) T (p)(T) (des—1(y)
+ T (p)(T)(des(y)) = P'(g(2))T (dg())

and this leads to T'(dg(z)) = 0. Let now h € R(X) be arbitrary. Then, by the
previous discussion, h = Zf:é (b; o p)g* with b; € R(Y). Therefore,

Zg d(bi o p)( Zg T)(dbi(y)) = 0.

Finally, if f € Ox 4, f =2 for some a,h € R(X) with a(z) # 0 and

a(z)dh(z) — h(z)da(zx)
d = .
f(:l?) a(ﬂ?)Q
Therefore, T(df (x)) = 0 for any f € Ox 5, and we conclude that T = 0 and T, (p)
is injective. Since T, (k™) is n-dimensional we see that dimy T(X) < n. By 2. it
follows that dimy 7,,(X) = n and z is a smooth point.

An algebraic variety X is smooth if all its points are smooth.
By 7.(ii) we have the following result.
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2.8. PROPOSITION. Let X be a smooth algebraic variety. Then its irreducible
components are equal to its connected components.

This implies in particular that the function x — dimy X is locally constant
on a smooth variety X.

Now we want to analyze a neighborhood of a smooth point of X. We claim the
following result.

2.9. THEOREM. Let X be an algebraic variety and x € X a smooth point such
that dim, X = n. Then there exist:

(i) an open affine neighborhood U of x;
(ii) regular functions fi, fa, ..., fn and vector fields D1, Ds, ..., D, onU such
that D’L(fj) = 5”- f07" 1 S Z,] S n.

PROOF. Since the statement is local, we can assume that X is a smooth
irreducible affine variety imbedded in some k™ as a closed subset. Let I be
the ideal of all polynomials in A = k[X;, Xs,...,X;»] vanishing on X. Since
dimy T,,(X) = dim X = n, by 6. we can find polynomials P11, Pyy2,..., Py € 1
such that the matrix [(9;P;)(z)] has rank m —n. This implies that the rank of this
matrix is equal to m — n on some neighborhood V' of x € k™ | and

i=1

Denote by J the ideal in A generated by Pp+1, Ppy2,-.., Pn. We first claim
that J, = I,. Clearly, from the definition it follows that J C I. Let Y be the set
of all zeros of J in k™. Then X C Y. We have

dim, Y > dim X = dimy T,,(X) = dimy T,,(Y) > dim, Y.

This implies that dim X = dim, Y. Therefore, X is an irreducible component of
Y. On the other hand, since dim, Y = dimy T,.(Y), z is a smooth point of ¥ and
lies in a unique irreducible component of ¥ by 7.(ii). This implies that there exists
a neighborhood V/ C V of x in k™ which doesn’t intersect any other irreducible
components of Y. Therefore we conclude that r(J), = I,. Consider the local ring
(A/J)y. Tts maximal ideal is n, = m,/J,, and we have n? = m?/J, for any
p € Z4. Therefore, the dimension of the local ring (A/J), is equal to its dimension
as an Az-module. By 1.4.5. we conclude that d((A/J),) = dim,(V(J)) = dim, ¥ =
dim X = n. On the other hand, we have an exact sequence of finite dimensional
vector spaces

0 — (J, + m?)/m? — m,/m? — n,/n? — 0,

(Jo + m2)/m2 = {df(z)|f € J.} is spanned by dP;(z), n+1 < i < m, and
m,/m?2 = k™ by previous identifications. This implies that dimy(n,/n2) = n and
(A/J), is a regular local ring. By 1.2.10. it is integral, hence J, is prime. This
finally leads to J, = I.

This implies that the support of the A-module I/J doesn’t contain z. In
particular, there exists g € A such that the principal open set V/ C V' in k™
determined by g is disjoint from supp(l/J). Therefore, (I/J), =0 and J, = I,.

We can find polynomials Py, Ps, ..., P, € Asuch that the matrix [(0;P;)(x);1 <
1,7 < m] is regular. Therefore, by changing g if necessary, we can also assume that
it is regular on the principal open set V. Denote by @Q the inverse of this matrix.



68 II. SHEAVES OF DIFFERENTIAL OPERATORS

Then the matrix coefficients of @ are in A,. Therefore, on V" we can define the
differential operators §; = Z;”:l Q;;0;, for any 1 <14 < n. Clearly they satisfy

0P = Z QO Py = 455

k=1

for any 1 < j < m. Since any f € J; can be represented as f = Z;":nﬂ h; P; with
hj € Ay, we have

Si(f)=06:( Y hiPy) = > (6:(hj)Py+hioi(Py)) = > 6:(hy)P; € J,,
j=n+1 j=n+1 j=n+1

ie., J; = I, is invariant under the action of d;, 1 < ¢ < n. This implies that J;,
1 < i < n, induce local vector fields on U = X N V" which we denote by D;,
1 <4 < n. Moreover, if we denote by f;, 1 < ¢ < n, the restrictions of P; to U we
see that

Di(f;) = 0:(P;) = 6ij.

We call (f1, fo, .-, fn; D1, Do, ..., Dy) a coordinate system on U C X.

2.10. LEMMA. Let X be an algebraic variety and x € X a smooth point such that
dim, X = n. Then there ezxists an open affine neighborhood U of x and a coordinate
system (f1, fa,..., fn; D1,Da,...Dy) on U C X such that D1, Do, ..., D, form a
basis of Tx(U) as a free Ox(U)-module.

Also, [D;, D;] =0 for any 1 <i,j <n.

PROOF. Since any smooth point lies in a unique irreducible component of X,
we can assume that the neighborhood U from 9. is irreducible. Then dimU = n.
Let R(U) be the field of rational functions on U. Since U is n-dimensional, the tran-
scendence degree of R(U) over k is equal to n. Let (f1, fa,..., fn; D1,D2,...,Dy)
be a coordinate system on U.

We claim that f1, fo,. .., f, are algebraically independent over k. Otherwise we
could find a polynomial P € k[X7, X3, ..., X,] different from zero and of minimal
possible degree which satisfies P(f1, fo, ..., fn) = 0. This would imply that

n

0=D;i(P(f1,f2s---s[fn)) = Z(ajp)(flaf%~-~7fn)Di(fj) = (0iP)(f1, f2, -+ fn),

=1

and by the minimality of the degree of P, 9;P = 0 for all 1 < ¢ < n. Since k is
of characteristic 0, we conclude that P is a constant polynomial, which is clearly
impossible.

Let K be the subfield of R(U) generated by fi, fa,. .., fn- Then the transcen-
dence degree of K over k is also equal to n and R(U) is an algebraic extension of
K.

Since a vector field on U is a derivation of R(U), it extends to a derivation of
R(U). On the other hand, R(U) is an algebraic extension of K. Hence, by implicit
differentiation, we see that this derivation is uniquely determined by its restriction
to K. It follows that a vector field on U is completely determined by its restriction
to the subring of R(U) generated by f1, fo,..., fn.
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Let T € Tx(U) and put g; = T(f;), 1 <i <n. Then
(T =Y a:Di)(f;) = T(f;) = D> 9:Di(f;) =0,
i=1 i=1

and from the preceding discussion we conclude that T' = Y"1 | ¢;D;, i.e., D1, Da, ... D, |}
generate Tx (U). On the other hand, if > | h;D; = 0 for some h; € R(U), it fol-
lows that

0= (Z hiD;)(f;) = hy,

for 1 < j < n. Hence, the Ox (U)-module Tx (U) is free and (D1, Da,...D,,) is its
basis.
Finally, for any 1 <4,j, k < n we have

[Di, Dj)(fr) = Di(D;(fx)) — D;i(Di(fr)) =0,
which implies that [D;, D;] = 0. |

Let x € X and T' € Tx . Then T determines a derivation of the local ring
Ox. . Clearly, for any f € m2 we have T(f) € m,. Moreover, for f € O,, we
have T'(f)(x) = T(f — f(z))(x) and the result depends only on df (z). Therefore,
the map f — T'(f)(x) factors through T.*(X) and defines a tangent vector T'(z) €
T, (X) which satisfies T'(z)(df (z)) = T(f)(z) for any f € O,. It follows that we
constructed a linear map from Tx , into T,(X). Evidently it determines a linear
map from the geometric fiber O,/m, ®o, Tx . into T,(X).

2.11. PROPOSITION. Let x be a smooth point of an algebraic variety X. Then
the canonical map of Oy/my, ®o, Tx . into Ty(X) is an isomorphism of vector
spaces.

Proor. Let n = dim, X. We know from 10. that Tx , is a free O,-module.
More precisely, there exist fi, fo,..., fn € Oy and Dy, Ds, ..., D, € Tx ., which
satisfy D;(f;) = d;5, 1 <i,j < n, such that (Dy, Ds,...,D,) is a basis of the free
O -module Tx .. This implies that the images of Dy, Ds,..., D, in O,/m,; ®o,
Tx,» form its basis as a vector space over k.

On the other hand, D;(z) satisfy D;(z)(df;(x)) = 6;5, 1 < i,j < n, hence
they are linearly independent. Since the tangent space T,,(X) is n-dimensional, we
conclude that (D;(z),1 <i <n) is a basis of T,,(X) and the map is bijective. O

10. and 11. imply the following result.

2.12. THEOREM. Let X be a smooth algebraic variety. Then the tangent sheaf
Tx is a locally free Ox-module of finite rank. For any x € X, the geometric fiber
of Tx 1is naturally isomorphic to T,(X).

Let X be a smooth algebraic variety and T'(X) = {(z,€) | £ € T,(X), x € X }.
We want to define a natural structure of an algebraic variety on T'(X).

Assume first that the tangent sheaf Ty on X is a free Ox-module. Let
(Th,Ts,...,T,) be a basis of Tx. Then we have a bijection ¢ from X x k™ onto
T(X) defined by

¢(m7£1a§27 s ’gn) = (J}, Z&Tl(x))
i=1
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We can define the structure of an algebraic variety on T'(X) by requiring that
¢: X X k" — T(X) is an isomorphism. Let (T7,T3,...,T)) be another basis of
the free Ox-module Tx and ¢’ : X x k™ — T'(X) the corresponding map. Then
there exists a regular matrix @ with entries in R(X) such that T = 377, Q;iTj,
which implies that

¢ (,81,6, ..., &) = (2,)_&T)(x))
=1

= (‘T’ Z gini('r)Tj (x)) = d)(ZE, Q(l’)(§1, &2, 75”))
ij=1
and ¢’ is an isomorphism if and only if ¢ is an isomorphism. Therefore, the algebraic
structure on X is independent of the choice of a basis of Tx.

Consider now an arbitrary smooth algebraic variety X. By 12. we can find
an open cover (Uy,Us,...,Us) of X such that Tx|U; = Ty, are free Oy,-modules.
Clearly, T(X) is the union of T'(U;), 1 < i < s, and by the preceding discussion each
T'(U;) has a natural structure of an algebraic variety. Moreover, since this structure
is independent of the choice of the basis, we see that the structures induced on the
intersections T'(U;) N T'(U;) by the structures on T'(U;) resp. T(U;), 1 < 14,5 <'s,
are the same. This defines a structure of an algebraic variety on T'(X). We call
T(X) the tangent bundle of X. We have natural maps ¢ : X — T(X) and
p: T(X) — X defined by i(z) = (,0) and p(x,&) = x for £ € T(X), z € X.
Clearly these maps are morphisms of algebraic varieties. Moreover, we have the
following evident result.

2.13. PROPOSITION. Let X be a smooth algebraic variety. Then:
(i) the tangent bundle T(X) is a smooth algebraic variety and

dim(, ¢y T(X) = 2dim, X.
(i) the fibration p: T(X) — X s locally trivial.
Analogously, if X is a smooth variety, we can define the Ox-module
T = Homoy (Tx,Ox)

on X. Since Tx is locally free of finite rank, so is 7¢. This implies that its geometric
fiber at z € X is naturally isomorphic to the cotangent space T (X). Let U C X be
an open set and f € Ox(U). Then it defines an element of Homo, (Tx,Ox)(U) =
Home , (1) (Tx (U), Ox (U)) given by T+ T'(f), which we denote by df and call
the differential of f. Clearly, we have

df (T)(x) = T(f)(x) = T(x)(df (x))

for any x € U, hence we can view df (z) as the element of the geometric fiber T, (X)
of 7% determined by the local section df.

If (f1, f2,.-+, fn; D1,Da,...,Dy) is a coordinate system on a sufficiently small
affine open set U, by 10. (Dy, D3, ..., Dy,) form a basis of Tx(U) as a free Ox (U)-
module. It follows that (df1, dfs, ..., df,) is the dual basis of the free Ox (U)-module
TE(U).

As in the case of the tangent bundle, we can define T*(X) = {(z,w) | w €
Tx(X),z € X} and a structure of an algebraic variety on T*(X) such that on any
sufficiently small affine open set U C X with coordinate system (f1, fa, ..., fu; D1, D2, ..., Dn) ]
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such that (df1,df2,...,df,) is the dual basis of the free Ox (U)-module T3 (U), we
have an isomorphism U x k™ — T*(U) C T*(X) given by

¢ (@,61,60, -, &) = (2, Y &idfi(x)).
1=1

This variety is called the cotangent bundle of X. We have natural maps ¢ : X —
T*(X) and 7 : T*(X) — X defined by ¢(z) = (2,0) and m(z,w) = z for w €
T¥(X), x € X. Clearly these maps are morphisms of algebraic varieties.

2.14. PROPOSITION. Let X be a smooth algebraic variety. Then:

(i) the cotangent bundle T*(X) is a smooth algebraic variety and
dim, .,y T*(X) = 2dim, X.
(i) the fibration m: T*(X) — X is locally trivial.

Finally, we include a remark about “Taylor series” of germs of regular functions
at smooth points.

If X is an algebraic variety and x a smooth point in X, its local ring O, is a
regular local ring. If n = dim, X, by 10, there exists an affine open neighborhood
U of z and a coordinate system (f1, fo,..., fn;D1,Da,...,Dy) on U such that
filx) = fao(x) = -+ = fu(x) = 0 and D;(z), D2(x),...,Dy(x) form a basis of
T.(X). Therefore, df1 (z), df2(x), ..., df,(z) form a basis of T*(X) and f1, fa,..., fn
define a coordinate system in the regular local ring O,. Hence, we have a natural
morphism k[X1, Xo,..., X,] — O, given by P — P(f1, f2,..., fn). Clearly, the
image of any polynomial with nonzero constant term is invertible in Q.. Therefore,
this morphism extends to a morphism ¢ : A = k[X1, Xa,..., X,]Jo — O, of local
rings. Since O, is a regular local ring, by 1.2.9, we see that Gr ¢ is an isomorphism
of Gr A onto Gr(,. Since the filtration of A is hausdorff, this implies that ¢ :
A — O, is injective. Hence, we can view A as a subring of O,. The natural
homomorphism A — O, — O,/m, = k is surjective. Thereofre, its kernel
ANm, is a maximal ideal in A, i.e., it is equal to m. This implies that m” C ANm?
for any p € Zy. Therefore, we have natural maps A/m? — O, /m? for allp € Z,
and the diagram

0 —— GPA —— A/mP™ —— A/mP —— 0

l l l

0 —— Gr’0, —— Oy/mP*l — 5 O,/mP — 0

commutes. Since the rows are exact and the first vertical arrow is an isomorphism,
if the last one is also an isomorphism, the middle arrow is an isomorphism by the
five lemma. Therefore, by induction on p, we conclude that A/m? — O,/m?
are isomorphisms for all p € Z,. It follows that m? = AN m? for all p € Z,.
Moreover, A+ m? = O, for any p € Z;. Hence, A is dense in O, and the m,-adic
topology induces the m-adic topology on A. This implies that the completion rings
of A and O, are isomorphic. Since the completion A of A is the ring of formal
power series k[[X1, Xs,. .., X,]] we see that O, can be identified with a subring of
k[[Xla XZ, cee 7X’I'L]]



72 II. SHEAVES OF DIFFERENTIAL OPERATORS
Let m be the maximal ideal in the local ring A = k[[ X1, Xs, ..., X, ]], i.e.,

m={F|F=> aX}

[1]>1
This implies that

mP ={F|F=) aX'}.
[I|>p

Let X1, Xo,...,X, be the images of X, Xs,..., X, in m/m?. Then we imme-
diately see that ()_(i;l < i < n) is a coordinate system in A. Moreover, the
natural homomorphism k[X1, X», ..., X,,] into Gr Ais an isomorphism. Therefore,
A= E[[ X1, X2, ..., X,]] is a regular local ring.

Clearly, we have m = ANm and m? C m? for all p € Z . The natural inclusion
of A into A induces an isomorphism of Gr A into Gr A. Therefore, as before, we
have a commutative diagram

0 — GI"A — A/mP*! — 5 A/mP — 0

l | l

0 —— GPA —— A/m?t! —— A/m? —— 0

and by induction we again conclude that the vertical arrows are isomorphisms. This
implies that m? = AN m?, i.e.,

mp:{fGA\f:ZaIXI}.

[I|>p

Let T be a vector field on U. Then it induces a derivation of O,. By induction
on p, we see that T(m?) C m2~! for p € N. Therefore, T is continuous in the m,-
adic topology of O,, and it extends to a continuous derivation of the completion
of O,. On the other hand, the polynomial ring k[X;, Xo,...,X,] is dense in the
formal power series ring k[[X1, Xs,...,X,]], hence any continuous derivation of
k[[ X1, X2, ..., X,]] is completely determined by its action on X;, 1 <4 < n. Since
D;(f;) = d;j for 1 <i,j < n, this implies that, under the described isomorphism,
D; correspond to 9; for 1 <i < n.

Any formal power series F' € k[[X1, Xa,...,X,]] can be uniquely written as its
Taylor series

o'F)(0
Foy OD0
Iezy

This, together with the previous discussion, immediately yields the following result.

2.15. LEMMA. Let x be a smooth point of an algebraic variety X and (f1, fo, ..., fn; D1, D2, . ..

a coordinate system in a neighborhood of x. Then, for any f € O, andp € Z, the
following conditions are equivalent:

(i) f € my;
(ii) (D'f)(xz) =0 for all I € Z7 such that |I| < p.

In particular, (D' f)(x) =0 for all I € Z7 implies that f = 0.
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3. Sheaves of differential operators on smooth varieties

Let X be a smooth algebraic variety over an algebraically closed field & of
characteristic zero. Denote by Dx the sheaf of local differential operators on X
and by FDx the filtration by the order of differential operators. Let Gr Dx be the
corresponding graded sheaf of rings on X.

First we shall describe the structure of GrDx. Let U be an affine open set
in X. Then, by definition, I'(U,Dx) = D(U). As in 1.8, for any p € Z, and
T € D,(U) we can define a map 0,(T") : R(U)? — R(U) by

Up(T)(fla f27 .. '7fp) = [[ o [[Ta fl]af?]a <. '7fp—1]7fp]'

As we proved in 1.8.3. this map is a symmetric k-multilinear map and ¢,(T") = 0 if
and only if T' € D,_1(U). Moreover, for any 1 < ¢ < p, the map

f — O.;U(T)(flafé?'"afi—lafafi+17"'7fp)

is a vector field on U. Since 0, (T) is symmetric, to prove this we can assume that
i = p. Clearly, this is a differential operator on U of order < 1 and it vanishes on
constants. Hence, it is a vector field by 1.16.(ii). Therefore, o,,(T)(f1, f2,. .., fp)(2)
depends only on the differentials df;(z) of f;, 1 < i < p, at . It follows that we
can define a function Symb,(T") on the cotangent bundle 7*(U) of U by

Syb, (T)(2.0) = ~on(T)f. .- ) (o)
where f € R(U) is such that df (z) = w.

3.1. LEMMA. (i) The function Symb,,(T') is regular on T*(U).
(ii) For a fixred x € U the function Symb (T) is a homogeneous polynomial of
degree p on T (X).

P

PRrROOF. Since the statement is local, we can assume by 2.10. that U is suffi-
ciently small so that there exists a coordinate system (f1, fa, ..., fu; D1, D2, ..., Dy)
on U and the mapping (z, 1,82, ..., &) — (2, >, &dfi(z)) is an isomorphism
of U x k™ onto T*(U). On the other hand,

(2,&1,82,...,&n) ¥ %%(T) (Zgifiazfifiw"azgifi) (x)

is a regular function on U x k™, which implies that Symb,(T) is regular on T*(U).
The second statement is evident. (]

We call the function Symb,,(T') the p-symbol of the differential operator T'.

Let w: T*(X) — X be the natural projection defined by 7 (z,w) = x for any
we THX),z € X. Since 7 is a locally trivial fibration and the fiber at © € X
is T¥(X), we see that the natural grading by homogeneous degree of polynomials
on T(X) induces a structure of a graded sheaf of rings on the direct image sheaf
7.(Or+(x)). Clearly the symbol map Symb,, defines a morphism of the sheaf F, Dx
into Gry, 7. (Op+(x)) which we denote by the same name. It vanishes on the sub-
sheaf F,_; Dx, hence it determines a morphism of the sheaf Gr, Dx into the p-th
homogeneous component of 7, (Op«(x)). Let Symb : GrDx — m.(Op-(x)) be the
corresponding morphism of graded sheaves.

3.2. THEOREM. The symbol map Symb : Gr Dx — m.(Op-(x)) is an isomor-
phism of sheaves of graded Ox-algebras.
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The proof of this result consists of several steps. First we prove the the symbol
map is a morphism of sheaves of k-algebras.

3.3. LEMMA. Let U be an open subset of X and T,S € Dx(U) of order < p
and < q respectively. Then

Symb,,, ,(T'S) = Symb,(T) Symb,(S).
PRrROOF. Let f € Ox(U), and define the map 7 : Dx (U) — Dx(U) by 7(T) =
[T, f]. Then
T(TS)=1[TS, f]=TSf - fT'S=[T,fIS+TI[S, f]=7(T)S +T7(S).
Therefore, for any k € Z, we have
k

™IS =Y (’j) ™*=H(T) 74(9).

=0
This implies that if we fix x € X and w € T, (X) such that df (z) = w, we have

Symb, . (T5)(5,0) = 1~ 0pg(T)(f, oo ))@) = P I(TS) ()

1
(p+4q) (p+a)!
= ﬁTp(T)(a:) 74(S)(z) = Symb,(T')(z,w) Symb, (S)(z,w).

O

Clearly, since the fibration 7 : T%(X) — X is locally trivial, the zeroth homo-
geneous component of the sheaf 7, (Op-(x)) of graded rings is equal to Ox and the
symbol map Symb, is the identity map. On the other hand, the first homogeneous
component of 7,(Op+(x)) is naturally isomorphic to 7x. Moreover,

Symb, (T)(z, df (x)) = [T, f](z) = T(f)(z) = T(z)(df (x))
for any vector field T" and regular function f on a neighborhood of z. Since F1Dx =
Ox @ Tx by 1.15.(ii), we conclude that Symb, is an isomorphism of Gr; Dx onto
the first homogeneous component of 7,(Op-«(x)). By the local triviality of 7, the
sheaf 7, (Op«(x)) of graded rings is generated by its zeroth and first homogeneous
components. Therefore, the image of the symbol map is equal to m.(Orp-(x)). It
remains to show that its kernel is zero.

3.4. LEMMA. Let T € F, Dx(U). Then Symb,(T) = 0 if and only if T is of
order < p — 1.

PROOF. The statement is local, so we can assume that U is affine. We prove
the statement by induction on p. It is evident if p = 0. Therefore we can assume
that p > 0. Fix f € Ox(U). Then [T, f] is a differential operator of order < p — 1.
Let x € U and w € T(X). Put n = df(x). Since we can shrink U if necessary, we
can fix g € Ox(U) such that dg(z) = w. For any h € Ox(U) we can define the
map 7, : Dx(U) — Dx(U) by m(T) = [T, h]. Then for any A € k, we have

Triag(T) = [T, f + Ag] = [T, f1 + [T, g] = 74(T) + Ary(T).
Since 7y and 7, commute, we see that, for any k € Z, we have

k
g =3 (’“) X Tk (7(T)).

=0
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By our assumption the map
1
A — Symb,(T)(z,n + Iw) = ET}JJFAQ(T)(@

vanishes identically on k. Since k is infinite, Tg_i(T} (T))(xz)=0for1 <i<p In
particular, we see that
2 (T, f)(x) =0

Sy, (7, ) (w.) = o=y )@ = 2y

for any w € T#(X). Since x € U was arbitrary, by the induction assumption, we
see that [T, f] is of order < p — 2. This implies that the order of T is <p—1. O

This ends the proof of 2.

3.5. PROPOSITION. The sheaf Dx of local differential operators on a smooth
variety X is a locally free Ox-module for left (resp. right) multiplication.
More precisely, every point x € X has an open affine neighborhood U and a
coordinate system (f1, fa,..., fn; D1,Da,...,Dy,) on U such that
(i) D! o DY =D+ for any I,J € 27 ;
(i) (DI;1 €z, |I| <p) is a basis of the free Ox (U)-module F, Dx (U) for
the left (resp. right) multiplication;
(ii) (D1 € Z7%) is a basis of the free Ox(U)-module Dx(U) for the left
(resp. right) multiplication.

PROOF. Let U be a neighborhood of = and (fi, fa,..., fn;D1,Da2,...,Dy) a
coordinate system on U as in 2.10. Then [D;, D,;] =0 for any 1 < ¢,j <n, and (i)
holds.

Denote & = Symb, (D;) for 1 <i < n. Then 7. (Op«(x))(U) is a free Ox(U)-
module with a basis (¢/;1 € Z7 ), and its homogeneous components are free Ox (U)-
modules. From the exact sequence

0— Fp,1’DX — FpDX — Gl“pDX —0
and 2, by induction on p we conclude that F, Dx (U) is a free Ox (U)-module and
that it is generated by (D!; 1 € ., Il < p). If ngp frD' = 0, by taking the
p'f-symbol we conclude that f; = 0 for |I| = p and ZIIISpfl frD! = 0. Hence, by
downward induction, we get that fy = 0 for |I| < p. This implies (ii) and (iii). O

3.6. PROPOSITION. Let X be a smooth affine variety over an algebraically closed
field of characteristic zero. Then:

(i) Gr D(X) is a noetherian ring;
(ii) Gr D(X) is an R(X)-algebra generated by Gry D(X).

PROOF. Since 7 : T*(X) — X is a locally trivial fibration and the fibers are
vector spaces, we conclude that 7 is an affine morphism. This implies that 7*(X)
is an affine variety. Hence,

Gr D(X) = T(X, Gt Dx) = T(X, 7. (Or-(x))) = I(T*(X), Or-(x)) = R(T*(X))

is a finitely generated k-algebra and a noetherian ring. Moreover, since 7, (Op-(x))
is generated as an Ox-algebra by its first degree homogeneous component, the
natural morphism of 7. (Or-(x))1 ®ox T«(Or=(x))p into T (Or-(x))p+1 is an epi-
morphism for any p € Z,. Since X is affine this implies that the corresponding
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morphism of global sections is surjective. Therefore, Gr D(X) is generated as an
R(X)-algebra by Gr; D(X). O

3.7. THEOREM. Let X be a smooth affine variety over an algebraically closed
field of characteristic zero. Then:
(i) D(X) is a left and right noetherian ring;
(ii) the ring D(X) is generated by R(X) and global vector fields on X.

PROOF. By 6. it follows that D(X) is a filtered ring satisfying the conditions
(i)-(vii) from the beginning of 1.3. Hence, (i) follows from I1.3.4.

Let A be the subring of D(X) generated by R(X) and global vector fields on X.
Let F A be the induced filtration on A. Then we have an injective homomorphism
of GrA into Gr D(X), which is also surjective by 6.(ii). This implies that A =
D(X). O



CHAPTER III

Modules over sheaves of differential operators
on smooth algebraic varieties

1. Quasicoherent Dx-modules

Let X be a topological space and A a sheaf of rings with identity on X. Denote
by M(A) the category of sheaves of A-modules on X. This is an abelian category.
Let A = T'(X,.A) be the ring of global sections of A. Let M(A) be the category
of A-modules. Then we have the natural additive functor of global sections I' =
IX,-) : M(A) — M(A). Moreover, we have the natural isomorphism of the
functor Hom 4 (A, —) into the functor I'(X, —) which sends a morphism 7': A — V
into T'(1x) € I'(X, V).

We can also define the localization functor A : M(A) — M(A) given by

A(V) =A@, V.

Clearly A is an additive functor. Moreover, it is also right exact.
By the standard arguments, we have

Homy (A ®4 V, W) = Hom4 (V, Hom 4 (A, W))
for any V € M(A) and W € M(A). Hence,
Hom 4(A(V), W) = Homux(V,T'(X, W)),

for any V € M(A) and W € M(A); i.e., A is a left adjoint functor to the functor
of global sections I'.

In particular, there exist adjointness morphisms ¢ from the identity functor
into I"'o A and v from A oI into the identity.

Consider now the special case where X is an algebraic variety and A = Ox
the structure sheaf on X. In this case, as before, we denote by R(X) the ring of
regular functions on X.

If X is affine, we say that V in M(Ox) is a quasicoherent O x-module if there
exists an R(X)-module V such that V = A(V).

If X is an arbitrary algebraic variety, V is a quasicoherent Ox-module if each
point 2 € X has an open affine neighborhood U such that V|y is a quasicoherent
Op-module. Quasicoherent O y-modules form a full subcategory of M(Ox) which
we denote by My.(Ox). One can check that M,.(Ox) is an abelian category.

Clearly, A is a functor from M(R(X)) into M,.(Ox). If X is affine, by a
theorem of Serre, A : M(R(X)) — My.(Ox) is an equivalence of categories, and
I': My (Ox) — M(R(X)) is its quasiinverse.

Let Dx be the sheaf of differential operators on X. Then we have a natural
homomorphism ¢ : Ox — Dx. It defines the forgetful functor from the category
M(Dx) into the category M(Ox). We say that a Dx-module V is quasicoherent,
if it is a quasicoherent O x-module.

7
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Let My.(Dx) be the full subcategory of M(Dx) consisting of quasicoherent
Dx-modules. Then M,.(Dx) is an abelian category.

Assume now in addition that X is an affine variety. Let Dx = I'(X,Dx) be
the ring of global differential operators on X.

Then, by Serre’s theorem, I' : My.(Dx) — M(Dx) is an exact functor.
Moreover, A is a functor from M(Dx) into My.(Dx). We have the following
analogue of Serre’s theorem.

1.1. THEOREM. Let X be an affine variety. Then T : My(Dx) — M(Dx) is
an equivalence of categories. The localization functor A : M(Dx) — My.(Dx)
1S 1ts quasiinverse.

PROOF. Let V. € M(Dx). Then there exists an exact sequence DE(I) —
Dg;]) — V' — 0 of Dx-modules, and after applying A we get the exact sequence

Dg) — Dg;]) — A(V) — 0 of Dx-modules. The functor T' o A is a right
exact functor from M(Dx) into itself. Moreover, for any V € M(Dx) we have the
adjointness morphism ¢y : V. — T'(X, A(V)). We claim that it is an isomorphism.
Clearly, op : F — T'(X,A(F)) is an isomorphism for any free Dx-module F'.
Therefore, if we take the exact sequence Dg) — Dg‘(]) — V. — 0 of Dx-
modules, we get the following commutative diagram

DY’ DY Vv ——0
legg) legp lvﬁv
Dy DY) I(X,A(V)) —— 0

of Dx-modules. Its rows are exact and first two vertical arrows are isomorphisms.
Therefore, ¢y is an isomorphism.

Consider now the other adjointness morphism. For any quasicoherent Dx-
module V there exists a natural morphism ¢y of A(T'(X,V)) into V. We claim that
it is an isomorphism.

Consider the exact sequence

0— K — AT, V) 25V —C—0
of quasicoherent Dx-modules. Since I'(X, —) is exact, we get the exact sequence
0 —I(X,K) —TI(X,ATX, V) —I'(X,V) —-TI(X,C) —0.
of Dx-modules. By the first part of the proof, the middle arrow is an isomorphism,

hence T'(X,K) = I'(X,C) = 0. By Serre’s theorem, we finally conclude that I =
c=0. O

Recall that the support supp(F) of a sheaf 7 on X is the complement of the
largest open set U such that F|y = {0}. Therefore, the support of a sheaf is closed.
Let U be an open set in X and s a local section of F over U. Then supp(s) is the
complement of the largest open set V' C U such that s|y = 0.

1.2. LEMMA. For any s € F(U), we have
supp(s) ={z € U | s, # 0}.
PROOF. Clearly, if z ¢ supp(s), there exists an open neighborhood V of x such

that s|y = 0 and s, = 0. On the other hand, if s, = 0, there exists an open
neighborhood V' C U of z such that s|y = 0 and « ¢ supp(s). O
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In addition we have the following result.

1.3. PROPOSITION. Let F be a sheaf on X. Then supp(F) is the closure of the
set {x € X | Fp # 0}.

PROOF. Clearly, supp(F) should contain the supports of all its sections. There-
fore, {x € X | F, # 0} must be contained in the support. Since the support of F
is closed, it also contains the closure of {z € X | F, # 0}. Let = be a point outside
of the closure of {x € X | F, # 0}. Then there exists an open neighborhood U of x
such that F, = 0 for all y € V. But this implies that F|y = 0 and V Nsupp(F) = 0.
It follows that = ¢ supp(F). O

Let X = k™ and V a D(n)-module. Then V = A(V) is a quasicoherent Dx-
module. Moreover, V, =V, for any € X. Therefore, by 1.3, supp(V) is equal to
the closure of supp(V) in sense of the definition from 1.4. !

1.4. PROPOSITION. Let
0—FL — Fo— F3—0
be a short exact sequence of sheaves on X. Then
supp(F2) = supp(F1) Usupp(Fs).
ProoF. By the assumption the sequences
0— Fio — Fo0 —> F32 —0
are exact for all x € X. Therefore, we have
{zeX | Fop#0t={zeX | F#0}U{z e X | Fi, # 0}

Hence, by taking closure and using 1.3 the assertion follows. O

2. Coherent Dx-modules

Assume now that X is a smooth affine variety. Then Dx is a noetherian
ring. Therefore, the full subcategory M4(Dx) of M(Dx) consisting of finitely
generated Dx-modules is an abelian category. We say that V is a coherent Dx-
module if ¥V = A(V) for some finitely generated Dx-module V. We denote by
Mon(Dx) the full subcategory of M(Dx) consisting of coherent Dx-modules.
Clearly, I maps Mon(Dx) into Ms4(Dx) and A maps M ¢4(Dx) into Meon(Dx).
Therefore, T' : Meop(Dx) — Myqe(Dx) is an equivalence of categories, and A :
Myy(Dx) — Meon(Dx) is its quasiinverse. Therefore, in this case we can view
coherence as a sheafified version of finite generation.

2.1. LEMMA. Let X be a smooth affine variety and V a quasicoherent Dx -
module. Then the following conditions are equivalent:

(i) V is a coherent Dx-module;
(ii) for any © € X there exists an open neighborhood U of x and an ezxact
sequence

D}, — D}, — V|y — 0.

1Some authors define the support of the sheaf F as {z € X | F # 0} to avoid this.
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PROOF. (i)=-(ii) Assume that V is coherent. Then V = A(V) where V is a
finitely generated D x-module. Since Dx is a noetherian ring, there exists an exact
sequence

DY — D% —V —0
for some p,q € Z. By localizing, we get the exact sequence
DY, — D% — A(V) — 0.
Since V 2 A(V), this implies that there exists an exact sequence
DY, — D% — vV —0.
Therefore, we can take U = X for arbitrary x € X.

(ii)=-(i) There exists f € R(X) such that f(z) # 0 and Xy C U. Therefore, by
shrinking U we can assume that it is a principal open set. Then (ii) implies that
the sequence

D, — D}, — T'(U,V) — 0.
is exact, i.e., ['(U, V) is a finitely generated Dy-module. Now, I'(U, V) = T'(X, V)¢
and there exist vy,...,v, € I'(X,V) such that their restrictions to U generate V|y
as a Dy-module. All such principal opens sets form a open covering of X. Since
X is quasicompact we can take its finite subcovering and therefore we can find
wi, ..., wy € T'(X,V) such that each stalk V, is generated as a Dx ,-module by
their images. Therefore, we have a surjective morphism D% — V. Therefore, we
have a surjective morphism D} — I'(X,V), and I'(X,V) is a finitely generated
D x-module. Hence, V is coherent. ([

Let X be an arbitrary smooth algebraic variety. We say that a quasicoherent
Dx-module V on X is coherent, if for any x € X there exists an open neighborhood
U of x and an exact sequence

DY — DY — Y|y — 0.

By 1, this definition agrees with the previous one for affine varieties. Moreover,
1. implies the following result.

2.2. PROPOSITION. LetV be a quasicoherent Dx -module on a smooth algebraic
variety X. Then the following conditions are equivalent:
(i) V is a coherent Dx-module;
(ii) for any open affine subset U in X, the restriction V|y is a coherent Dy -
module;
(iii) for a cover (U,...,U,) of X by open affine subsets, the restrictions V|,
are coherent Dy, -modules for 1 <i <mn.

Let Mo (Dx) be the full subcategory of M .(Dx) consisting of coherent Dx-
modules. Then 2. implies that M. (Dx) is an abelian category.
For coherent Dx-modules we can improve on 1.3.

2.3. PROPOSITION. LetV be a coherent Dx-module. Then
supp(V) = {a € X |V, #0}.

PROOF. By 1.3 it is enough to show that {z € X | V, # 0} is a closed set.
Let y be a point in the closure of this set. Let U be an affine neighborhood of
y. Then, by 1, V(U) is a finitely generated Dy-module. Let si,...,s, be the
sections in V(U) generating it as a Dy-module. Then these sections also generate
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V| as a Dy-module. Let Z = |JI, supp(s;). Then Z is a closed subset of U
contained in {z € X | V, # 0}. Assume that y is not in Z. Then there is a open
neighborhood V' C U of y such that sq,..., s, vanish on V. It follows that V|, = 0,
and y ¢ supp(V) contradicting 1.3. Therefore, y € Z. O

Let U be an open subset of X. Let F be an O x-module and G an Oy -submodule
of F|U. Denote by G the subsheaf of F defined by

GV)={seF(V)|slVvnUeg(VnU)}.
Clearly, G is an Ox-submodule of F. It is called the canonical extension of G.

2.4. LEMMA. Let F be a quasicoherent O x-module and G a quasicoherent Oy -
submodule of F|U. Then the canonical extension G of G is a quasicoherent Ox -
module.

PROOF. Let i be the natural inclusion of U into X. Denote by H the quotient
of F|U by G. Then H is a quasicoherent Oy-module. Consider the natural mor-
phism « : i, (F|U) — i+ (H) of quasicoherent Ox-modules. Its composition with
the canonical morphism F — i,(F|U) defines a morphism ¢ : F — i.(H) of
quasicoherent O x-modules. Hence, its kernel is quasicoherent and

ker (V) = {s € F(V) [ ¢v(s) = 0} = {s € F(V) [ avru (s|V NU) = 0}

={seFV)|slVnUegG(VnU)} =G(V).
O

Let V be a quasicoherent Dy-module and W a quasicoherent Dy-submodule
of V|U. Then the canonical extension W of W is a quasicoherent Dx-submodule
of V.

A nonzero quasicoherent Dx-module V is irreducible if any quasicoherent D x-
submodule W of V is either {0} or equal to V.

2.5. LEMMA. Let U be an open set in X and V an irreducible quasicoherent
Dx-module. Then V|U is either an irreducible quasicoherent Dy -module or zero.

PROOF. Assume that V|U # 0. Let W be a quasi-coherent Dy-submodule of
V|U. Denote by W its canonical extension to a Dx-submodule of V. Since V is
irreducible, W is either V or 0. This implies that W is either V|U or 0. O

In particular, this result has the following consequence.

2.6. PROPOSITION. Let V be an irreducible quasicoherent Dx -module. Then V
is coherent.

PROOF. Let U be an affine open set in X. Then, by 5, V|U is either irreducible
or 0. If V|U is irreducible, by 1.1, T'(U,V) must be an irreducible Dy-module.
Hence, V|U is a coherent Dy-module. The assertion follows from 2. O

2.7. PROPOSITION. Let V be an irreducible quasicoherent Dx-module. Then
the support supp(V) is an irreducible closed subvariety of X.

PRrROOF. By definition, supp(V) is a closed subvariety of X. First we claim
that supp(V) is connected. Assume that supp(V) is a disjoint union of two closed
subvarieties Z; and Zs of X and that Z; # (). Let U = X — Z; and denote by W the
canonical extension of the zero Dy-submodule of V|U. Since V is irreducible, W is
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either V or 0. Let x € Z; and V an affine open neighborhood of z which doesn’t
intersect Z5. Then the support of V|V is equal to Z1NV = (X-U)NV =V —-(VNU).
On the other hand,

FV,W) ={s eI'(V,V) | sV NU =0} =T(V, V),

and W # 0. Hence, W =V, and V|U = 0. Hence, Z5 = ). Therefore, supp()) is
connected.

Now we want to prove that supp(V) is irreducible. Assume the opposite. Let
Z1 be an irreducible component of supp(V) and Zs the union of all other irreducible
components. Then supp(V) = Z1 U Zy. Let Z = Z3 N Zy and U = X — Z. Then
V|v # 0. By 4, it is an irreducible Dy-module. Clearly, its support is equal to
(Z1UZs) —(Z1NZ3) = (Z1 — (21N Z2))U(Z2 — (Z1 N Z3)). By the preceding result,
this space must be connected, hence Zy — (Z; N Zy) = 0. Tt follows that Zs C Z7,
and we have a contradiction. ([l

A quasicoherent Dx-module V is of finite length, if it has a finite increasing
filtration

{0} =VeCWV T CV, =V

by quasicoherent D x-modules, such that V,/V,_1 are irreducible Dx-modules. The
number ¢(V) = n is called the length of V. Clearly, by induction on the length of

VY and 6, we immediately see that any quasicoherent Dx-module of finite length is
coherent.

2.8. LEMMA. LetV be a quasicoherent Dx-module. Then the following condi-
tions are equivalent:
(i) V is of finite length;
(ii) for any open subset U in X, the restriction V|y is of finite length;
(iii) there is an open covering (U;;1 <i < n) of X such that V|y,, 1 <i <n,
are of finite length.

PRrROOF. Clearly, by 5, (i) implies (ii). Also, (ii) implies (iii).

To prove that (iii) implies (i) we shall use induction on Y°7_, £(V|y,). If this
sum is 0, V|y, = 0 for all 1 < j <n, and V = 0. Assume that this sum is strictly
positive. If V is irreducible, we are done. If V is not irreducible, there exists a
nontrivial quasicoherent D x-submodule U, i.e., we have the exact sequence

0—U—YV—W-—0

where neither U nor W is zero. Since
E(V|U.7‘) = €(M|Uj) + E(W‘Uj)

for 1 < j < n, we see that

n n n

> W) =D Uly,) + > EWlw,),

j=1 j=1 j=1

and neither summand on the right side is equal to zero. Therefore, the induction
assumption applies to both of them. It follows that &/ and W are of finite length,
hence V is of finite length. O
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3. Characteristic varieties

In this section we generalize the construction of the characteristic variety to
arbitrary coherent Dx-modules.

First, we assume that X is a smooth affine variety. Let Dx be the corresponding
ring of differential operators on X. Then Dx is a left and right noetherian ring
by I1.3.7. Moreover, it has the natural filtration F Dx by the order of differential
operators, and by I1.3.6, as a filtered ring equipped with such filtration satisfies the
axioms of 1.3.

Let 7 : T*(X) — X be the cotangent bundle of X. Since 7 is a locally trivial
fibration, the morphism 7 is affine. Therefore, T*(X) is an affine variety. As we
remarked in the proof of I1.3.6, we have

GrDx =I'(X,GrDx) = I'(X, 7 (Op-(x))) = I(T*(X), Op+(x)) = R(T"(X)).

Any finitely generated Dx-module V' has a good Dx-module filtration FV
and GrV is a finitely generated module over Gr Dx = R(T*(X)). Let I be the
annihilator of Gr V. Then, by 1.10.2, the radical r(I) doesn’t depend on the choice
of good filtration on V. We call it the characteristic ideal of V and denote by J(V').
The zero set of J(V) in T*(X) is called the characteristic variety of V and denoted
by Ch(V'). These definitions agree with the definitions in I.10 for modules over
differential operators on k™.

Now we are going to sheafify these notions.

Let V be a coherent Dx-module on X. Then we say that the characteristic
variety Ch(V) of V is the characteristic variety of the Dx-module I'(X, V).

We say that an increasing Dx-module filtration FV of V by coherent Ox-
submodules is good if

(i) F,, ¥V = {0} for sufficiently negative n € Z;
(ii) the filtration F'V is exhaustive (i.e. J,cz FnV =V);
(iii) the filtration F V is stable, i.e., there exists mg € Z such that F,, Dx F,,, V =J}
FoynV forall n € Z, and m > my.
Let FV be a good filtration of V. Then I'(X,F, V) are finitely generated R(X)-
submodules of I'(X,V) and (I'(X,F,V);p € Z) is a good filtration of the Dx-
module I'(X, V).
3.1. LEMMA. Let V be a coherent Dx-module. Then
(1) V admits a good filtration;
(i) the map (F,Vip € Z) — (T'(X,F, V);p € Z) is a bijection from the set
of good filtrations of V onto the set of good filtrations of T'(X, V).

PrROOF. (i) The Dx-module I'(X, V) is finitely generated. Therefore it admits
a good filtration FT'(X,V). By Serre’s theorem, we have V = A(T'(X,V)), and
F,V =A(F,T'(X,V)) are naturally identified with coherent Ox-submodules of V.
It is straightforward to check that FV is a good filtration on V.

(ii) Follows immediately from Serre’s theorem. O

Let FV be a good filtration of V. Then GrV is a module over GrDx =
7.(Orp=(x)). Moreover, since X is affine, we have
I'X,GrV) =GrI'(X,V)
where I'(X,V) is equipped with the good filtration {I'(X,F,V),p € Z}. Since
GrI'(X,V) is a finitely generated R(T*(X))-module, by an obvious generalization
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of 1.4.2 to A = R(T*(X)), we conclude that
Ch(V) = Ch(I'(X,V)) = supp(GrT'(X, V)) = supp(I'(X, Gr V)).

This implies that the construction of the characteristic variety is local in nature,
i.e., we have the following result. Let U be an open set in X. Then we can view
T*(U) as an open subset 7= }(U) = {(z,w) € T*(X) | w € TF(X), x € U} of
T*(X).

3.2. LEMMA. Let U be an open affine set in X. Then
Ch(V|y) = Ch(V)Nnx 1 (U).

Consider now the general case. Let X be a smooth algebraic variety and Dx
the sheaf of differential operators on X. As before, let 7 : T*(X) — X be the
cotangent bundle of X.

Let V be a coherent D x-module.

3.3. LEMMA. There exists a unique closed subvariety M of T*(X) such that for
any affine open set U C X we have Ch(V|y) = M N7~ 1(U).

PROOF. Let U and V be two affine open subsets of X. Then, by 3.1, we have
Ch(Vlp)Nm H(UNV)=Ch(V|uav) = Ch(V|y) N7 1 {UNV).

Therefore, the set M consisting of all pairs (z,w), w € T(X), such that (z,w) €
Ch(V|y) for some affine open neighborhood of z, is well defined and has the required
property. U

The variety M described in the preceding lemma is the characteristic variety
Ch(V) of V.

Clearly, the definition of a good filtration of a coherent D x-module makes sense
even is X is not affine. Now we are going to show the existence of such filtrations.

First we need an auxiliary result. Let X be an algebraic variety. We show that
coherent O x-submodules can be extended from open subvarieties.

3.4. PROPOSITION. Let F be a quasicoherent Ox-module on X and G a coherent
Oy -submodule of F|U. Then there exists a coherent Ox-submodule G' od F such
that G'|\U = G.

PROOF. Assume first that X is affine. Let G be the canonical extension of
G. Then I'(X,G) is a direct limit of an increasing family of finitely generated
I'(X, Ox)-submodules. Let {H;;i € I} be the localizations of these submodules.
Then they form an increasing system of coherent O x-submodules of F, and their
direct limit is G. Since G|U = G is coherent, the system {H;|U;i € I} stabilizes,
i.e., there exists ig € I such that H;|U = G for i > iy.

Consider now the general case. The proof is by induction on the cardinality of
a finite affine open cover of X. Assume that (V;;1 <i <n) is an affine open cover
of X and Y = U;:ll V;. Then by the induction assumption, there exists a coherent
Oy -submodule H of F|Y such that H|Y NU = G|Y NU. The canonical extension H
of H to a submodule of F restricted to U contains G. Applying the first part of the
proof, there exists a coherent submodule K of H|V;, such that K|V,,NU = G|V,,NU.
Let G’ be the canonical extension of K to a submodule of . Then G'|U contains
G. Moreover, G'lY NU C H|Y NU =GlY NU, ie., §'IYNU =G|y NU. Also,
Gg\WV,NnU =K|V,NU = G|V, NU. Therefore, G’'|U = G|U. On the other hand,
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since G'|Y C H|Y = H is coherent, and G'|V,, = K is also coherent, G’ is a coherent
Ox-submodule of F. O

Let X be a smooth algebraic variety over k and Dx the sheaf of differential
operators on X.

3.5. THEOREM. LetV be a coherent Dx-module. Then V admits a good filtra-
tion.

ProOF. First we claim that there exists a coherent O x-submodule U/ of V such
that the morphism Dx ®p, U — V is an epimorphism. Let (U;;1 < i < n) be an
affine open cover of X. Then, for each 1 < i < n, I'(U;, V) is a finitely generated
Dy,-module. By 3, there exist coherent Ox-submodules G; of V such that I'(U;, G;)
generate I'(U;, V) as a Dy,-module. Therefore, their sum has the required property.

Now we can define F,, V as the image of F,, Dx ®o, U under the morphism
Dx ®ox U — V. Clearly, FV is a good filtration of V. O

Let V be a coherent Dx-module and FV a good filtration of V. Let GrV
be the corresponding graded 7.(Op-(x))-module. Then, for any open set U in
X, the filtration F,(V|y) = (FpV)|u, p € Z, is a good filtration of V|y. Also,
we have GrV|y = Gr(V|y). Therefore, on affine open sets U in X, we have
I'(U,GrV) = GrI'(U, V). As we already remarked, the variety 7*(U) is affine and
LU, m(Or+(x))) = R(T*(U)). Hence, if we localize I'(U,GrV) as an R(T™(U))-
module, we get a unique Op-(;)-module Vu on U, with the property that m, (Vy) =
GrV|y. Since T'(U, GrV) is a finitely generated R(T*(U))-module, Vy is a coherent
Or-(y-module. By glueing Vu together, we get a unique coherent Or-(x)-module
Y on T*(X) with the property that (V) = Gr V.

This immediately implies the following generalization of the formula for char-
acteristic varieties of coherent modules on smooth affine varieties.

3.6. PROPOSITION. Let V be a coherent Dx-module, FV a good filtration of V
and GrV the corresponding graded 7.(Or«(x))-module. Then:

(i) there exists a unique coherent Op-«(xy-module V on T*(X) such that m, (V) =I
GrV;
(i)

Ch(V) = supp(V).

The following result is a generalization of 1.10.4. Since the statement is local,
we can check it on affine open sets. There the argument is identical to the one in
1.10.4.

3.7. PROPOSITION. Let
00—V —Vo— V3 —0
be a short exact sequence of coherent Dx-modules. Then
Ch(Va) = Ch(V1) UCh(Vs).
Let M be a subvariety of the cotangent variety T*(X) of X. We say that M is
a conical subvariety if (x,w) € M implies (z, \w) € M for all \ € k.
The generalizations of 1.10.3 and 1.10.7 are given in the following statements.

Since the statements are local, it is enough to check them on “small” affine open
sets U in the sense of 11.2.10. Then 7= (U) = U x k™ where n = dim,, X. Under this
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isomorphism, R(T*(U)) = R(U)Qxk[1,--.,&) = R(U)[&, - . ., &) and the grading
is the natural grading of a polynomial ring. The annihilator of GrT'(U, V) is a ho-
mogeneous ideal in R(U)[&1, .. .,&,]. In this situation, the necessary modifications
of the proofs of 1.10.3 and 1.10.7 are straightforward.

3.8. PROPOSITION. Let V be a coherent Dx-module on X. Then the charac-
teristic variety Ch(V) is a conical subvariety of T*(X).

3.9. THEOREM. Let V be a coherent Dx-module on X. Then
m(Ch(V)) = supp(V).

4. Coherentor

In this section we introduce some basic definitions and results about O-modules
on algebraic varieties.

First, let X be an arbitrary algebraic variety over the algebraically closed field k.
We denote by M(Ox) the category of O x-modules on X, and by M,.(Ox) its full
subcategory of quasicoherent O x-modules. The functor I'(X, —) of global sections
is a left exact functor from M(Ox) into the category M(R(X)) of modules over
the ring R(X) of regular functions on X. By ([1], I11.2.7) the right cohomological
dimension of T'(X, —) is < dim X.

4.1. LEMMA. The forgetful functor For from the category My.(Ox) into M(Ox)f
has a right adjoint functor Qx : M(Ox) — Mg.(Ox).

PROOF. It is enough to show for any W € M(Ox) there exists QW) €
Me(Ox) such that

HOIH(')X (Va W) - Hom(')x (Va Q(W))
for any V € M .(Ox).

First we assume that X is an affine variety. Then I'(X, —) is an equivalence of
the category My.(Ox) with M(R(X)). Moreover, for any R(X )-module M denote
by M = Ox ®p(x) M its localization. Then M — M is an exact functor from
M(R(X)) into M4.(Ox) and it is a quasi-inverse of I'(X, —). Therefore,

Homp, (V,W) = Homoe, (I'(X, V)", W)

= Homop,, (OX QR(xX) X, V), W) = HOHIR(X)(F(X, V), Homop (Ox, W))

= Hompx)(T'(X,V),T(X,W)) = Home, (V,T'(X,W)),
for any ¥V € M,.(Ox), and Qx (W) =T'(X, W)™ in this case.

Now, let U be an oppen affine subset of an affine variety X and i : U — X
the natural immersion. Then, for any V € My.(Ox) and W € M(Oy), we have

Homo, (V,i,(W)) = Homp,, (V|U, W)
= Homoe,, (V|U, Qu(W)) = Homo (V, i (Qu(W))).

Since the direct image preserves quasicoherence ([1], I1.5.8), i, (Qu(W)) € M4(Ox)
and
Qx (1:(W)) = ix(Qu(W)),
i.e. the functors Qx o i, and i, o Qu are isomorphic.
Now we consider the general situation. Let X be an arbitrary variety and let
= (Uh,Us,...,Uy) be its cover by affine open sets. Denote by f; : U; — X, fi; :
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U;NU; — X the natural immersions. From the corresponding Cech resolution,
we have the following exact sequence

0—W — P fiWIU) — €D fise WIU N U;)

i=1 i<j
for any W € M(Ox). Fix 1 <i < n and denote by g;; : U; "U; — U; the natural
inclusions for any j # i. Then f;; = f; o g;5, and the morphism of f;.(W|U;) —
@iz fij« W|U; NU;) is obtained by applying the direct image of f; to the morphism
WIU; — @i2j9i;+«W|U; NU;). Since U; and U; N U; are open affine subvarieties,
by applying Qu, to this morphism and using the result of the preceding paragraph,
we get a morphism Qu,(W|U;) — ®iz;gij»(Qu,nu, (W|U; N Uj)) such that the
following diagram commutes for any V € M,.(Ox)

HOmoX (V,fl*(W|U1)) e HOm(')X (V,fzj*(W|Uz ﬂUj))
Homo, (V|U;, W|U;)  — Homo,,, (V|Us, gij«(W|U; N Uj))

Homo,,, (V|U;, Qu;(W|U;)) — Homo,,, (V|Ui, gij«(Qu,nu, WIU; N U;)))

Homo (V, fix(Qu,(W|U;))) ——  Homoy (V, fij«(Qu,nu, W|U; N Uj)))
The first differential

d*: @fi*(WWZ) — @fij*(W|Ui NU;)

i=1 i<j

of the Cech resolution C (4, W) determines by this correspondence the morphism

6 @D fir(Qu.WIUL) — @B fij=(Quinw, WIU: N U)).

i=1 i<j

We denote by Q(WW) the kernel of this morphism. Clearly, it is a quasicoherent
Ox-module. Then, by left exactness of the the functor Homoe, (V, —) we conclude
that Homoe, (V, W) = Homop, (V,Q(W)). O

The functor Qx : M(Ox) — M,(Ox) is called the coherentor.

4.2. PROPOSITION. (i) The functor Qx : M(Ox) — My (Ox) is left
exact.
(ii) Qx maps injective objects in M(Ox) into injective objects in My(Ox).
(iii) The composition Q xoFor is isomorphic to the identity functor on M.(Ox) |}
(iv) Let U be an open subvariety of X and i : U — X the natural inclusion.
Then the functors Qx o i, and i, o Qu are isomorphic.

PROOF. (i) This is a property of any right adjoint functor.
(ii) This is a property of any right adjoint of an exact functor.
(iii) This is evident from the definition of Qx.
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(iv) For any V € My.(Ox) and W € M(Oy), we have

Homoe, (V,i.(W)) = Home,, (V|U, W)
= HOIH(QU (V|U7 QU(W)) = Hom(?x (Va Z*(QU(W)))
Since the inverse image preserves quasicoherence, i.(Qu(W)) € My.(Ox), and

Qx (i.(W)) = i.(Qu(W)),

i.e., the functors Qx o i, and i, o Qu are isomorphic. O
4.3. THEOREM. The category My.(Ox) has enough injectives.

PrOOF. Let V be a quasicoherent Ox-module. Then there exists an injective
Ox-module and a monomorphism e : ¥V — Z. Since Qx is left exact by 2.(i),
Qx(e) : Qx(V) — Qx(Z) is a monomorphism. Moreover, by 2.(ii), Qx(Z) is
injective in M,.(Ox). Finally, by 2.(iii), @x (V) = V. O

4.4. LEMMA. Let X be an affine variety and W € M(Ox). Then RPQx (W) =
HP(X, W)

PROOF. We have seen in the proof of 1. that Q) x is isomorphic to the compo-
sition of the localization functor and the functor of global sections I'(X, —). Let
Z" be an injective resolution of W. Then H?(X,W) = HP(I'(X,Z")). Since the

localization functor is exact,
HP(X, W) = H'(I(X,T')) = H?(Qx(1")) = R"Qx (V).
[

The following lemma is critical in the proof of various properties of the coher-
entor.

4.5. LEMMA. Let V be an Ox-module satisfying the condition:
(V) The cohomology HP(U,V) =0 for p > 1 and any affine open set U C X.
Then, for any affine open set U C X, the direct image sheaf i, (V|U) is Qx-acyclic.

PRrROOF. First we remark that the higher direct images RPi,(V|U) vanish. Fix
p > 0. For an arbitrary sheaf F on U, RPi,(F) is the sheaf attached to the presheaf
Vi HP(i"Y(V),F) = HP(UNV,F). If V is an affine open set, U NV is also
affine, hence HP(UNV,V) = 0. This implies that this presheaf vanishes on all affine
open sets. Since affine open sets form a basis of the topology of X, it follows that
the corresponding sheaf is zero.

Let Z' be an injective resolution of V|U in M(Ox). Then, by the previous
remark, the complex i,(Z") is a resolution of i, (V|U). Moreover, since i, is the
right adjoint of the restriction functor M(Ox) — M(Oy), it maps injectives into
injectives, i.e., i,(Z") is an injective resolution of i, (V|U) in M(Ox). Therefore,

RPQx (i.(V|U)) = HP(Qx (i+(Z7)) = H(i+(Qu(Z"))),
because of 2.(iv). By 4,
HP(Qu(T')) = RPQu(V|U) = H?(U, V)" =0
for p > 0. Therefore, Qu(Z') is an acyclic complex consisting of quasicoherent
Op-modules. Since i : U — X is an affine morphism, i, is an exact functor from

Me(Op) into Mye(Ox). Therefore, the complex . (Qu(Z")) is also acyclic, i.e.,
RPQx(i+(V|U)) =0 for p > 0. O
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4.6. PROPOSITION. Quasicoherent Ox-modules are acyclic for Qx .

ProOOF. Let 84 = (Up,Uy,...,U,) be an affine open cover of X. Let V be a
quasicoherent Ox-module. Then V satisfies the condition (V) from the preceding
lemma. Therefore, the modules in the Cech complex C (4, V) of V are all Qx-
acyclic. It follows that C'(4,V) is a @ x-acyclic resolution of V. Hence, by 2.(iii),
we have

RPQx (V) = H(Qx (C'(4,V))) = HP(C'(4,V)) =0

for p > 0. (]

This result implies the following basic fact.

4.7. THEOREM. Let V, W be two quasicoherent Ox-modules. Then

EXthc(OX) (V, W) = EXtM(OX)(V7 W)
PRrROOF. Let
0—W —12y —1; — - — I, —...
be an injective resolution of W in M(Ox). Then, by 2.(ii), 2.(iii) and 6,
0—W —QxTy) —Qx(Th) — - — Qx(Z,) — ...

is an injective resolution of W in My.(Ox). Hence,
Eth\/[(OX)(Vv W) = Hp(HOI’HOX (Vvl.)) = Hp(HomOx (Va QX (I))) = EXtZ_/)\/qu(OX) (Vv W)vl
for any p € Zy. ]

Therefore, without any confusion we can denote

Exty, (V, W) = Ext'ch(oX)(V, W) = Exti o) (Vs W),
for any two quasicoherent Ox-modules V and W.
4.8. THEOREM. The right cohomological dimension of Qx is finite.

ProoF. Fix an affine open cover 4 = (Up, Uy, ...,U,) of X.

First we observe the following fact:

Let V be an Ox-module satisfying the condition (V) from 5. Then RPQx (V) =
0 for p > n.

As in the preceding proof, by 5, the modules in the Cech complex C' (4, V) of V
are all @ x-acyclic. It follows that C (8, V) is a @ x-acyclic resolution of V. Hence,
we have RPQx (V) = HP(Qx(C (4,V))) for p > 0. This yields RPQx (V) = 0 for
p>n.

Now, we want to establish the following generalization of this:

Let V be an Ox-module satisfying the condition:

(V4) The cohomology H?(U,V) = 0 for p > ¢ and any affine open set U C X.
Then, RPQx (V) =0 for p > ¢+ n.

We established this result for ¢ = 0. To prove the induction step we use the
induction in p. Assume that the statement holds for some ¢ > 0. Let V be an
Ox-module such that H?(U,V) = 0 for p > ¢+ 1 and any affine open set U C X.
Let

00—V —>7IT—W-—0
be a short exact sequence, with Z an injective Ox-module. Then for any affine
open set U C X, the restriction Z|U is an injective Oy-module. Therefore, from
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the long exact sequence of cohomology we conclude that the connecting homomor-
phism HP(U,W) — HP*L(U,V) is an isomorphism for p > 1. This implies that
HP(U,W) = 0 for p > ¢, i.e., the induction assumption applies to W. From the long
exact sequence of derived functors of (Q x we conclude that the connecting morphism
RPQx (W) — RPTIQx (V) is an isomorphism for p > 1. Since RPQx (W) = 0 for
p>q+n, RPQx (V) =0 for p > g+ 1+ n. Therefore, (V441) holds.

Since the right cohomological dimension of the functors I'(U, —) is < dimU <
dim X, we see that all Ox-modules satisfy (Vgim x). Therefore, for any quasico-
herent Ox-module V, RPQx (V) =0 for p > dim X + n. O

5. D-modules on projective spaces

Let X = P™ be the n-dimensional projective space over k. Denote by ¥ =
k"l and Y* =Y — {0}. Let m : Y* — X be the natural projection given by

(X0, X1y« - oy Tn) = [0, L1y .-y Tp)-
Let Uy = {[zo,21,...,2n] € P" | 29 # 0}. Then Uy is an open set in P"
isomorphic to k™ and the isomorphism ¢ : k™ — Uy is given by ¢(x1, 29, ..., x,) =

[17 T1,X2y. .. 7xn]' Moreover, ﬂ-il(UO) - {(yOa Y1, Y2, - .- 7yn) | Yo # 0} Therefore
the map ¢ : k* x k" — 7~ 1(Up) defined by

Oty 21,22, ..y 2n) = (t21,t22, ... t2n)
is an isomorphism of k* x k™ with 71 (Up) such that (¢ (¢, z1, ..., 2n)) = [1, 21, . -, 20}
Therefore, the following diagram commutes:

B x k' —2 s 1 Y(Uy)

x| |~

B x Uy —2= U
Clearly, « = ¢po (1 x ¢)~! : k* x Uy — 7w 1(Up) is an isomorphism given by the
formula
alt,[1,21,x,...,2,]) = (t,tey, txe,. .., tey,)
and it trivializes the fibration 7 : Y* — X over the open set Up. Since, GL(n+1, k)
acts transitively on P™ this proves following assertion.

5.1. LEMMA. The morphism © : Y* — X s a locally trivial fibration with
fibres isomorphic to k*.

Clearly, Uy and w~*(Uy) are affine varieties. Therefore, by ..., if V is a quasi-
coherent Dy -module, we have

L(r~!(Uo), 7" (V) = R(r~" (U0)) @r(wy) T'(Uo, V).

On the other hand, the isomorphism « : k* x Uy — 7r_1(U0) induces an isomor-
phism o* : R(7~1(Up)) — R(k*) ®; R(Up). Under this isomorphism, the R(Up)-
module action corresponds to the multiplication in the second factor. Therefore,
this isomorphism induces the isomorphism of T'(7=(Up), 7+ (V)) with R(k*) @4
LUy, V).

Using again the transitivity of the GL(n + 1, k)-action, we immediately get the
following consequence.

5.2. LEMMA. The inverse image functor 7t : My(Dx) — Mgyc(Dy~) is
exact.
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Therefore, if
00—V — Vo, — V3 —>0

is an exact sequence of quasicoherent D x-modules, we have the exact sequence
0—7"(V) — a7t (V) — 77 (V3) — 0
of quasicoherent Dy «-modules. In addition, if we denote by j : Y* — Y the
natural immersion, we have the exact sequence of
0 — g (mt V1)) — Ju (7T (Vo)) — ju (7™ (V3)) — K — 0
of quasicoherent Dy-modules, and K is supported at {0}. Since Y is an affine space,
this implies that
0 — DY, jr (7t WN))) — TV, js (77 (V2))) — DY, ji (77 (V3))) — D(Y,K) — O

is an exact sequence of D(n + 1)-modules. For any Dy--module W, since j (W) =
J.OW), we have T'(Y, j+(W)) =T (Y*, W). Hence, we conclude that

0 —TY* 7r(V)) — T, at(s) — DY, 77 (V3) — T(Y,K) — 0
is an exact sequence of D(n + 1)-modules.
Let E =31, yiaiy,i be the Fuler operator on Y. The differential operator F
is a vector field on Y. If y = (yo,y1,...,¥n) is @ point in Y*, E(y) is the tangent

vector to the curve t — (tyo,ty1,...,ty,) at y. Hence, we have the following
result.

5.3. LEMMA. For any y € Y™, the value of the Euler operator E at y is in the
kernel of the differential of m:Y* — X.

Under the isomorphism « : k* x Uy — 7 1(Up), the Euler operator corre-
sponds to the differential operator t% on k* x Uy, where t is the natural coordinate
on k*. Clearly, R(k*) is the ring k((¢)) which is the localization of the ring of
polynomials k[t] with respect to the multiplicative system ¢, n € Z;. Therefore,
under the isomorphism given by «, we have

D(r= 1 (Uo), 7 (V) = k(1)) @k T(Uo, V).
Therefore, every section of I'(m =1 (Up), 7+ (V)) is annihilated by [[,es(E—p), where

S is a finite subset of Z depending on the section.

5.4. LEMMA. Let V be a quasicoherent Dx-module. Then T'(Y*, 7 (V)) is a
direct sum of E-eigenspaces for eigenvalues from Z.

PROOF. Since finitely many translates of Uy under the action of GL(n + 1, k)
cover X, the finitely many translates of 7=1(Up) cover Y*. By the preceding ar-
gument, for any global section v of V, there exists a finite subset S C Z such that

[[es(E—plv=0. O

Therefore, the exact sequence we considered splits under the F-action in an
infinite family of exact sequences corresponding to the different eigenvalues of E.
In particular, if we denote by T'(Y*, 7% (V))(,) the E-eigenspace of I'(Y*, 77 (V))
for the eigenvalue p € Z, we have

00— T'(Y™, 7r+(V1))(p) — F(Y*,w+(V2))(p) — I‘(Y*77r+(V3))(p) — (Y, K) ) — O,I
for any p € Z.
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On the other hand, we have the natural linear maps vy : T'(U, V) — T'(z=2(U), 7+ (V))}
which are compatible with restrictions, i.e., the diagram

LU, V) —*= (@ '(U),7*(V))

Tv,ul l’”ﬂfl(vwﬁl(u)

D(V,V) —= T(a=H(V), 7 (V)
commutes for any two open sets V' C U in X. Clearly, vy, corresponds to the map
v— 1®v|y, from I'(Uy, V) into k((t)) @, I'(Uy, V) under the above identification.
Therefore, it is an isomorphism of T'(Up, V) onto I'(7~*(Up), 7+ (V)) (o). Hence, we
can view v = vx as a linear map from I'(X, V) into I'(Y*, 7% (V)) o).
Clearly, v(v) = 0 implies v(v)|y, = 0 and therefore v|y, = 0. Hence, by using
again the transitivity of the action of GL(n + 1, k) on X, we conclude that v = 0.
It follows that v : (X, V) — L(Y*, 77 (V))(0) is injective.

5.5. LEMMA. Let V be a quasicoherent Dx-module. Then v : T'(X,V) —
L(Y*, 77 (V))(0) is an isomorphism.

PROOF. Let s be a global section of T'(Y*, 7% (V)) (). Then, by the preceding
discussion, its restriction to 71 (Up) is equal to vy, (vg) for some section vy € V(Up).
Since finitely many translates of Uy under the action of GL(n + 1, k) cover X, we
see that there is a cover Uy, ..., U,, of X and sections vy, ..., v, of V on these open
sets, such that vy, (vx) = slr-1(,) for 0 < k < m. Since yy, are injective and Uy,
and 7~ 1(Uy) affine varieties, by localization we conclude that vy, np, are injective.
Therefore, vg|u,nu, = vilu,.nu, for every pair 0 < k <1 < m. It follows that there
exists a global section v of V such that v|y, = v for any 0 < k < m. Therefore,

’Y(U)‘ﬂ’l(Uk) = VU (U‘Uk) = VU (Uk) = 5|ﬂ'*1(Uk.)

for 0 < k < m, and y(v) = s. This proves surjectivity of ~. O
The following result follows by direct calculation.

5.6. LEMMA. For any 0 < i <n we have

(i) [B,yi] = yis
(ii) [E, a?,i] = —é;zi.

5.7. LEMMA. Let Y = k™! and V be a quasicoherent Dy -module supported at
{0}. ThenT(Y,V) is the direct sum of E-eigenspaces for eigenvalues {—(n+k) | k €
N}.

Proor. Let V =T(Y,V). By 1.13.7, we see that V is generated by the subspace
Vo of all global sections of V annihilated by v;, 0 < ¢ < n. Let v € V. Then
v = [0;, yi]Jv = —y;0;v; hence Ev = —(n + 1)v. Moreover, V = @Iezi+l 0'V,. By 6,

for any w = 90'v, v € Vi, we have
FBw=Ed'v=0"Bv—|I10"v=(~(n+1) = [I|)0'v = —(n+ 1 + |I|)w,
i.e. V is a direct sum of eigenspaces of E with eigenvalues {—(n+ k) | k € N}. O
In particular, since K is supported at {0}, we see that I'(Y, K)) = {0}, and
0—T(X, V) —T(X, V) —T(X,V3) — 0

is exact. Therefore, I'(X, —) is an exact functor on My.(Dx).
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5.8. THEOREM. Let V be a quasicoherent Dx -module on n-dimensional projec-
tive space X =P". Then HP(X,V) =0 for p € N.

PROOF. By ..., V has a right resolution Z° by injective quasicoherent Dx-

modules. By ..., injective quasicoherent Dx-modules are I'-acyclic. Therefore,
H?(X,V) = HP(I'(X,Z')) = 0 for p > 0 since I' is exact on quasicoherent Dx-
modules. (]

Therefore, if we denote by Dx = T'(X, Dx) global differential operators on X,
I : My(Dx) — M(Dx) is an exact functor. We can also define the functor
A:M(Dx) — M(Dx) by A(V) =Dx @py V. Then A is a right exact functor.
Let V € M(Dx). Then there exists an exact sequence Dg) — Dgg) —V —0
of Dx-modules, and after applying A we get the exact sequence ’Dgg) — ’Dg‘(]) —
A(V) — 0 of Dx-modules. Therefore, A(V) is a quasicoherent Dx-module.

The functor T' o A is a right exact functor from M(Dy) into itself. Moreover,
for any V € M(Dx) there exists a natural morphism Ay : V — T'(X, A(V)).
Clearly, A is a natural transformation of the identity functor into I' o A.

5.9. LEMMA. The natural transformation X\ is an isomorphism of the identity
functor on M(Dx) into the functor I' o A.

PRrROOF. Clearly, Ap : FF — T'(X, A(F)) is an isomorphism for any free Dx-

module F'. Therefore, if we take the exact sequence Dgp — Dgg) — V. — 0 of
D x-modules, we get the following commutative diagram

DY’ Dy Vv ——0
lAD()g) J/)\Dgg) J/)\V
pP DY) I(X,A(V)) —— 0

of Dx-modules. Its rows are exact and first two vertical arrows are isomorphisms.
Therefore, Ay is an isomorphism. O

5.10. LEMMA. Let V be a quasicoherent Dx-module. If T'(X,V) = 0, then
Y =0.

PROOF. Assume that I'(X,V) = 0. By 4.(ii), this implies that D(Y*, 77 (V)) ) =}
0. We claim that actually T'(Y*,7#7(V)) = 0. Assume the opposite. By 4.(i),
this implies that T(Y*, 77 (V))) # 0 for some s € Z — {0}. If s > 0 and
v e TY*, 77 (V))(), v # 0, Ediv = (s — 1)d;v for 0 < i < n by 5.(ii). Clearly,
O;v = 0 for all 0 < ¢ < n is impossible, since it would imply that Ev = 0. There-
fore, T(Y*, 7% (V))(s—1) # 0, and by downward induction in s, we get a contra-
diction. Hence, s must be negative. In this case, if v € T(Y*, 77 (V))(5), v # 0,
Eyv = (s + 1)yv for 0 < i < n by 5.(1). If y;o = 0, the support of the section v
is contained in the intersction of Y* with the i*"-coordinate hyperplane. Since the
intersection of all coordinate hyperplanes with Y* is empty, y;v # 0 for at least one
0 <4 < n. This implies that T(Y*, 77 (V))(s41) # 0, and by induction in s we get
to a contradiction again.

It follows that T'(Y,j+ (7t (V))) = T(Y*,7T(V)) = 0, and since Y is an affine
variety, j4 (71 (V)) = 0. This, in turn implies that 7+ (V) =0 and V = 0. O



94 III. D-MODULES

For any quasicoherent Dx-module V there exists a natural morphism gy of
A(I'(X,V)) into V. Clearly, u is a natural transformation of the functor A oI into
the identity functor on Mg.(Dx).

5.11. LEMMA. The natural transformation p is an isomorphism of the functor
A oT into the identity functor on M(Dx).

PRrOOF. Consider the exact sequence
0—K—ATX,V) —V—C—0

of quasicoherent Dx-modules. Since I'(X, —) is exact by 8, we get the exact se-
quence

0 —I(X,K) —TIXATX,V) —IX,V) —IX,C) —0.
of Dx-modules. By 9, the middle arrow is an isomorphism, hence I'(X,K) =
I'(X,C) =0. By 10, we finally conclude that KX = C = 0. O

This immediately implies the following result.

5.12. THEOREM. The functor I'(X, —) is an equivalence of the category My.(Dx )|}
with M(Dx). Its inverse is A.

5.13. COROLLARY. Any quasicoherent Dx-module on X = P" is generated by
its global sections.

Now we want to extend these results to products of smooth affine varieties and
projective spaces. Let X = P™ and Y a smooth affine variety. Let 7 : X xY — X
be the natural projection. Then 7 is an affine morphism. In fact, if U C X is an
open affine subvariety, 71(U) = U x Y is an open affine subvariety of X x Y.
Therefore, by ...,

HP(X xY,V) = H(X,m.(V)), p€L,

for any quasicoherent O x-module V.
If Vis a Dxxy-module, and U C X an open affine subset, then

V) (U)=V(r Y U) =V(U xY)=T(U x Y,V)
is an D(U x Y)-module. Since D(U xY) = D(U) @, D(Y) by ..., m.(V)(U) has
a natural D(U)-module structure induced by the map T — T ® 1 from D(U)
into D(U) ®, D(Y). Therefore, (V) has a natural structure of a Dx-module.
This structure is compatible with the Ox-module structure. Since m, preserves
quasicoherence, if V is a quasicoherent Dy xy-module, the direct image m.()) is a
quasicoherent Dx-module. Hence, by 8, we have
HY(X xY,V)=HP(X,m.(V)) =0, p>0,
and the functor I'(X x Y, —) is exact on My.(Dxxy). On the other hand, if
0=T(X xY, V) =T(X,7m.(V)),
we have m,.(V) =0 by 10. If U C X is an open affine subset,
0=mV)(U)=V({U xY).

Since U x Y is an affine variety and V is quasicoherent, it follows that V|yxy = 0.
Since U is arbitrary, this implies that ¥V = 0.
This proves the following generalization of 12.
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5.14. THEOREM. Let X =P" and Y a smooth affine variety. Then the functor

I'(X x Y,—) is an equivalence of the category Mg.(Dxxy) with M(Dxxy). Its
inverse is A.

In particular, quasicoherent Dx yy-modules are generated by their global sec-
tions.






CHAPTER IV

Direct and inverse images of D-modules

1. The bimodule Dx_,y

Let X be an algebraic variety. Let V and W be two Ox-modules. A k-linear
morphism 7" of V into W is called a differential morphism of order < n if for any
open set U and (n + 1)-tuple of regular functions fo, f1,..., fn € R(U) we have
[... [T, fol, f1l,---, fn] = 0 on U. Let Diff(V,W) be the space of all differential
morphisms of V into W. Also, let F,, Diff(V, W) = 0 for p < 0 and F,, Diff(V, W) the
subspace of differential morphisms of order < p for positive p. Clearly, F Diff(V, W)
is an exhaustive filtration of Diff(V, W). This notion generalizes the notion of a
differential operator on X; if V = W = Oy, the differential endomorphisms of Ox
are exactly the differential operators on X.

Analogously, we can define the sheaf Dif f(V, W) of differential morphisms of
V into W.

1.1. LEMMA. Let T, S be two differential morphisms of order < n, < m respec-
tively. Then T o S is a differential endomorphism of order < n + m.

PrOOF. We prove the statement by induction on n+m. Ilf n =m =0, T,S
are morphisms of Ox-modules, hence T o S is a morphism of Ox-modules and it
is a differential morphism of order < 0.

Assume now that n +m > 0. Then

[To S, fl=TS5f = fTS =TIS, f] + [T’ f1S,

and [T, f],[S, f] are differential morphisms of order < n—1 and < m—1 respectively.
By the induction assumption, this differential morphism is of order < n +m — 1.
Therefore T o S is of order < n + m. [l

Therefore, all differential endomorphisms of an Ox-module V form a filtered
ring and the local differential endomorphisms form a sheaf of filtered rings.

Let X and Y be smooth varieties and ¢ : X — Y a morphism of varieties. Let
Dx_y = ¢*(Dy). Then this is an Ox-module and also a right ¢~ Dy-module for
the right multiplication. Let C be the sheaf of all local differential endomorphisms
of the O x-module Dx_,y which are also ¢~ !Dy-endomorphisms. In the following
we want to describe the structure of the sheaf of rings C.

First, we remark that Ox is naturally a subring of FqC.

The tangent sheaf 7y is an Oy-submodule of Dy . Let Jy be the sheaf of left
ideals in Dy generated by Ty. Let y € Y, then by ..., there exists an affine open
neighborhood U of y and a coordinate system (f1,..., f;; D1, .., Dy) on it, such
that (D¥;I € Z) is a basis of the free Oy-module Dy for the left multiplication.
The sheaf of left ideals Jy |y is spanned by (D¥;1 € Zy,|I| > 0). Therefore, we

97
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have Dy = Oy @ Jy. This leads to the direct sum decomposition

Dx_y =O0x & ¢"(Jy)

as Ox-modules. Let a: Dx_y — Ox be the corresponding projection.

Let S € C(U). We claim that ¢*(Jy)|v is S-invariant. By restriction, we can
assume that U is affine and the image ¢(U) is contained inside a “small” affine open
set V with coordinate system (f1,..., fm;D1,-.., D). Then, the global sections
of ¢*(Jy )| are a free R(U)-module with basis (1 ® D!;I € Z,,|I| > 0). Since S
is an endomorphism of the right Dy-module Dx_,y (U), we have

S Z g @D | = Z S(gr® 1)D" € ¢*(Jy)

|I]>0 |I|>0

for any gy € R(U). Therefore, ¢*(Jy)|uv is invariant under S.

It follows that ¢*(Jy) is a C-submodule of Dx_,y. This implies that the
quotient Dx_,y /¢*(Jy) is a C-module. By the preceding discussion, the compo-
sition of the natural monomorphism Ox — Dx_,y with this quotient map is
an isomorphism of Ox-modules. In turn, this isomorphism defines a morphism
v :C — Endg(Ox) of sheaves of rings given by

Ww(S)(f) = a(S(f@1))

for f € Ox(U); clearly, v is identity on Ox. Hence, v maps C into differential endo-
morphisms of Ox, i.e., local differential operators on X. Therefore, we constructed
a homomorphism v : C — Dx of sheaves of filtered rings. The main result of this
section is the following theorem.

1.2. THEOREM. The map v : C — Dx is an isomorphism of sheaves of filtered
7ngs.

First we prove that « is a monomorphism. We start the proof with a special
case.

1.3. LEMMA. Let U C X be an open set in X and S an element of C(U) of
order < 0. Then S = f € Ox(U).

PROOF. Since S is of order < 0, it is in fact an endomorphism of the Oy-
module Dy _,y|y. It is enough to prove that the restriction of S to elements of an
open cover of U is given by functions. Therefore, we can assume that U is affine and
the image ¢(U) is contained inside a “small” affine open set V in Y with coordinate
system (f1,..., fm;D1,...,Dp). More precisely, by 2.10. and 3.5, we can assume
that there exists a coordinate system (f1, fa,..., fm;D1,Da,...,Dy) on Y such
that

(i) [Di, D] =0for 1 <i<my
(ii) DI, I € Z™, are a basis of the free R(V)-module Dy (with respect to the
left multiplication).
Therefore, in this case Dx .y (U) = R(U) ®gev) Dy is a free R(U)-module with
abasis 1@ DI, T € 7. Since S commutes with left multiplication by elements of
R(X) and right multiplication by elements of Dy, it is completely determined by
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its value on 1 ® 1. Let S(1®1) = a; ® D! for some a; € R(X). Then

Za,@foj:S(mnfj:S(1®fj):5(f4o<z>®1)
= (f; 0 =Y ar(fjop)®D' = a;® f;D

for any 1 < j < m. This implies that Y a; ® [D!, f;] = 0 for any 1 < j < m.
Let I = (i1,%2,...,4m). Clearly, if i; = 0 we have [D, f;] = 0. If i; > 0 and
we put I’ = (iy,i9,...,ij_1,4; — 1,441, ,im), we have [D!, f;] = i;D’. This
immediately leads to a;y = 0 for I # 0. Therefore, S = ag. O

Now we can prove injectivity of 7. Let S € C(U) and vy (S) = 0. We prove
that S = 0 by induction on the order p of S. If p =0, S = f € Ox(U) by 4,
and vy (S) = yu(f) = f. Hence, S = 0. Assume that the statement holds for all
T € C(V) with order <p—1, p > 1 and all open sets V C X. If S has order < p,
we see that ¥([S,g]) = [y(5),g] = 0 for any g € Ox(V), V C U, and since [S, g]
are of order < p — 1, by the induction assumption [S, g] = 0. This implies that S is
of order < 0, and S = 0 by the first part of the proof.

This shows that v : C — Dx is a monomorphism.

It remains to show that « is an epimorphism.

We first show that all local vector fields are in the image of v. Let Tx and Ty
be the tangent sheaves of X and Y respectively. By 2.12, the Oy-module Ty is a
locally free module of finite rank. Therefore, its inverse image ¢*(Ty) is a locally
free Ox-module of finite rank. Hence, a section of ¢*(7y) over an open set U C X
is completely determined by its images in the geometric fibres

T.(¢"(Ty)) = OX,JD/HIX,Jc Q0y. 4(x) Tvai’(w) = T¢(I)(Y)

for all x € U. Let ¥ € Home, (Tx,¢*(7Ty)). Then, for any = € X, this morphism
determines a linear map between the geometric fibres,
T (V) *

1.4. LEMMA. There exists a unique morphism ® : Tx — ¢*(Ty) of Ox-
modules, such that the induced linear map T, (®) of the geometric fibre of Tx into
the geometric fibre of ¢*(Ty) is equal to the tangent linear map Ty () : Tn(X) —
Ty(z)(Y) for any x € X.

PRrROOF. Clearly, the uniqueness follows from the above remark. Let U be an
open set in X and T a vector field on U. Let Y = (U;;1 < ¢ < n) be an open
cover of U consisting of sets with the property that their image in Y is contained
in a “small” open set, i.e., ¢(U;) C V; and on V; there exists a coordinate system
(fi,-- .,fm7D17...,D ). In this case, for any tangent vector ¢ € T,.(X), = € U;,

we have T;,(¢)(§) = >_7L, a;Dj(¢(x)). Moreover,

(Tw(8)(€)) (df (6 Zaka )(df; (¢ Zaka fi)(8(x) =

for any 1 < j < m. Hence,

aj = E(T(0)(df(o(2)))) = &(d(fj 0 &)(x))



100 IV. DIRECT AND INVERSE IMAGES

for 1 < j < m. This finally yields

m

To(6)(€) = Y _&(d(f; 0 ¢)(2))D;(¢(x)).

j=1

The functions  — ((T'|v,)(fj 0 ¢))(z), 1 < j < m, are regular on U;. It follows
that

> (Tlo) (5 6) @ D;

is a section of ¢*(7y) on U;. Moreover, by the preceding formulae, for any x € U;,
the image of this section in the geometric fibre Ty, (Y') of ¢*(Ty) at ¢(x) is equal
to 3700 T(fj 0 8)(2)Dj(¢(x) = 3252, T(@)(d(f; © ¢)(x))Dj(()) = To(8)(T(x)).
Therefore, we constructed a section on U; with the image T, (¢)(T(x)) in the geo-
metric fibre Ty, (Y) at 2 € U;. Since the sections are completely determined by
their images in the geometric fibres, this section is unique. We can glue together
these sections over all elements of U to get a section ®(T") over U. Clearly, the map
® : T+ ®(T) has the required property. O

Now, we remark that locally 7y is an Oy-module direct summand of Dy,
hence the canonical morphism ¢*(7y) — Dx_,y is a monomorphism, and we can
identify ¢*(Ty ) with a submodule of Dx_,y. Therefore, we can view ® a morphism
of Tx into Dx_vy.

1.5. LEMMA. Let U C X be an open set. Let T be a vector field on U. Then
there is a unique element 6y (T) € C(U) such that

Su(Mivige 1) =T(9) @1+ g®(T)|v
for any g € Ox(V) and any open set V C U.
PROOF. Assume that there exists an element S € C(U) which satisfies
Slv(g®1) = T(g) @ 1+ gB(T)|y

for any g € Ox (V) and any open set V' C U. Let € U. Then there exists an
affine open neighborhood W of ¢(z) in Y and an affine open neighborhood V' of
x, V C U such that ¢(V)) C W. Therefore, Dx ,y (V) = R(V) @pw) Dw. Then,
for any g € R(V) and @ € Dy, we have S|y (g ® Q) = S(g ® 1)Q since S|y is
an endomorphism of the right Dy,-module. It follows that such S|y is unique.
Therefore, S is uniquely determined by the above property.

By the uniqueness, to show the existence, it is enough to show the existence
for U replaced by elements of an open cover of U. Therefore, we can assume from
the beginning that U is an affine open set such that ¢(U) is contained in a “small”
affine open set W C Y with coordinate system (f1,..., fm;D1,..., Dm). As above,
in this case we have Dx_,y (V) = R(V) @ gawy Dw. First, we can define a bilinear
map from R(V) x Dy into R(V) @ gewy Dw by

(9,9) — T(g9) ® S+ g®(T)|vS.

Consider now h € R(W); its composition with ¢|y is a regular function on V. Then
we claim that

S(T)|vh — (ho $)B(T)|y = T(ho )@ L.
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Using the calculation from the proof of 4, we see that

m

O(T)|vh = (ho@)®(T)|y = Y (T(fj0d) ® Djh— (hod)T(f;jod)® D)

Jj=1

=Y T(fiod)®[Dj,h] =D T(fjo¢)@Dj(h) = T(f;0d)(Dj(h)ed)®1,
j=1 j=1

j=1

i.e., this expression is a function. Its value at x € V is

> T(f50¢)(@)D;(h)(b(x) =D T(x)(d(f; o ¢)(x))D;((x))(dh((x)))
j=1
= (T:(0)(T(2)))(dh(é(2))) = T(2)(d(h o ¢)(z)) = T(h o ¢)(z),

which proves the above relation. Therefore, we have

T(g(ho¢)) ®S+g(ho@)®(T)S
=T(g)@hS+gT(hod)®S+g(hod)®(T)S =T(g) ®hS + g®(T)hS

for any h € R(Y'), hence this map factors through Dx_,y (V). Therefore, it defines
ov(T) € Endy(Dx—y (V). If Vi, f € R(V), is a principal open set in V', we have
Dxy(Vy) = R(Vy) @rewy Dw = R(V); @rw) Dw. Therefore, by localization,
dv(T) “extends” to an endomorphism Dx_,y (V) which is given by essentially the
same formula, and therefore equal to dy, (T"). This implies that dy (7") defines an
element of Endy(Dx_y). Clearly,

[ov(T),gl(h® 1) = v (T)(gh® 1) — gov(T)(h@ 1)
=T(gh) @1 —gT(h)®1=T(g)(h®1)

for any g,h € R(V). Hence, 6y (T) is a differential endomorphism. Moreover, it
also commutes with the right action of Dy, hence oy (T) € C(V). This completes
the proof of existence. ([

On the other hand, since ¢*(Ty) C ¢*(Jy) = ker o, we have
V(6(T))(9) = a(6(T)(g© 1)) = a(T(9) ®1) = T(g)

for any g € Ox, i.e., (yo00)(T) =T. This implies that the image of v contains all
vector fields on X, and since they and Ox generate sheaf of rings Dx by 3.7.(ii), v
is an epimorphism. This completes the proof of 2.

Therefore, we can consider Dx _,y as a sheaf of bimodules, with left Dx-action
and right ¢~1(Dy )-action.

Now we discuss the case where X = k™ and Y = k™. In this case we constructed
in I.12. a left Dx-module structure on Dx_,y given by

0 0 9) 0

oP O(y;
p pd U g~
8%( ®S) = pre ®S+; Do, ®ayj5

for any P € R(X) and S € Dy. Clearly, this left Dx-action on Dx_,y agrees with
the one we just defined in general. Hence, the sheaf of bimodules Dx_,y is the
natural generalization of the construction from I in the case of polynomial maps.
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1.6. REMARK. Assume that U is an open subset of a smooth algebraic variety
X. Consider the natural inclusion i : U — X. Then, i }(Dx) = Dx|y = Dy.
Hence, Dy, x is isomorphic to Dy as a right i~ (Dy)-module. Clearly, Dy x
has is a left Dy-module by the action given by left multiplication. This action
commutes with the right i~!(Dx)-action. Hence, in this way, we get a natural
morphism of Dy into C. From the definition of the morphism v : C — Dy, we
know that for any open set V' C U and a vector field T' € Dy (V'), we have

Ww(T)(f) = AT(f)) = a(T, f1 + IT) = T(f).

Hence, the composition of the natural inclusion with the morphism -y is an isomor-
phism on local vector fields. Since Dy is locally generated by vector fields, this
implies that this composition is an isomorphism of Dy. Therefore, the action of
Dy in the bimodule Dy_, x is the natural action of Dy.

Let X, Y and Z be smooth varieties, and ¢ : X — Y and ¢ : ¥ — Z
morphisms of varieties. Then

Dxz = (¥ 0¢)"(Dz) = ¢"(¥"(Dz)) = ¢"(Py-2z)
= Ox ®y-1(0y) ¢ ' (Dyz) = Ox @g-1(0y) (¢ (Dy) @g-1(py) ¢~ (Dy2))
= (Ox ®g-1(0y) ¢ ' (Dy)) @p-1(py) ¢ (Dy—2)
=Dxoy ®p-1(py) ¢ (Dy 7).

This isomorphism is clearly compatible with the Ox-module structure given by
left multiplication in Dx_,z and Dx_,y respectively. The same holds for right
(0 ) HDz) = ¢~ (1 (Dz))-module structure given by right multiplication in
Dx_,z and ¢~} (Dy_,z) respectively. We claim that the left Dx-module actions
are also compatible.

Let x € X and T a vector field on an affine open neighborhood U of x. Then,
we have

(Dxy ®¢-1(py) ¢ (Dy2))e = Dxovie @Dy 4y Dy —z.6(2)-

Let f be the germ of a regular function at x. Then

T(fol)=T(Hel+)y goT

in Dx_y, where g; € Ox , and T; € jy,(i,(x). This implies that the action of T on
(f®1)® (1®1) in the stalk Dx vz @Dy ,(,) Dy 52,6 1S given by

T(fel)o(1lel)=T(fol)o(1®1)
—T(Hee(lel)+> (¢eT)o(1e1)
=T(Hehe(lel)+) (e)eT1e1).

We already remarked that ¢*(Jz)g(s) i Dy,¢(z)-invariant. Moreover, by the con-
struction of the action, any local vector field S at ¢(x) maps 1® 1 into ¥*(Jz)¢(x)-
This implies that Tj(1 ® 1) € ¥*(Jz)¢() for all i. Therefore, under the above
isomorphism, T'((f ®1) ® (1® 1)) maps into T'(f) ® 1+, h; ® S; where S; are in
J7Zp(4(z))- This implies that the two actions of T' agree. Therefore, we established
the following result.
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1.7. PROPOSITION. Let X, Y and Z be smooth algebraic varieties and ¢ : X —
Y and Y : Y — Z morphisms of algebraic varieties. Then
Dx—z = Dxoy @p-1(py) ¢ (Dy—2)

as sheaves of bimodules.

2. Inverse and direct images for affine varieties

Let X and Y be two smooth affine varieties and ¢ : X — Y a morphism of
algebraic varieties. Then, Dx_,y = I'(X, Dx_y) has a natural structure of a (left
Dx, right Dy )-bimodule. We define the following two right exact functors:

(i) the inverse image functor ¢+ : ML (Dy) — ML (Dx) by
¢"(M) = Dxy ®p, M
for any left Dy-module M; and
(ii) the direct image functor ¢4 : ME(Dx) — MPE(Dy) by
¢+(N) = N @px Dxy
for any right Dx-module N.

Clearly, these definitions generalize the definitions from I.12 of these functors in the
case of affine spaces.

Let Z be another smooth affine variety and ¢ : ¥ — Z a morphism of
varieties. Then, by ..., we have a natural morphism of Dx_,yv ®p, Dy_z into
Dx_, 7 compatible with the left Dx-module and right Dz-module action.

2.1. PROPOSITION. Dx_,7z = Dx_y ®p, Dy_z.
Proor. We have, by ...,
Dx 7z =T(X,Dxz) =T(X, (0 ¢)"(Dz)) =T(X,¢*(¢v*(D
=I'(X,¢"(Dy-z)) = R(X) @ry) (Y, Dy z) = R(X)
= R(X) ®@g(v) (Dy ®py Dy—z) = (R(X) ®gr(v) Dy) @py Dy—z
= Dx vy ®py Dy .z
O

2)))

®ry) Dy—z

This immediately implies that

(¢F oy ™)(M) = ¢" (*(M)) = Dx—y @py (Dy—z @p, M)
= (Dx5y ®py Dyz)®p, M = Dx_ 7 ®p, M = (1) 0 ¢)" (M)
for every left Dz-module M; and

(Y4 091 )(V) = ¥4 (¢4(N)) = (N ®px Dx—y) ®py Dy—z
=N ®@py (Dx—y ®py Dy z) = N®py Dx .z = (¢ 0d)(N)
for every right Dx-module N. Therefore, we established the following result.

2.2. THEOREM. Let X, Y and Z be smooth affine varieties and ¢ : X — Y
and 1Y — Z morphisms of varieties. Then

(i) ¢F o™ = (Yo )T,
(ii) Yy ody = (Yo o)y
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Now we want to study the left derived functors of the inverse image ¢ and
the direct image ¢ .
We start with the following result.

2.3. LEMMA. Let V be a locally free Ox-module of finite rank on an affine
variety X. Then I'(X,V) is a projective R(X)-module.

PRrROOF. First we remark that I'(X,V) is a finitely generated R(X)-module.
Hence, for any R(X)-module N we have

Extp ) (T(X, V), N)2 = Exty, ((Ve, Na)
for any z € X by an analogue of 1.6.1. By the assumption, each V, is a free Ox ;-
module. Therefore, Ext};t(x)(F(X, V),N), = 0 for any z € R(X), which implies
that Ext};{(y) (T(X,V),N) =0 and I'(X, V) is a projective R(X )-module. O

2.4. COROLLARY. Let X be a smooth affine variety. Then Dx is a projective
R(X)-module for left multiplication.

PRrROOF. Let p € N. Then we have an exact sequence
0 —F, 1Dx —F,Dx — Gr,Dx — 0
of Ox-modules. Since X is affine, this implies that
0 —I'(X,F,_.1Dx) —I'(X,F,Dx) — I'(X,Gr, Dx) — 0

is an exact sequence of R(X)-modules. By ... , Gr, Dy is a locally free O x-module
of finite rank. Therefore, by 3, I'(X, Gr, Dx) is a projective R(X)-module. The
above exact sequence splits, and we have

I'X,F,Dx) =T(X,F,_1 Dx) @T'(X, Gr, Dx).
By induction this implies that

p
I'(X,F, Dx) = @T(X,Gr; Dx)
=0

and

oo
Dx =T(X,Dx) = @F(X, Gr; Dx),
i=0
as an R(X)-module. Therefore, Dx is a direct sum of projective R(X)-modules,
and therefore projective. O

2.5. LEMMA. Let ¢: X — Y be a morphism of smooth affine varieties. Then
Dx_,y = R(X) ®g(y) Dy is a projective R(X )-module.

PROOF. By 4, Dy is a projective R(Y')-module, hence it is a direct summand of
a free R(Y')-module. It follows that Dx _,y = R(X)®pgy) Dy is a direct summand
of a free R(X)-module, and therefore a projective R(X)-module. O

2.6. PROPOSITION. Let X, Y and Z be smooth affine varieties, and ¢ : X — Y
and v 1Y — Z morphisms of affine varieties. Then TOIJDY(DX*))QDyﬁz) =0
for j € N.
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PROOF. Let M be a left Dy-module and F" its left resolution by free Dy-
modules. Since, by 4, Dy is a projective R(Y)-module for left multiplication, we
can also view it as a resolution by projective R(Y)-modules. This implies that

Tor] " (R(X), M) = H I (R(X) @y F)

= H((R(X) @r(y) Dy) ®p, F') = Tor? (Dx_y, M).

Since Dy_,z is a projective R(Y)-module by 5, Torf(y)(R(X),DyﬁZ) = 0 for

7 € N, and our assertion follows. O

The next result generalizes 1.12.2 and 1.12.6. to smooth affine varieties.

2.7. THEOREM. Let X, Y and Z be three smooth affine varieties, and ¢ : X —
Y and ¢ : Y — Z morphisms of varieties. Then
(i) for any left Dz-module M there exists a spectral sequence with Ea-term
EY = [P LU+ (M)) which converges to LP+9(y o ¢)t(M);
(ii) for any right Dx-module N there exists a spectral sequence with Ea-term
E¥ = [Py (L9¢4(N)) which converges to LP19(y) o ¢)4(M).

PRrOOF. Both statements follow from the Grothendieck spectral sequence.

(i) Let P be a projective left Dz-module. Then it is a direct summand of a
free Dz-module. Therefore, 1)+ (P) is a direct summand of Dg/I)_) 5 for some I. By
6, this implies that ™ (P) is ¢ T-acyclic.

(ii) Let @ be a projective right Dx-module. Then it is a direct summand of
a free Dx-module. Therefore ¢4 (Q) is a direct summand of DEQILY for some J.
Applying 6. again, we see that ¢ (Q) is ¥4-acyclic. O

3. Inverse image functor

Let X and Y be two smooth algebraic varieties and ¢ : X — Y a morphism
of algebraic varieties. We define the functor

T (V) = Dxoy @p-1(py) ¢ (V)

from the category M¥(Dy) of left Dy-modules into the category ME(Dx) of left
Dx-modules. This functor is called the inverse image functor. Since the functor
¢~ ! is exact and the functor Dx_y ®g-1(Dy) — is right exact, the inverse image
functor is right exact.

3.1. REMARK. Let U be an open subset in X. Then, by 1.6, we know that
Dy_x = Dy. Hence, we see immediately that it(V) = i71(V) = V|y, i.e., the
inverse image of i is the functor ¥V —— V|y of restriction to U. In particular, it is
an exact functor.

3.2. LEMMA. The class of flat left Dy -modules is left adapted for ¢+.

PROOF. The class of flat left Dy-modules is closed under direct sums, and
every left Dy-module is a quotient of a flat module.

Let F be a flat left Dy-module. Then F, is a flat left Dy y-module for any
y € Y. Therefore, for any z € X, ¢~ 1(F), = Fo(z) is flat over ¢ Y(Dy), = Dy ¢(a)-
Hence, ¢—1(F) is a flat left ¢$~1(Dy)-module.

Therefore, if F* is an acyclic complex of flat left Dy-modules bounded above,
¢~1(F’) is an acyclic complex of flat left ¢~!(Dy)-modules bounded above. It
follows that ¢ (F") is an acyclic complex bounded above.
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This implies that the class of all flat left Dy -modules is left adapted for ¢7. O
Therefore we can define the left derived functor

Lot : D~ (ML (Dy)) — D~ (ME(Dx)).
3.3. LEMMA. The left cohomological dimension of the functor ¢T is finite.

PrROOF. Let V be a left Dy-module and let F* be a left resolution of V by flat
left Dy-modules. Then, by 3.2,

LPyt (V) = HP(¢1(F')) = HP(Dx oy ®p-1(py) ¢ (F)).
Let z € X. Then ]-'('ﬁ(x) is a Dy, 4(s)-flat resolution of V(,). Hence,

(LP¢T (V)2 = HP(Dx sy @p-1(py) ¢~ (F))a
= H"((Dx—y @p-1(py) @ (F))a) = H (Dxyv,a ®p-1(Dy), & (F)a)

. Dy y(a
= H?(Dx—v,2 @Dy 40y Fp(a) = Tor " (Dx v.a, Vo())-

Since the homological dimension of the ring Dy, 4(,) is < 2dimY by ..., it follows
that (LP¢T(V)), = 0 for p < —2dimY. Moreover, since z € X was arbitrary,
LP¢pt =0 for p < —2dimY. O

Therefore, the left derived functor L¢™ can be extended to the derived functor

Lt : DIME(Dy)) — D(ML(Dx)) between derived categories of unbounded
complexes.

3.4. LEMMA. Let V' be a complex of left Dy -modules. Then

L
Lot (V') =Dxoy @ g-1pyy ¢ (V).

PrOOF. Let F be a flat left Dy-module. As we explained in the proof of
3.2, ¢71(F) is a flat left ¢~ !(Dy)-module. Hence, it is acyclic for the functor

Dx_v ®¢*1(Dy) —. O
Let V be a left Dy-module. Then

¢ (V) = Dxsy Qp-1(py) ¢ (V) = (Ox ®y-1(0y) 6~ (Dy)) @p-1(py) ¢ (V)
= Ox ®4-1(0y) (7 (Dy) @p-1(py) 671 (V) = Ox @4-1(0y) ¢~ (V) = 6*(V),
i.e., if we forget the Dx-module structure, the D-module inverse image ¢* (V) is

equal to the O-module inverse image ¢*(V). Now we prove that this remains valid
for derived functors. First we need the following result.

3.5. LEMMA. Let F be a flat left Dy -module. Then F is a flat Oy -module.

Proor. Let y € Y. It is enough to show that F, is a flat Oy,,-module. By the
assumption, F, is a flat left Dy ,-module. Let W be a right Oy ,-module. Then
we have

W ®OY=y ]:"/ = W ®OY,y (Dyﬂ ®DY,y ]:y) = (W ®OY«y Dy’y) ®DY,’y ]:'U

Since Dy, is a free Oy y-module for the left multiplication by ..., it follows that
W +— W ®o0,, Dy, is an exact functor. Hence, W —— (W ®o,., Dy,y) @py., Fy
is also an exact functor. This immediately implies that W — W ®o,.  F, is exact,
ie., Fy, is Oy-flat. O

This leads to the following result.
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3.6. THEOREM. If the vertical arrows denote the forgetful functors, the following
diagram of functors

D(ME(Dy)) 225 D(ME(Dy))

I |

Lo*

D(M(Oy)) —— DM(Ox))
commutes up to an isomorphism.

PRroOOF. This follows by applying 4. and the theorem about the derived functors
of the composition of functors to the composition of the forgetful functor and ¢,
and ¢* and the forgetful functor respectively. O

This result, combined with ..., has the following immediate consequence.

3.7. THEOREM. Let V' be a complex of left Dy -modules such that HP (V') are
quasicoherent for all p € Z. Then the cohomology modules HP?(Lo™ (V")) are qua-
sicoherent left Dx -modules for all p € Z.

Assume now that X and Y are smooth affine varieties. In general, for an
arbitrary left Dy-module V, we have a natural morphism

DX%Y ®Dy F(Y7 V) — F(X7 ¢+(V))
The next result implies that this morphism is an isomorphism for quasicoherent V.

3.8. PROPOSITION. Let X and Y be affine smooth varieties and ¢ : X — Y
a morphism of algebraic varieties. Then, for any quasicoherent left Dy -module V,
we have

I'(X,LP¢T (V) = Tor”Y (Dx_y,[(Y,V))
forpeZ.

PRrROOF. First, we remark that if V = Dy, ¢7(Dy) = Dx_y and the above
morphism is clearly an isomorphism. Now, consider an arbitrary quasicoherent left
Dy-module V. Let F' be a free left resolution of I'(Y,V). Then its localization
F = A(F") is a free resolution of V, i.e., it is a Dy-flat resolution of V. Therefore,

LP¢* (V) = HP (L™ (D(V))) = HP(¢*(F))
for p € Z. Since ¢ (F") is a complex of quasicoherent Dx-modules,
D(X,LP¢™(V)) = (X, HP (¢*(F))) = H'(T(X, 9" (F))).

Finally, since I'(X, —) and ¢ commute with direct sums, from the first part of the
proof it follows that

(X, LP¢T (V) = HP(Dx_y ®p, F') = TOI?;(DXH}QF(Y; V))
for p € Z. ]

Hence, in the case of morphisms of smooth affine varieties and quasicoherent
D-modules, we recover the old definition from §2.
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Let X, Y and Z be three smooth algebraic varieties, ¢ : X — Y and ¢ :
Y — Z two morphisms of algebraic varieties. Then, for any left Dz-module V,
we have

(@ 0 ¥™)(V) = Dxoy Qp-1(py) ¢~ (T (V))
= Dxoy ®g-1(py) & (Dy—z Qp-1(p,) ¥ (V)
=Dx_vy Xp—1(Dy) (¢_1(DY—>Z) R¢—1(yp—1(Dz)) ¢_1(¢_1(V)))
= (Dx—y Qp-1(py) & (Dy—2)) Oos)-1(py) (0 &) (V).
Hence, by ..., it follows that
(07 0 ¥)(V) = Dxosz Opog)-1(py) (0 8) T (V) = (Yo )T (V).

Therefore, we proved the following result.

3.9. LEMMA. ¢T o9y = (o )T.

The next result generalizes this to derived categories.

3.10. THEOREM. The exact functors LotoLyT and L(og)t from D(ML (D))
into D(M*(Dx)) are isomorphic.

PROOF. Because of the preceding discussion and 1, we only have to check that
YT (F) is ¢pT-acyclic for any flat left Dz-module F. By 5, it enough to show that
Y*(F) is ¢*-acyclic. This follows from 4. and ... . O

Clearly, we have
¢T(Dy) = Dx—y ®4-1(py) ¢ (Dy) = Dxy-
Since Dy is a flat left Dy-module, by 1, we get
Lé™(D(Dy)) = D(Dx—y)-
Hence, by 9, we get
D(Dx—z) = L(p 0 ¢)"(D(Dz)) = L™ (LY (D(Dz)))
L
=L (D(Dyz)) = Dx—y ® ¢-1(py) D(¢7 (DyS2)).
3.11. COROLLARY. We have

D(Dx_z) = D(Dx-y) GIé s-1(Dy) D¢ (Dy2)).

4. Projection formula

Let X and Y be two topological spaces and ¢ : X — Y a continuous map.
Let R be a sheaf of rings on Y. Then ¢~!(R) is a sheaf of rings on X.

Let A be a right ¢~!(R)-module on X and B a left R-module on Y. Then we
can consider the sheaves of abelian groups ¢e(A ®4-1(%) ¢~ (B)) and ¢e(A) @z B
on Y. The first one is given by

Vi 9u(A@g-1(r) ¢ (B))(V) = (A®g-1») ¢~ (B) (671 (V)
and the second is the sheaf associated to the presheaf

Vi g (A)(V) @r(v) BV) = A(6™ (V) @r(v) B(V).
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Since A ®@4-1(R) ¢~ 1(B) is associated to the presheaf
Ur— A(U) ®@y-1rywy ¢~ (B)(U)
on X, for any open set V C Y, there is a natural morphism of

A(p~H (V) @r(v) B(V)
into
A7 (V) @1 (my6-1(vy) ¢~ (B) (o H(V))
and into the group
(A®g-1(r) ¢~ (B)) (¢ H(V)).
Therefore, we have a natural morphism
Po(A) @R B — ¢o(A@g-1(r) ¢~ (B)).

This is clearly a morphism of bifunctors. Therefore, it induces a morphism of cor-
responding bifunctors between homotopic categories of complexes bounded above,
i.e., if A" is a complex of right ¢~!(R)-modules bounded above and B’ a complex
of left R-modules bounded above, then we have the canonical morphism

De(A) O B — du(A ®p-1(r) ¢ (B)).

Assume now that ¢, has finite right cohomological dimension. Then we have a
canonical morphism

Pa(A" ®p-1(r) ¢ (B')) — Repa(A @p-1(r) ¢ (B)).
Assume that A" is ¢e-acyclic and B' is R-flat. Then, since ¢~1(B") is ¢~ (R)-flat,

we have a canonical morphism

$e(A) @R B — Rpe(A @y-1(r) ¢ (B')) = Ropa (A’ Q%qﬁ*l(R) ¢~ (B)).

Finally, since any complex of right ¢$~!(R)-modules bounded above is quasiisomor-
phic to a ¢e-acyclic complex bounded above, and any complex of left R-modules
bounded above is quasiisomorphic to an R-flat complex bounded above, we get the
natural morphism

Rou(A) O R B —> Rou(A' S 4or(r) 6~ (B).

Therefore, we have a morphism of corresponding bifunctors between the derived
categories.

Under certain conditions, this natural morphism is an isomorphism. The cor-
responding statement is usually called a projection formula. For example, assume
that X and Y are algebraic varieties and ¢ : X — Y a morphism of algebraic
varieties. In this case ¢ has finite right cohomological dimension.

4.1. PROPOSITION. Let X and Y be two algebraic varieties and ¢ : X — Y a
morphism of algebraic varieties. Then

Rou(V) S0, W = Rou(V' & 10,y 67 V)
for any V" in D= (M(¢p~1(Oy))) and W in D~ (My.(Oy)).
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PrROOF. It is enough to show that the canonical morphism induces an iso-
morphism on cohomology groups. Since the right cohomological dimension of ¢,
is finite, by truncation, we can assume that W is a bounded complex. Moreover,
since all quasicoherent Oy -modules form a generating class for the bounded derived
category, we can assume that W = D(W) where W is a quasicoherent Oy-module.

Since the statement is local with respect to Y, we can also assume that Y is an
affine variety. In this case we can replace W with a free resolution F'. Since ¢4 com-
mutes with direct sums, it is evident that the natural morphism is an isomorphism
in this case. (]

Analogously we can prove the following statement.

4.2. PROPOSITION. Let X and Y be two algebraic varieties and ¢ : X — Y a
morphism of algebraic varieties. Then

Rou(V) S0y W = Rou(V' & 10y 67 V)
for any V" in D~ (MB(¢~(Dy))) and W in D~ (ML.(Dy)).

Assume that Y is a smooth variety. Then the homological dimension of Oy,
is < dimY and the homological dimension of Dy, is < 2dimY. Therefore, using
the standard truncation argument, we can establish the following variants of the
previous two results.

4.3. PROPOSITION. Let X and Y be two smooth algebraic varieties and ¢ :
X — Y a morphism of algebraic varieties. Then
L L
Rpa(V') @0y W = Roe(V @ y-1(0y) 6~ (W)
for any V' in D(M(¢~1(Oy))) and W in D*(Mye(Oy)).
4.4. PROPOSITION. Let X and Y be two smooth algebraic varieties and ¢ :
X — Y a morphism of algebraic varieties. Then
L L
Roe(V') @Dy W = Roe(V @ y1(py) 6~ (W)
for any V' in D(M®(¢~(Dy))) and W in D*(ML.(Dy)).

In particular, we shall need the projection formula in the following form. Let
¢: X — Y and ¢ : Y — Z be morphisms of smooth algebraic varieties.

4.5. LEMMA. Let V' be a complex of right ¢~ (Dy )-modules. Then we have a
natural isomorphism of complexes of right 1~ (Dz)-modules

L L
Roe(V) @Dy Dysz = Rope(V ® y-1(py) ¢ (Dy2))
in DM (Y~ (Dz))).
PrRoor. We can view the bimodule Dy _, 7 as a sheaf of modules over the sheaf
of rings Dy ®; ¢~ (DF?), where DY? is the sheaf of opposite rings of Dz. Clearly,

a flat Dy ®y 11 (DY?)-module is flat as a Dy-module. Therefore, the canonical
morphism of functors

Roo (V') @% py Dy sz — Rpe(V (§]§) 6-1(Dy) (b_l(’DYaZ))

from D(ME(¢=1(Dy))) into D(MPE(p~1(Dy))) induces the canonical morphism
from 4, if we forget the ¢~ (D7?)-module action. On the other hand, this mor-
phism is an isomorphism by 4. (I
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5. Direct image functor

Let X and Y be two smooth algebraic varieties and ¢ : X — Y a morphism
of algebraic varieties. Since the homological dimension of Dx ,, € X, is <
2dim X, the functor U — U ®p, Dx_,y has finite left cohomological dimension.

L
Therefore, we have the functor V' +— V' @ p, Dx_,y between D(MF(Dx)) and
D(MPT(¢~1(Dy))). On the other hand, ¢. has also finite cohomological dimension,

L
hence we have the functor V' — R¢e(V' ® p, Dx_y) from D(ME(Dy)) into
D(M%(Dy)). We call this functor the direct image functor ¢, : D(MT(Dx)) —
D(MPE(Dy)), in particular
L
¢o+(V') = Rpe(V @Dy Dxv)
for any V' in D(M%E(Dx)).

5.1. LEMMA. The exact functor ¢, : D(MT(Dx)) — D(ME(Dy)) has finite
amplitude.

PrOOF. Since U — U ®p, Dx_y has finite left cohomological dimension,

L
the functor V' —— V' ® p, Dx_,v has finite amplitude by ... . Analogously, Rope
has finite amplitude. This implies that their composition has finite amplitude. O

5.2. REMARK. Let U be an open set in X and ¢ : U — X the natural inclusion.
Then, by 1.6, we have Dy_,x = Dy. Hence, in this case we have

i (V) = Ria(V)
for any complex V' of right Dy-modules. In particular, we see that in the case of

open inclusions, the direct image functor is equal to the right derived functor of the
sheaf direct image functor i,.

Let Z be another smooth variety and ¢ : Y — Z a morphism of algebraic
varieties.

5.3. THEOREM. The exact functors 1, o ¢y and (¢ o ¢); from D(MFE(Dx))
into D(M®(Dyz)) are isomorphic.

PROOF. Let V' be a complex in D(MT(Dx)). Then

(4 065 )(V') = 14 (61 (V) = Rpa(64 (V') & by Dy 72)

L L
= Ripe(Roe(V @by Px—y) @ Dy Dy2z).

By the projection formula, we have
L L L L
Rpa(V @Dy PDx—y) @Dy Dy—z = Rpa((V @Dy Dx—y) ® g-1(py) ¢ (Dy—z)).-
Hence, by ..., we have
L L
(¥4 064)(V) = Rpe(Rbe(V @ Dy (Dxsy @ g-1(py) ¢ (Dy—2))))

= R4 0 8)a(V' & py Dxsz) = (1 0 9)1 (V).
O
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Let ¢ : X — Y be a morphism of smooth algebraic varieties. Let V be an
open set in Y and U = ¢~ (V). Let V" be a complex of right Dx-modules. Then

61 (V) = Roe(V &1y Dx v )lv = R(6]0)e (V' & Dy Dxoy)lv)

= R(8]0)e (V|0 & by Dursvr) = (Blu)+ (V']0),

i.e., the direct image functor is local with respect to the target variety.

Assume now that X and Y are smooth affine varieties. Then for any quasico-
herent right Dx-module V, let F" be a free resolution of I'(X, V). Then F' = A(F")
is a free resolution of V. Therefore,

6. (D(V)) = Rou(D(V) & by Dxsy) = Rée(F ©py Dxsy).

Clearly, for any p € Z, F? ®p, Dx_v is a direct sum of copies of Dx_,y, hence
it is a quasicoherent left Dx-module. In particular, it is acyclic for ¢. by .... This
implies that

¢+ (D(V)) = de(F @Dy Dx—y).
5.4. LEMMA. If ¢ : X — Y is a morphism of smooth affine varieties, we have

(i) H?(¢4+(D(Dx))) =0 for p # 0;
(i) H°(¢4(D(Dx))) = ¢e(Dx_y) is a quasicoherent right Dy -module.

Proor. Clearly,

$+(D(Dx)) = ¢o(D(Dx) @px Dxy) = D(de(Px—y))-
This implies (i). It remains to check that H%(¢, (D(Dx))) = ¢e(Dx_y) is quasi-
coherent. First we remark that

L(Y,¢e(Dxy)) = I'(X, Dxy) = R(X) ®gr(y) Dy,

since Dx_,y is a quasicoherent Dx-module. Let g € R(Y) and f = g o ¢. Then
¢~ 1(Y,) = Xy, and since ¢, is local,

H®(¢4(D(Dx)))ly, = H(¢+(D(Dx,)));

and

$e(Dx—y)(Yy) = H(¢+(D(Dx)))(Yy) = H(¢+(D(Dx,)))(Yy)
=T(Yy, (9lx;). (Dxfﬁy )) = R(Xy) ®r(y,) Dy, = R(X)s ®g(y,) Dy
= (R(X)® R(Yy)) ®g(y,) Dy, = R(X) ®@g(y) Dy,
= (R(X) @R(Y) Dy)g = (Dx-v)g
where the localization is with respect to the right multiplication in the second factor.

This implies that ¢e(Dx_y) is the localization of Dx_,y as a right Dy-module.
Hence it is quasicoherent. (I

Therefore, the right Dy-modules in ¢q (F ®p, Dx_y) are quasicoherent. This
implies that the cohomology groups of this complex are also quasicoherent right
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Dy-modules. It follows that H? (¢4 (D(V))) are quasicoherent right Dy-modules.
Moreover,

DY, H?(¢+(D(V)))) = HP(RI'(¢+(D(V))))
= HP(RI'(¢e(F ®@px Dx—v))) = HP(RI'(F @pyx Px—v))

L
= H?(F ®py Dxy) = HP(I(X,V) ® py Dx—y) = TorZ¥ (D(X, V), Dx ).
Therefore, we proved the following result.

5.5. PROPOSITION. Let ¢ : X — Y be a morphism of smooth affine varieties.
Let V be a quasicoherent right Dx -module. Then:

(i) HP(¢4+(D(V))) are quasicoherent right Dy -modules for p € Z;
(i) HP(¢4(D(V))) =0 for p > 0;
(iii) for p <0, we have
LY, H (¢4(D(V)))) = TorZy (N(X, V), Dx oy ).

Therefore, in the case of quasicoherent right D-modules on smooth affine vari-
eties, our definition agrees with the old one from ... .

Assume that ¢ : X — Y is an affine morphism. Therefore, for an affine open
set V. C Y, the set U = ¢~ 1(V) is also an affine open subset of X. Let V be a
quasicoherent right Dx-module. Then

o+ (DWV)lv = (9lv)+(DV|v))-

Therefore, the preceding result has the following consequence.

5.6. COROLLARY. Let ¢ : X — Y be an affine morphism of smooth varieties.
Let V be a quasicoherent right Dx-module. Then:

(i) H?(¢p4+(D(V))) are quasicoherent right Dy -modules for p € Z;
(i) H?(¢+(D(V))) = 0 for p > 0;

The first statement holds also in the general situation. First we consider a
specal case of the above result.

5.7. COROLLARY. Let U be an affine open set in X andi: U — X the natural
inclusion. Let V be a quasicoherent right Dy -module. Then HP(iy(D(V))) =0 for
p # 0 for any quasicoherent right Dy -module V. Moreover, the functor Hoi oD =
ie from the category of quasiciherent right Dy-modules into the category of right
Dx -modules is exact.

Now we can prove the following generalization of the above result.

5.8. THEOREM. Let ¢ : X — Y be a morphism of smooth algebraic varieties.
Let V' be a complex of right Dx-modules such that HP (V') are quasicoherent right
Dx-modules for all p € Z. Then HP(¢4 (V")) are quasicoherent right Dy -modules
forallp € Z.

PrOOF. Let U be an affine open subset of X and ¢ : U — X the natu-
ral immersion. Let W be a quasicoherent right Dy-module. Then iy (D(W)) =
Rio(D(W)) = D(ie(W)) is a complex with quasicoherent cohomology by 5.7. Now,
since ¢ o7 : U — Y is an affine morphism, ¢4 (i+(DWV))) = (¢ o i)+ (D(W))
is a complex with quasicoherent cohomology by 5.6. Since the modules of the
form i,(W) generate Db (M®(Dx)) by [2, 77], we see that the statement holds



114 IV. DIRECT AND INVERSE IMAGES

for bounded complexes. The final statement follows by the standard truncation
argument [2, 77]. O

6. Direct images for immersions

Let X be a smooth algebraic variety and Y its smooth subvariety. Let n =
dim X and m =dimY. Let i : Y — X be the canonical immersion. We consider
the categories M%(Dy) and MT(Dx) of right D-modules on X, resp. Y. Let
DY(ME(Dy)) and D* (M (Dx)) be the corresponding bounded derived categories.
Then we have the direct image functor iy : D*(MZ(Dy)) — D*(ME(Dx)).

6.1. PROPOSITION. The module Dy _, x is a locally free Dy -module.

To prove this result we first construct a local coordinate system adapted to our
situation.

6.2. LEMMA. Let Y be a smooth m-dimensional subvariety of a smooth n-
dimensional variety X. Let y € Y. Then there exist an open affine neighborhood
U of the point y in X and a coordinate system (f1, fa,..., fn; D1, Da,...,Dy) on
U with the following properties:

(i) UNY is a closed subvariety of U;
(ii) the ideal I(UNY) in R(U) of all functions vanishing on UNY is generated

by frnt1s fmt2s -5 [
(iii) the vector fields Dy, Da, ..., Dy, map the ideal I(U NY') into itself.

PROOF. The proof of this result is a minor variation of the proof of 2.9. Since
the statement is local, we can clearly assume that Y is closed in X and X is a
closed subvariety of some kP. Let Ix and Iy be the ideals of all polynomials in
A = k[X1, Xa,...,X,] vanishing on X and Y respectively. Clearly, Ix C Iy. Since
dimy Ty(X) = dim X = n and dim; T,(Y) = dimY = m, by 2.6. we can find
polynomials P11, Py, ..., P, € Iy such that:
(a) Pnt1, Poy2, ..., Pparein Ix;
(b) the matrix [(0;P;)(y)] has rank p —m.

This implies that the rank of this matrix is equal to p — m on some neighborhood
V of y € kP | and

T, (X) = (61,60 &) €K | S G(OP)(y) = 0,n + 1 < j < p}

i=1

and
P
Ty(Y) = {(517621 v 7617) € kP | Zfz(alpj)(y) = 07m+ 1 S ] S p}
=1

Now, as in the proof of 2.9, we can find ¢ € A such that (Ix), is generated by
Puy1,...,P,in Ay and (Iy), is generated by Pp,i1,..., P, in A,.

We can find polynomials Py, P, ..., P, € Asuch that the matrix [(9;P;)(y); 1 <}
i,j < p] is regular. Therefore, by changing g if necessary, we can also assume that
it is regular on the principal open set V' in kP. Denote by @ the inverse of this
matrix. Then the matrix coefficients of @ are in A,. Therefore, on V' we can define
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the differential operators §; = Z?Zl Q;;0;, for any 1 <14 < n. Clearly they satisty

P
= Qi P; = by

for any 1 < j < p. Since any f € (Ix), can be represented as f = Z;’:nﬂ h; P;
with h; € Ay, we have
P P
(Y hiPy)= > (6i(hy)P; + h;di(P; Za DPj € (Ix)g,
j=n+1 Jj=n+1 j=n+1

ie., (Ix)y is invariant under the action of §;, 1 < ¢ < n. Let U = X N V’. Since
R(U) = Ay/(Ix)g, this implies that ¢;, 1 < 7 < n, induce local vector fields on
U=XnNV' which we denote by D;, 1 <i <n.

Clearly, (UNY) = (Iy)y/(Ix)g, hence it is generated by the functions f; =
Pily, m+ 1 <i <mn. This proves (ii).

By the analogous calculation we also see that (Iy )4 is invariant under the action
of §;, 1 < i < m. Therefore, Dy, Ds, ..., D,, map the ideal I(U NY) into itself.
Clearly, D;(f;) = 8:;(P;) = 6,5, hence (f1, fa,..., fn; D1, Da, ..., D,) is a coordinate
system on U. (]

Now we can prove 1. First we assume that X is “small” in the following sense.
There exists a coordinate system (f1, fa,..., fn; D1, D2,...,Dy) on X such that:
(i) D' o D7 = DI+ for all I, J € Z7;
(ii) (D!;I € Z")is a basis of the free R(X)-module Dx for the left (resp. right)[]
multiplication;
(iii) the ideal I(Y) in R(X) of all functions vanishing on Y is generated by

fm-‘rl; s afn;
(iv) the vector fields Dy, Da, ..., D,, map the ideal I(Y) into itself.

By 3.5. and 8. any point y € Y has a neighborhood U such that U is “small”
in this sense. Moreover, by (iv), D1, Ds, ..., D,, induce vector fields T1,Ts, ..., T
on Y. If we denote by g; the restriction of f; to Y, 1 < i < m, we see that
(91,92, -, gm; 1, To, ..., i) is a coordinate system on Y. By shrinking X if
necessary, by 3.5. we can assume in addition that

(v) (T';1 € Z7) is a basis of the free R(Y)-module Dy for left (resp. right)
multiplication.

Under these conditions we have the following result.
6.3. LEMMA. (D;1 € {0}xZ™™) is a basis of the free left Dy -module Dy _, x.
PRrROOF. By (ii) we see that the exact sequence
0—IY)— R(X)— R(Y)—0
leads to the exact sequence
0— I(Y)®gx) Dx — Dx — Dy_,x — 0

of (R(X), right Dx)-bimodules. Since D;, 1 < i < m, leave I(Y) invariant, the
left multiplication by D; maps I(Y) ® g(x) Dx into itself, and induces a differential
endomorphism of the R(Y)-module Dy _, x which commutes with the right action
of Dx. Moreover, it maps g ® 1 € Dy_,x into T;(g) ® 1 + g ® D;, hence it is equal
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to the left action of T; on Dy _,x. Therefore the left action of T;, 1 < i < m, on
Dy _, x is given by
Ti(g®S) =Ti(g) © S+ 9 © D;S

for g € R(Y) and S € Dx. This implies that T/(1 ® D’) = 1 @ DI/ for any
I€Z7x{0} CZ% and J € {0} x ZIy"™ C Z7%. In particular, (D; I € {0} xZ11™™)
generates the left Dy-module Dy _, x. Since, by (i), (D¥;1 € Z") is a basis of the
free R(Y)-module Dy _,x we conclude from (v) that (D';1 € {0} x Z}7™) is a
basis of the free left Dy-module Dy _ x. |

Therefore, by 1, for any bounded complex in D*(MP%(Dy)), we have

L
i+ (V) = Rio(V ®@p, Dy x) = Rie(V @py Dy x).
The next result shows that iy is a right derived functor for immersions.

6.4. THEOREM. Let Y be a smooth subvariety of a smooth variety X, and let
1:Y — X be the canonical immersion. Then:

(i) the functor H® oiy o D : ME(Dy) — MB(Dx) given by
Vi— H(i (D(V))) = ie(V @py Dy x)

is left exact.

(ii) The functor iy is the right derived functor of H® 0iy o D : ME(Dy) —
ME(Dx).

(iii) The support of H(iy(D(V))) is equal to the closure of supp(V) in X.

PROOF. (i) This assertion is evident, since

H°(i4(D(V))) = H°(Rio(D(V) ®py Dy—x))
= H°(Ris(D(V ®p, Dy_x))) = is(V ®p, Dy_x),

the functor V — V ®p, Dy_,x is exact by 1, and i, is left exact.

(ii) Let Z be an injective right Dy-module. There is an open covering {U;;1 <
Jj < p} of Y such that Dy x|y, is a free Dy,-module. This implies that the
restriction (Z ®p, Dy_x)|y; is a direct sum of infinitely many copies of Z|y,.
Since Z|y, is also injective, it is flabby and therefore (Z ®p, Dy x)|u, is flabby.
It follows that the exact functor V — V ®@p, Dy_,x maps injective objects in
MZE(Dy) into flabby sheaves, i.e., into sheaves acyclic for 7,. This implies that the
composition of corresponding derived functors V' +—— Rie(V' ®@p, Dy_ x) is the
right derived functor of the left exact functor V — is(V ®p, Dy x).

(iii) Let U be an open set in X. Then

HY(i.(DOV)))(U) = is(V @Dy Dy—x)(U) = (V@p, Dy-x)(UNY).

Therefore, the restriction of H°(i, (D(V))) to any open set in the complement of
supp(V) is equal to 0. Hence,

supp(H°(i1(D(V)))) C supp(V).

Let y € supp(V). Assume first that y is not in supp(H°(i(D(V))). Then there
would exist a “small” affine neighborhood U of y in X described in 2, such that
H(i . (D(V)))(U) =0. By 3, (D';I €0 x Z}"™) is a basis of the free Dy-module
Dy _, x. This implies that (V ®p, Dy _x)|uny is a direct sum of infinitely many
copies of V|yny. Hence, H°(i, (D(V)))(U) = 0 would imply V|yny = 0, which
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is impossible. Therefore, y € supp(H°(iy(D(V))). It follows that supp(V) C
supp(H(i(D(V))). This proves that

supp(V) C supp(H (i1 (D(V)))).

Combining this with ... we get the following result.

6.5. COROLLARY. Leti:Y — X be an affine immersion. Then the functor
HcipoD: ME(Dy) — ME(Dx) is exact.

If Y is a closed smooth subvariety of X, i, is an exact functor. Therefore, we
have the following result.

6.6. COROLLARY. LetY be a smooth closed subvariety of X. Then the functor
H0i, o D: ME(Dy) — ME(Dx) is ezact.

PROOF. Since i, is an exact functor,
Vi— H(i (D(V))) =ie(V @py Dy _x)
is an exact functor from the category M (Dy) into the category ME(Dx). O

By abuse of notation, in this case, we denote the functor H® o iy o D also by
i4+. Therefore, we have
i+ (V) = ie(V @py, Dy-x)
for any V in ME(Dy), and (i (V")) =iy (VP) for any V" in D®(MFE(Dx)).

6.7. PROPOSITION. Let Y be a closed smooth subvariety of X. Then, for any
coherent right Dy -module V, the right Dx-module i1 (V) is also coherent.

PRrROOF. It is enough to show that for any affine open set U in X, iy (V)|y is
a coherent Dy-module. Therefore, by replacing X with U and Y with Y N U, we
can assume that X is a smooth affine variety. In this case, i (V) is the localization
of the right Dx-module T'(Y,V) ®p, Dy_x. By ..., it is enough to prove that
I(Y,V) ®p, Dy_x is a finitely generated right Dx-module. Since Y is a closed
subvariety of X, R(Y') is a quotient of R(X), and Dy .x = R(Y) ®p(x) Dx is the
quotient of Dx as a right Dx-module. Therefore, it is generated by the element
1®1. By our assumption, I'(Y, V) is a finitely generated Dy-module. Let vy, ..., v,
be a family of generators of this module. Then v; ® 1® 1,...,v, ® 1 ® 1 generate
I'(Y,V)®p, Dy_x as aright Dx-module. O

In particular, if V is a coherent right Dy-module, we can compare the charac-
teristic varieties of V and i4 (V). Let z € Y. Then T,(Y) C T(X), hence we have
the natural projection p, : T (X) — T3 (Y).

Let Y be a closed subset in an algebraic variety X. Then we put dimy X =
sup,c(dim, X).

6.8. THEOREM. Let Y be a closed smooth subvariety of X. Then, for any
coherent right Dy -module V we have

Ch(ir(V)) ={(z,w) € T*(X) | (2,pz(w)) € Ch(V)}.
In particular,

dim,, 1) Ch(iy(V)) = dim, -1, Ch(V) 4 codim, Y.
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PROOF. Since the support of i1 (V) is in Y, it is enough to show that every
point y € Y has an open neighborhood U in X such that

Ch(iy(V)lv) = {(z,w) € T*(U) | (2,pz(w)) € Ch(VIyrv)}-

Therefore, we can assume that the neighborhood satisfies the conditions of 2. By
replacing X by this neighborhood, we can assume that X is “small”. In this case,
by 3, Dy_x is a free left Dy-module. Let V = I'(Y,V). Hence, i1 (V) is the
localization of the right Dx-module V ®p, Dy_,x and

I(X,iy(V))=V@®p, Dyox= P VepD
Ie{o}yxz} ™
as a vector space. Let FV be a good filtration of the right Dy-module V. Then,
by 1.3.1, GrV is a finitely generated Gr Dy-module. We can define a filtration of
I'(X,i.(V)) by
FyD(X,iy (V) = D F, V@D
1€{0}xZy ™™, s+|I|<p

This is clearly an exhaustive increasing filtration and F), T'(X, ¢4 (V)) = 0 for suffi-
ciently negative p € Z.

We claim that this is a right Dx-module filtration. Let v ® DI € I'(X, i, (V)),
veFV,Ie{0} xZ}™™. We claim that, for any f € R(X), we have

(v®D')f € Fayn T(X, i1 (V).
The proof is by induction on |I]. If |I| = 0, we have
wel)f=vfly®leF,V®Ll
Assume that |I| > 0. Then we can find m +1 < j < n and I' € {0} x Z}™™,
|I'| =|I| — 1, such that D! = DI/Dj. Hence
(v D')f = (v® D")D;f = (v® D")D;(f) + (v® D")fD;.
By the induction assumption, (v@ D! )D;(f) and (v@D!") f are in Foim DX, z+(V))I
Hence,
(v@D")fD;j € Foy 1 T(X,i4(V))D; C Foyyp D(X,ig (V).

This proves our assertion, i.e., FT'(X,iy(V)) is a filtration by R(X)-submodules.

Let 1 < j <n. We claim that we have

(v® D")Dj € Foyyria DX, s (V).
This is evident ift m+1 < j <n. If 1 < j <m, we have
(v® D')Dj =vT; @ D' € Fyy 1 D(X, i (V)),

since vT; € Fo11 V. By ..., this implies that FI'(X,i(V)) is a Dx-module filtra-
tion.
Clearly,
GI‘F(X,’L+(V)) =GrV Ok k[{m-‘rl? s 7€n]

and Gr, I'(X,i4(V)) is spanned by elements v ® ¢! with v € GrgV and I €
{0y xZ27™, |I| = p—s. Also, GrDx = R(X)[{1,...,&6] = R(X)[&1, .-, &m] @k
El&m+1,---,&]. The action of GrDx on GrI'(X,i,(V)) is given as follows: f €
R(X) act as multiplication by the restriction f|y in the first factor; &;, 1 < j < m,
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act as multiplication in the first factor; and £;, m+1 < j < n, act as multiplication
in the second factor.

Therefore, if vy, ..., vy are generators of Gr V as a Gr Dy-module, v1®1,. .., vxQl
1 generate GrI'(X,i1(V)) as a Gr Dx-module. It follows that GrI'(X,i,(V)) is a
finitely generated Gr Dx-module. Hence. by 1.3.1, FI'(X,i())) is a good filtra-
tion.

Let A € R(Y)[&1,-..,&n] be the annihilator of GrV in GrDy. The re-
striction f — f|y defines a homomorphism of R(X) onto R(Y). It induces a
homomorphism ¢ of R(X)[&1,...,&x,] onto R(Y)[é,...,&n]. Let B = ¢~ 1(A).
Then B ®y k[¢mi1,---,&n] annihilates GrI'(X, iy (V)). Let S ® ¢/ be a homoge-
neous element of the annihilator of GrI'(X,i4(V)). Then, for v € GrV, we have
SNvel) =S¢ =0, and Sv = 0, i.e., S € B. This implies that the
annihilator of GrI'(X,i4(V)) is equal to B ®j, k[&m+1,---,&nl]-

Our identification of R(T*(Y)) with R(Y)[1, ... ,&m] corresponds to the iden-
tification of T*(Y) with ¥ x k™ given by (y,n) — (v, m(T1(v)), ..., n(Tm(y))).
Analogously, the identificaton of R(T*(X)) with R(X)[&1,...,&,] corresponds to
the identification of T*(X) with X xk™ given by (z,w) — (z, (w(D1(x)),...,w(D,(x))).}
Under these identifications, the characteristic variety Ch(V) corresponds to a sub-
variety of Y x k™ which is the set of zeros of A, and the characteristic vari-
ety Ch(iy(V)) corresponds to a subvariety of X Xx k™ which is the set of ze-
ros of B @k k[&mt1,---,&n]. We can imbed Y x k™ into X x k™ via the map
(y, €1, &m) — (¥, &1, -, &m,0,...,0). This imbedding corresponds to the nat-
ural projection of R(X)[&1,...,&,] onto R(Y)[&1,...,&n]. Under this imbedding
we have the identification Ch(i(V)) = Ch(V) x k"~ ™. This immediately implies
that

dim Ch(iy(V)) = dim Ch(V) + n — m.
Moreover, a point (z,w) is in Ch(i4(V)) if and only if (z, (w(D1(z)),...,w(Dn(z)))
corresponds to a point in Ch(V). Hence, z € Y. Since w(D;(z)) = py(w)(T;(x)) for
any x € Y and 1 < i < m, we see that (x,w) € Ch(iy(V)) is equivalent to z € Y
and (x,p;(w)) € Ch(V). O

Let V be a nonzero coherent Dy-module on X. For any = € X, denote
holdef, (V) = dim, -1 ) Ch(V) — dim, X.

We call this number the holonomic defect at x of V. Clearly, the holonomic defect
of V is equal to —dim, X for any z ¢ supp(V).

6.9. COROLLARY. Let Y be a closed smooth subvariety of X. Then, for any
nonzero coherent right Dy -module V we have

holdef, (V) = holdef,. (i1 (V))
foranyx €Y.

7. Bernstein inequality

Let X be a smooth variety. The next result is of fundamental importance for
the theory of D-modules. It generalizes ....

7.1. THEOREM (Bernstein’s inequality). Let )V be a coherent Dx-module. Then
dim, 1 ) Ch(V) > dim, X
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for any x € supp(V).

PROOF. Assume that V # 0. Then we can choose a point = € supp(V) and a
connected open affine neighborhood U of z such that p, ! (U) intersects only the irre-
ducible components of Ch(V) intersecting px* (). Therefore, dim U = dim, X, and
V|v is a nonzero coherent Dy-module such that dim Ch(V|y) = dim i ) Ch(V).

Clearly, it is enough to prove the statement for V|y. In this case we can assume
that U is a closed smooth subvariety of the affine space k™ for some n € Z,. Let
1 : U — k™ be the corresponding closed immersion. By 7?7, we have

dim,, 1) Ch(V) —dim, X = dim, 1 Ch(V|y) — dim, U = holdef, (V|y)
= holdef, (i+(V|y)) = dim Ch(ix(V|v)) — n.
Now, ?? implies that Ch(iL(V|y)) > n. O

8. Closed immersions and Kashiwara’s theorem

Let X be a smooth variety and Y a closed smooth subvariety of X. Let i :
Y — X be the natural inclusion of Y into X. We proved in ... that the direct
image functor

it (V) = is(V ®py Dy_x)
is an exact functor from M¥F(Dy ) into ME(Dx).

8.1. PROPOSITION. The functoriy : MT(Dy) — M®(Dx) has a right adjoint
i! : MR(D)() — MR(Dy)

Proor. Clearly, since i : ¥ — X is a closed immersion, the direct image
functor i. : ME(i71(Dx)) — ME(Dx) has the right adjoint i~! : ME(Dx) —
ME(i71(Dx)). Therefore, for any V in M (Dy) and MT(Dx) we have

Homp, (i+(V), W) = Homp, (i.(V ®p, Dy_x), W)
= Hom;-1(p,)(V ®p, Dy_x,i " (W)).
Now, using the properties of the tensor product, we see that
Homp, (i4+(V),W) = Homp, (V, Hom;-1(py)(Dy—x,i" "(W))).
Therefore, the functor
W) = Hom;—1(p)(Pyx, it(W))
is the right adjoint of 7. (I

Clearly, the right adjoint i' : ME(Dx) — MPF(Dy) is a left exact functor.
Moreover, since i, is exact, i* maps injective module into injective modules.
Now we want to find another description of 7. Clearly,

Z'(W) = Homifl(DX)(,DY_}X’i_l(W))
= Hom;—1(py)(Oy @i-1(0x) i (Dx),i ' (W)) = Hom-1(0x)(Oy, i~ (W)).

Let J be a sheaf of ideals in Ox consisting of functions vanishing along Y. Then
we have the natural exact sequence

0— i Y(J)— i ' (Ox) — Oy —>0,
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which leads to the exact sequence

0O — ’Homi—l(ox)(Oy,iil(W)) — 'Homi—l(ox)(iil(OX),iil(W))
— Homi—1 (0, (i7H(T), i (W)).

The map T — T'(1) identifies Homn,-1(o) (i~ (Ox),i~*(W)) with i~ (W). Under
this isomorphism Hom;-1(0 ) (Oy, i~1(W)) corresponds to the subsheaf W, of all
sections of i~1(W) annihilated by all elements of i~(7).

Assume that Z is a closed smooth subvariety of Y and j : Z — Y the natural
inclusion. Then (i o j); = iy o ji by .... Therefore, from the uniqueness of the
adjoint functors we conclude the following fact.

8.2. LEMMA. We have (ioj)' = j'od'.

Finally, the functor i' preserves quasicoherence, i.e., we have the following
result.

8.3. PROPOSITION. Let V be a quasicoherent right Dx-module. Then i'(V) is
a quasicoherent right Dy -module.

PROOF. To prove this result, we first remark that this result is local and that
we only need to consider the Oy-module structure. Therefore, we can assume that
X is connected affine with global coordinate system (fi,..., fn; D1,...,Dy) such
that Y is the set of zeros of (fm+1,-- -, fn). In this situation, the sets Y3 of common
zeros of (fe41,.-. fn), m < k < n, are closed smooth subvarieties of X containing
Y. Since Y,,=Y, and Y,,, C Y,,,41 is of codimension one, by 2, we can reduce the
proof to the case of Y of codimension one in X. Hence, we can assume that Y is
the set of zeros of the function f = f,,. Therefore, since J is generated by f in this
case by ..., we can consider the exact sequence

0—>OXL>0X—>O)(/\7—>O7
where the first morphism is the multiplication by f. By restricting it to Y, we get
the exact sequence
0— i HOx) L i Ox) — Oy — 0.

Therefore, the complex

0— i~ 0x) L i (0x) — 0

is a free resolution of Oy by i~!(Ox)-modules. By tensoring this resolution with
i~1(V) over i~}(Dx) we get a complex

0— it Litlv) —o0

which represents Li*(D(V)). It follows that, as an Oy-module, i*(V) = L™1i* (V).
By ..., this implies that for quasicoherent Dx-module V, the Oy-module (V) is
also quasicoherent. O

Now we want to study the adjointness morphisms id — i'oi; and i, 0i' — id.
Since Dy - x = Oy ®;-1(0y) i~1(Dx), it has the canonical section determined
by 1 ® 1. Therefore, we have the canonical morphism Dy — Dy _ x given by
T +— T(1®1). From the local description of Dy_,x as a Dy-module in ..., we
conclude that this morphism is a monomorphism, and we have an exact sequence

0—Dy —Dy_x —Q—0
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of Dy-modules, and @ is a locally free Dy-module. Moreover, the image of Dy is
contained in the subsheaf of Dy _, x of sections which are annihilated by i~ ()

Let V be a right Dy-module. Then, by tensoring it over Dy with the canonical
morphism Dy — Dy _, x, we have a natural monomorphism

YV —V®&p, Dyx = iil(i_i_(V)),

and its image is contained in ' (i, (V)) = (i (V))o. Therefore, we have the canonical
monomorphism ay : V — i'(iy(V)). Clearly, this morphism is just one of the
adjointness morphisms.

Let y € Y. Then we can find a connected affine neighborhood U of y with coor-
dinate system (f1, ..., fn; D1, ..., Dy) such that Y is the set of zeros of fr,41,. .., fn.

In this case, as we discussed in ..., Dy_, x|y is a free Dyny-module with basis
(D1 € {0} x ZL™™). Let

E= Y fD;.

j=m+1
The following result follows by direct calculation.
8.4. LEMMA. i) [E, fil=1f; form+1<j<n;

(i) [E, D] = —|I|D* for I € {0} x VAR
Let V be a right Dy-module. Then
Z'+(V)y = Vy ®DY,y ,DY—>X7y

and Dy_,x,, is a free left Dy ,-module. Moreover, the images of D!, I € {0} x
71, form a basis of the free Dy, ,-module Dy _, x ,. Hence, we have

iV,= €@ vD.
Ie{0}xz7 ™™
Let v € i (V),. Then we have a unique decomposition v = >, v; D!, v; € V,,. We
put
ord(v) = max{|I| | v; # 0}.
Since
vwE =Y vf;D; =0,
J

we have

vE = ZUIDIE: ZUI[DI,E] = Z|I|UIDI-
I I

I
Therefore, we have the following result.

8.5. LEMMA. Let v € iy (V),. Then
(i) ord(vf;) <ord(v) —1 form+1<j <n;
(ii) ord(v(E — ord(v))) < ord(v) — 1.

PROOF. (i) Let v=73", vy DT with vy € Vy. Then,
’Ufj = Z’U]DIfj = ZU[[DI,fj].
J; J;
If I = (i1,...,ijy..rin) and I’ = (i1,...,0; — 1,...,i,), we see that [D!, f;] =

i;DT". This immediately implies (i).
(ii) follows immediately from the above formulae. O



8. CLOSED IMMERSIONS AND KASHIWARA’S THEOREM 123

Now we can analyze the first adjointness morphism.
8.6. LEMMA. The morphism oy induces an isomorphism of V onto i'(iy(V)).

ProoFr. We only need to prove that ary is an epimorphism, or equivalently, that
ayy 1 Vy — i'(i+(V)), is surjective. Let v be a germ of a section in ' (i (V)),.
Then vf; =0 for m+1 < j <n. Hence, vE = 0, and by the above calculations, it
follows that ord(v) =0, i.e., v € V. O

Therefore, the adjointness morphism id — i'oi,. is an isomorphism of functors.
Now we want to study the other adjointness morphism i, o' — id. Let W
be a Dx-module and By : iy (i'(WW)) — W, the corresponding natural morphism.

8.7. LEMMA. The morphism Byy : iy (i'(W)) — W is a monomorphism.

PROOF. Let y € Y. We have to show that By, : iy(i'(W)), — W, is
injective. Assume that By, is not injective. Consider an element v # 0 in the
kernel of Byy . If p = ord(v) > 0, there exists m + 1 < j < n such that vf; # 0.
By 5.(i), we have ord(vf;) < p — 1. Hence, by downward induction on ord(v) we
conclude that there exists v # 0 in the kernel of By, with ord(v) = 0. But this is
clearly impossible, since i' (W), is a subspace of W),,. O

Therefore, we can view i (i'(WW)) as a submodule of W. Since it is supported
in Y, it is a submodule of the module I'y (W) of all local sections of W supported
inY.

Inductively we construct a sequence (JP;p € Z.), of decreasing sheaves of
ideals defined by

J?=0x, JPis the image of 7’ ' ®0, J — Ox, peN.

Let V be a Ox-module. Then we can define V}y,; as the subsheaf of all sections
annihilated by all elements of J?. Then V}y,, are Ox-submodules of V. Clearly,
sections of V}y ] are supported in Y, therefore, they are submodules of the sheaf
I'y (V) of local sections of V supported in Y. Clearly, Viy,;) C V]yp41) for all
p € Zy. Let Iy (V) be the union of all subsheaves V}y ), p € Zy. Then I}y (V) is
an Ox-submodule of I'y (V).

8.8. LEMMA. Let W be a right Dx-module. Then
Iy (W) = iy (i} (W)).
PROOF. Let y € Y and v € i, (i*(W)),. We claim that
{v €is(i'(W))y | ord(v) < p} = Wiyl

for all p € N. Clearly, ord(v) = 0 if and only if v € i'(W), = Wiy,1),y- This proves
the relation for p = 1. Assume that it holds for some p > 1.
First we prove that

{v € s (P W)y | ord(v) < p+ 1} C Wiy pyary.
If ord(v) = p+ 1, by 5.(i), we have ord(vf;) < p for any m + 1 < j < n. Hence,
by the induction assumption, it follows that vf; € Wiy, for any m +1 < j < n.
From this we conclude that that v € Wy, py1,4-
Now, if v € Wiy, pt1y,y, for each m +1 < j < n, we have vf; € Wiy,
By the induction assumption, it follows that vf; € i, (i*(W)), and ord(vf;) < p.
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Therefore, vE = Z?;m+1 vf;D? € iy (i'(W)), and ord(vE) < p. In addition, by
5.(ii),

v(E —p)fj =vEf; —pvf; =v[E, f| +vf;E—pvf; =vfi(E—(p—1))
is an element of order < p — 1. Hence, v(E — p)f; € Wiyp—1),y for any m 41 <
J < n. Therefore, v(E — p) € Wy, and by the induction assumption v(E —p) €
i+ (i'(W)), and ord(v(E — p)) < p. Hence, pv = vE — v(E — p) € i;(i'(W)), and
has order < p. Since p > 0, it follows that v € i (i'(W)), and ord(v) < p+1. O

Therefore, Iy (W) is a Dx-submodule of WW. Moreover, since iy is an exact
functor and ' is left exact, we immediately get the following consequence.

8.9. PROPOSITION. The functor Iy} : M(Dx) — M(Dx) is left exact.

Finally, we have the following result, which gives the description of both ad-
jointness morphisms.

8.10. THEOREM. Let Y be a closed smooth subvariety of a smooth variety X
and i:Y — X the natural inclusion. Then i' oiy = id and iy oi' = Iy

On the other hand, we have the following simple fact.
8.11. LEMMA. Let V be a quasicoherent Ox-module. Then Iy (V) = I'y (V).

PROOF. We can assume that X is affine and ¥ # X. Let v € T'(X,V) be
a section supported in Y. Let g € R(X) be a function different from zero which
vanishes on Y, and U be the principal open set attached to g. Then v|y = 0. Also,
I(U,V) =T(X,V),, which yields gPv = 0 for sufficiently large p € Z . O

Hence, if we apply the last result to quasicoherent Dx-modules, we get the
following result.

8.12. PROPOSITION. IfV is a quasicoherent right Dx -module, I'y (V) =i, (i'(V)) J]

In particular, if V is a quasicoherent right Dx-module with support contained
in Y we have i (i'(V)) = V. This proves the following result due to Kashiwara.
Denote by My (Dx) (M, y(Dx), resp. Hol¥(Dx)) the full subcategory of
ME(Dx) (ME, (Dx), resp. Hol®(Dx)) consisting of modules supported in Y.

coh

8.13. THEOREM (Kashiwara). (i) The functoriy : ME(Dy) — ME(Dx)J}
is an equivalence of the category Mﬁ(Dy) with M(Ifc,y(DX)- The functor
i' is a quasiinverse of i .
(ii) These equivalences induce equivalences of ME, (Dy) with Mfohyy(DX)
which preserve holonomic defect.

ProoOF. (i) follows immediately from 3, 10 and 12.
(ii) Follows from ... and ... O

9. Local cohomology of D-modules

Let Y be a closed smooth subvariety of a smooth variety X. Denote by :Y —
X the natural immersion. Let U = X —Y and j : U — X the corresponding open
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immersion. Then for any complex V" of right D x-modules bounded from below we
have a distinguished triangle

Rj-(vhlU)

(1

RIy (V) )%
in DY (M®(Dy)) and this triangle is functorial in V" (see, for example, [3]).

9.1. LEMMA. The right cohomological dimension of the functor I'y is < dim X+

Proor. The long exact sequence attached to the above distinguished triangle
for D(V) implies that there is a natural epimorphism from RPj.(V) into HZT (V).
Since the right cohomological dimension of j. is < dim X, the assertion follows. [

Therefore, there exists the right derived functor RIy : D(MT(Dx)) —
D(M*®(Dx)). Since D (M (Dx)) is equivalent to the full subcategory of DT (M%(Dx))|
consisting of complexes with quasicoherent cohomology by ..., injective quasicoher-
ent Dx-modules are flabby by ..., and flabby sheaves are I'y-acyclic, we see that
RIy induces an exact functor from D (ME (Dx)) into itself, isomorphic to the
right derived functor of I'y : M (Dx) — ME(Dx).

As before, we can consider the pair of adjoint functors i, : M?C(Dy) —
ME(Dx) and i' : ME(Dx) — ME(Dy). As we remarked before, iy is exact,
and 7' is a left exact functor. Therefore, we can consider its derived functor Ri' :

DT (MJE(Dx)) — DT (MJ(Dy)). From ... we immediately conclude that

RIy =i, o Ri'

as functors from DT (ME(Dx)) into itself. In particular, if V is a quasicoherent
right Dx-module, we have

Hy (V) = i (RP (V)
for any p € Z,. This implies, by ..., that
i (HY.(V)) =i (i (RPi (V) = RV (V),
for any p € Z4. This, combined with 1, proves the following result.

9.2. LEMMA. The right cohomological dimension of the functori' : M(IIE(DX) —>I
ME(Dy) is < dim X + 1.

Therefore, there exists the right derived functor Ri' : D(MZ(Dx)) — DME(Dy)) ]
By ... and the preceding discussion we get the following result.

9.3. THEOREM. The functors RI'y and i, oRi' are isomorphic as exact functors
from the triangulated category D(./\/lfc(DX)) into itself.

9.4. LEMMA. Let V be a right Dx-module with support in Y. Then V is Iy -
acyclic.
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PrOOF. As we remarked before, from the long exact sequence of cohomology
attached to the the distinguished triangle

Rj.(D(V|vr))

RIv(D(V)) D(V)

we get that HE™' (V) is a quotient of RPj.(V|y) for p € Zy. Since V| = 0, this
implies that HL. (V) =0 for p > 1. O

Since RPi'(V) = i'(HY.(V)), p € Zy., for quasicoherent right Dy-module V, this
immediately implies the following result.

9.5. COROLLARY. Let V be a quasicoherent right Dx -module with support in
Y. ThenV is i‘-acyclic.

As before, we denote by Mf;”c_y (Dx) the full subcategory of M (Dx) consist-
ing of modules with support contained in Y. This category is a thick subcategory of
ME(Dx). Let Dy (ME(Dx)) be the full subcategory of D*(ME.(Dx)) consisting
of complexes V" such that HP(V") are supported in Y for all p € Z. By ..., this is a
triangulated subcategory of D*(ME (Dx)). Clearly, RI'y (V') is in Dy (M[(Dx))
for any complex V' of quasicoherent right D x-modules.

Consider now the natural transformation of RI'y into the identity functor on
D(ME(Dx)). Its restriction to Dy (M[(Dx)) induces a natural transformation «
of the functor RIy : Dy (M (Dx)) — Dy (M[(Dx)) into the identity functor.

9.6. PROPOSITION. The natural transformation a of functor RI'y : Dy (ME.(Dx)) —ij
Dy (MR (Dx)) into the identity functor is an isomorphism of functors.

PROOF. Assume first that V' € Dy (M[(Dx)) is a complex bounded from
below. Then from the distinguished triangle

Rj-(vblU)

(1

RIv(V) %

we see that the the statement is equivalent to Rje(V'|y) = 0. But this is obvious,
since H?(V'|y) = HP(V')|y = 0 for all p € Z. The general case follows from ...
. ]

This result, combined with Kashiwara’s theorem, has the following immediate
consequence.

9.7. THEOREM. The functor iy : D(M[(Dy)) — Dy (ME(Dx)) is an equiv-
alence of triangulated categories. A quasiinverse is the functor Ri' Dy(./\/lffc(DX)) —>I
D(ME(Dy)).
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PRrOOF. From 3. and 6. we conclude that i, o Ri' is isomorphic to the iden-
tity functor on Dy(./\/lffc(DX)). On the other hand, since the modules of the form
isy(W), W € ME(Dy), are i'-acyclic by 5, we also conclude that Ri' o i, is iso-
morphic to the identity functor. O

In particular, every complex V" in Dy (M[(Dx)) is isomorphic to iy (Ri'(V"))
consisting of D x-modules with support in Y.

Now, consider the closed smooth subvariety Z of Y and the natural immersion
i1+ Z — Y. Then we have the following result.

9.8. THEOREM. R(ioi1)' = Ri} o Ri' as functors from D(ME(Dx)) into
D(ME(Dyg)).

PROOF. We know, by ..., that (i04;)' = i} 0i'. Since ' is the right adjoint of the
exact functor i, it maps injective quasicoherent right Dx-modules into injective
quasicoherent right Dy -modules. O

Now, we want to prove a sharper estimate for the right cohomological dimension
of Fy : Mfc(Dx) — M(I;C(Dx) and i! : M(?c(DX) — Mg’c('Dy)

9.9. THEOREM. (i) The right cohomological dimension of I'y : ME.(Dx) —}
ME(Dx) is <dim X —dimY.
(i) The right cohomological dimension of i' : ME(Dx) — ME(Dy) is
<dimX —dimY.

PROOF. Since RPi'(V) = i'(H} (V) for any quasicoherent right Dx-module
and p € Z., these results are equivalent.

Moreover, since injectivity of sheaves is a local property, the first assertion is
clearly local. Therefore, to prove it, we can assume that X is affine, admits a
coordinate system (fi,..., fn;D1,...,Dp), and Y is the set of common zeros of
fm-‘rl’ R fn~

The proof is by induction on n — m. Consider first the case m = n — 1. In this
case, U = {z € X | fu(x) # 0}, i.e., it is a principal open set in X. Therefore, U
is affine and j : U — X is an affine morphism. This implies that RPj.(V|y) = 0
for any quasicoherent right Dx-module V and p > 1. Since H{lH(V) is a quotient
of RPj.(V|vy) for p € Zy, we see that H}, (V) = 0 for p > 2. Therefore, (i) and (ii)
also hold in this situation.

Assume now that m < n — 1. Then we can consider the smooth subvariety
Z ={zxe€ X | falx) =0}. Let iy : Y — Z and iz : Z — X be the canonical
immersions. By the induction assumption, 4} and 4, have the property (ii). Hence,
by 8, it also holds for their composition 1. O

Finally, we remark the following special case of base change.

9.10. LEMMA. Let Y be a closed smooth subvariety of X, U = X —Y and
i:Y — X and j : U — X the natural immersions. Then Ri' o Rje = 0 on
D(MqC(DU)>~

PROOF. Let W™ be a complex of quasicoherent Dy-modules bounded from
below. Then there exists a jo-acyclic complex J  and a quasiisomorphism W~ —
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J' . Hence, we have the commutative diagram
Rje(W') —— Rje(Rje(W')|u)

| |

Jo(T) ——— Je(je(JI)v)
where the vertical lines are isomorphisms and the lower horizontal arrow is the
identity. This implies that the upper horizontal arrow is also an isomorphism.
From the distinguished triangle

Rje(Rje(W

RN

we conclude that RI'y(Rj,(W')) = 0. Hence, by ..., iy o Ri' o Rj, = 0 on
DY (ME(Dy)). Hence, by 7,

0= R'ioi, oRi'oRj, = Ri' o Rj,

on DY (ME(Dy)). By the standard truncation argument ... we conclude that the
same holds on D(ME(Dy)). O

RIy(Rjs(W

10. Base change

Let X, Y and S be three algebraic varieties and ¢ : X — S, ¢ : Y — S two
morphisms of varieties. Then we can consider the following diagram of algebraic
varieties

XxYy 2 X

SR
Yy —— S
P
where p; and ps are the projections to the first and second factor respectively. Let
Ag is the diagonal in S x S. Since S is a variety, Ag is a closed subvariety in S x S.
Put
X xgV ={(z,y) € X xY | p(x) = ¥(y)}

={(z,9) € X xY | (pop1)(z,y) = (op2)(z,9)} = (pop1) x (op2)) ' (As),

then this is a closed subvariety of X x Y. We call X xg Y the fiber product of X
and Y over S. The projections p; and ps induce morphisms of the fiber product
X XgY into X and Y such that the diagram

Xxsy -2 x
Wl l(ﬁ

Y — S
W
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commutes. The fiber product has the following universal property. Let T be an
algebraic variety, « : T — X and 8 : T — Y two morphisms of varieties such
that the diagram

T 25 X

o e
commutes. Then, by the universal property of the product we get a morphism
v:T — X xY such that a = p; oy and 38 = py 0. Therefore, y(T) C X xgY,
and ~ induces a morphism § : T — X x5 Y such that a = ¢’ o d and 8 = ¢’ 0 4.

Let Z be another algebraic variety and x : Z — Y. Then, we have the
following commutative diagram

(X xsY)xy Z —X 0 XxgYy —Y 4 X

¢ ¢/l ltb .

Z E— Y — S
X P

By the universal property of the fiber product, we get a morphism w : (X xgY) xy
7 — X x5 Z.
10.1. LEMMA. The morphismw : (X xXgY )Xy Z — X X gZ is an isomorphism.
PROOF. By the preceding discussion,
(X xsY)xy Z={(z,y,2) e X XY x Z | ¢ (z,y) = x(2), (z,y) € X x5V}
={(z,9,2) € X xY x Z |y =x(2), ¢(z) =¢(y)}
and w(z,y, z) = (x, z). Therefore, the image of w is equal to
X xsZ={(z,2) e X x Z| ¢(z) = P(x(2))}
and the inverse map is given by the restriction of (p1,x o p2,p2) to X xXg Y. O
Now consider two special cases. Assume that Y is a closed subvariety of S, and
i:Y — S is the natural immersion. Then
XxgY ={(z,y) e X xY | p(x) =y} C X xS
is equal to the intersection of the graph T'y of ¢ with X x Y. Therefore, ¢ :

X xg5Y — X is an isomorphism onto the closed subvariety ¢=(Y) of X. Hence,
the fiber product diagram looks like

¢7U(Y) —— X

oL

where 1 is the restriction of ¥ and i’ the natural inclusion.

Let Y =Z xS and ¢ : Y — S be the projection to the second variable. Then
we can consider Y as the fiber product for o : Z — {pt} and 8 : S — {pt}.
Hence, by 1,

(Zx8)xs X =7ZxX,
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and the fiber product diagram looks like

If ¢ : Y — S is an arbitrary morphism we can use the graph decomposition
¥ = a o 3, where § is the isomorphism of Y onto the graph I'y C Y x S and
a:Y xS — S is the projection to the second factor. Hence, by 1, every fiber
product can be viewed as obtained in two steps, each of which is of one of the above
described special types.

The main result of this section is the following theorem.

10.2. THEOREM. Let X, Y and S be smooth algebraic varieties and ¢ : X — S
and 1 : Y — S morphisms of algebraic varieties such that the fiber product X xgY
is a smooth algebraic variety. Then the commutative diagram

XxgY —Y 4 X

¢'l l¢

0

determines an isomorphism
Vo =g, oy
of functors from D(Mg.(Dx)) into D(Mye(Dy)).

PROOF. As we remarked before, the construction of the fiber product can be
always divided into two steps. In the first step one morphism is a projection, in
the second a closed immersion. In the case of product, the smoothness of the
fiber product is automatic. In the case of closed immersion, this is an additional
condition.

Consider first the latter case. Assume that i : Y — S is a closed immersion
such that ¢~1(Y) is a smooth closed subvariety of X. Let i’ be the natural immer-
sion of ¢71(Y) into X. Let U = S —Y and j : U — S the natural immersion.
Also, we have X — ¢~ 1(Y) = ¢~} (U). Then we have the following diagram

oY) —— X L 67 (U)
#| ¢ [
U

i J

where ¢’ and ¢" are the corresponding restrictions of ¢.
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Assume first that V' be a complex of quasicoherent D x-modules bounded from
below. Consider the distinguished triangle

Vo))

/\

in D(My.(Dx)). By applying the derived functor ¢4 we get the distinguished

triangle
(Vg1
+(RIy—

in D(M,.(Ds)). Hence, by applying the derived functor Ri' we get the distin-
guished triangle

Ri* (¢4 (Rj' (V' |5-111)))

Ri' (¢4 (RTy1(v)(V))) Ri'(¢1(V"))
in D(My.(Dy)). Since

0+(Rj' eV |g-11)) = (90 5)+(V']p-1) = (G0 ¢")+ (V' [g-11)
= Rje(¢" L (V']p-11))) = Rje ¢+ (V)|v),
we see that
Ri' (61 (Rj' s(V']o=1))) = Bi' (Bja (61 (V)[1)-
By ..., this implies that Ri'(¢4(Rj’y(V'|4-11n)))) = 0. Therefore, the natural
morphism
Ri' (¢4 (RLy-1(vy (V') — Ri'(64 (V)
is an isomorphism functorial in V". Since all functors in involved have finite cohomo-
logical dimension, by the truncation argument ..., we see that this natural morphism
is an isomorphism for arbitrary complexes V' of quasicoherent D x-modules.
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On the other hand, by ... and ..., we have

Ri' (¢4 (RTy1(vy (V) = Ri' (¢4 (i 1 (Ri" (V) = Ri' (¢ 0 ') (Ri" (V)
= Ri'((i0 @)+ (Ri" (V) = Ri' (i (¢, (R (V') = &', (Ri" (V')).

Therefore, we proved the assertion in this special case.

Consider now the case of projections. If p : Z x § — S is the projection
to the second factor, as we remarked before, we get the following fiber product
commutative diagram:

Then, by ..., we have
(P 0 ¢4) (V) = Lp* (¢4 (V))[~ dim ] = Oz K ¢, (V') [~ dim 5] =
(idz x ¢)+((0z ®V)[~dim S]) = (idz x ¢)4(p3 (V') dim S])
= (idz x ¢)+(p2(V) = ((idz x §)4 0 p3)(V'),
and this establishes the base change in this case. O
This allows to generalize 9.10.

10.3. COROLLARY. Let X, Y and Z be smooth algebraic varieties, ¢ : X — Z
and ) : Y — Z morphisms of algebraic varieties such that ¢(X)Nw(Y) = 0. Then
Y ogy =0 on D(My(Dx)).



CHAPTER V

Holonomic D-modules

1. Holonomic D-modules

Let X be a smooth algebraic variety. Let T%(X) be its cotangent bundle and
px : T%(X) — X the corresponding natural projection. for any coherent Dx-
module V, its characteristic variety Ch(V) is a closed subvariety of T% (X). Under
the map px the characteristic variety Ch()) project onto the support supp(V)
of V. We proved in ?? that for any point x in the support supp(V) we have
dimp;(l(x) Ch(V) > dim, X. Therefore, we say that a coherent Dx-module is holo-
nomic if dim Chp;(l(m) (V) = dim, X for any = € supp(V). This generalizes the
definition from ?7?.

We denote by Hol(Dx) the full subcategory of M., (Dx) consisting of all
holonomic D x-modules.

1.1. THEOREM. Let X be a smooth variety. Let
00—V — Vo — V3 —0
be a short exact sequence of coherent Dx-modules. Then:
(i) if Vo is a holonomic module, V1 and Vs are also holonomic;

(ii) #f V1 and Vo are holonomic, Vs is holonomic.

PROOF. The assertions are clearly true if either V; or V5 is zero. If they are
nonzero, by ??, we see that Ch(V2) = Ch(V1) U Ch(V3). This immediately implies
that dim, 1, Ch(Vs2) = max(dimp;{l(z) Ch(Vl),dimp;(z) Ch(V3)). Moreover, by
?7?, we know that supp(V2) = supp(V1) U supp(Vs). Hence, the assertion follows
immediately. ([

Therefore, the full subcategory Hol(Dx) of Meon(Dx) is abelian and thick.

1.2. LEMMA. Let X be a smooth variety and Y a closed smooth subvariety. Let
1:Y — X be the natural inclusion. Then, for any Dy -module V the following
statements are equivalent:

(i) the module V is holonomic;
(ii) the module iy (V) is holonomic.

PRroOF. Clearly, by Kashiwara’s theorem, V is zero if and only if i} (V) is zero.
Moreover, by 7?7, we have

holdef, (V) = holdef, (i (V))

for any x € supp(V). Hence, dimp;l(z) Ch(V) = dim, Y if and only if dimp)_(lw) Ch(iy(V)) :I
dim, X for any x € supp(V). O

The next result generalizes 77.

133
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1.3. THEOREM. FEwvery holonomic Dx-module is of finite length.

PRrROOF. Clearly, the restriction of a holonomic module to an open set is holo-
nomic. Since by I1.2.8 being of finite length is a local property, it is enough to prove
the assertion for smooth affine varieties. In this case we can assume that X is a
smooth closed subvariety of the affine space k™. Let i : X — k™ be the natural
inclusion. Then, by 1.2, for a holonomic module V the module i4 (V) is holonomic.
By 1.8.1, we conclude that i, (V) is of finite length. Clearly, any submodule or
quotient module of i4 (V) is supported in X. Hence, the length of i, (V), as an
object in the category of all D-modules is equal to the length of it as a module
in the subcategory of all modules supported in X. By Kashiwara’s theorem, this
implies that V is of finite length. (]

2. Connections

Let X be a smooth algebraic variety over an algebraically closed field k of
characteristic zero and Dx the sheaf of differential operators on X. In this section
we describe some very simple holonomic D x-modules.

A Dx-module V is called a connection if it is coherent as an O x-module.

2.1. THEOREM. Let X be a connected smooth algebraic variety andV a coherent
Dx -module different from zero. Then the following conditions are equivalent:

(i) V is a connection;
(i) the characteristic variety Ch(V) of V is contained in the zero section of
the cotangent bundle T*(X);
(iii) the characteristic variety Ch(V) of V is the zero section of the cotangent
bundle T*(X);
(iv) V is a locally free Ox-module of finite rank.

PRrROOF. Clearly (iv)=-(i) and (iii)=(ii).

(iv)=-(iii) Since V is a locally free Ox-module of finite rank, the dimension of
the geometric fiber T, (V) = V,/m,V, is locally constant. Because X is connected,
this implies that it is a nonzero constant and therefore supp(V) = X. We can
define a filtration FV on V by F,V =0 for p < 0 and F,V =V for p > 0. This
is clearly a good filtration on V. The graded module GrV has all its homogeneous
components equal to 0 except Grg) = V. Therefore, the annihilator of GrV
contains @;o:l Gr, Dx and the characteristic variety of V is contained in the zero
section of T*(X). Since, by 3.8, it projects onto supp(V), we conclude that Ch()V)
is equal to the zero section of T*(X).

(ii)=(i) The statement is local, hence, by I1.2.10, we can assume that X is
affine and has a global coordinate system (f1, fa,..., fn; D1, Da, ..., Dy) such that
(D';1 € Z7) form a basis of the free R(X)-module of differential operators on
X. Assume that FV is a good filtration of ¥ and J the annihilator of T'(X, GrV)
in R(T*(X)). Then the zero set of J in T*(X) is contained in the zero section of
T*(X). By the Hilbert Nullstellensatz, the radical of J contains the ideal generated
by the symbols of Dy, D5, ..., D,. This implies that there exists m € Z such that
the symbols of D", D¥*,..., D™ annihilate T'(X, GrV). Moreover, ¢**-symbol of
any differential operator of order ¢ > nm annihilates I'(X, Gr V). Since I'(X, Gr V)
is a finitely generated Gr Dx-module this implies that Gr,V = 0 for sufficiently
large p € Z.. Therefore, F\, V =V for sufficiently large p € Z and V is a coherent
O x-module.
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(i)=(iv) Since the statement is local we can assume that X is affine and
“small”. Let z € X. Since V is a coherent Ox-module, the geometric fiber

T.(V) = V,/m,V, = O,/m, ®o, V, is a finite-dimensional vector space over
k. Let s1,s2,..., 54 be a family of global sections of V with the property that their
images s1(x),s2(x),...,8¢(x) in T, (V) form a basis of this vector space. These

sections define a natural morphism of the free Ox-module O‘)’( into V. Denote its
image by U. Then we have the exact sequence

0% —V—V/U—0
of coherent Ox-modules, which leads to the exact sequence
T,(0%) — T,(V) — T,(V/U) — 0.

Since the first arrow is surjective by the construction, we conclude that T,,(V/U) = 0
and by Nakayama lemma (I1.2.1), it follows that (V/U), = 0. Therefore,  is not
in the support of the coherent Ox-module V/U. By shrinking X we can assume
that V/U =0, i.e., V is generated by s1, S2,. .., Sq. In this situation, for any global
vector field 7" on X we have
q
TSZ' = Z ajiSj
j=1

with aj; € R(X)

We want to prove that sq,s2,...,5, is a basis of a free O;-module V,. Let
>~ gisi = 0, where g1, 92, ..., 9 € Oz. We claim that this implies that g1, g2, ..., g4 €}
m? for any p € Z,.

Since s1(x), s2(x), . .., sq(x) are linearly independent, > g;(z)s;(z) = 0 implies
that g1(z) = g2(z) = -+ = g4(x) = 0, and we conclude that g1,92,...,9, € m,.
Therefore, the statement holds for p = 1. Assume that it holds for p — 1. For any
global vector field T" on X we have

q

0=T (Z gi5i> = Z(T(gi)si + 9:T's;)
i=1

i=1

q q q q
= ZT(‘%)S? + Z aj;9iSj = Z(T(g,) + Zaijg])s,;.
i=1 j=1

ij=1 i=1

Hence, by the induction assumption, we have T(g;) + >.7_, aijg; € mb~! and

gi € mE~! for 1 < i < g. This implies that T(g;) € mP~! for 1 < i < ¢. In

particular, D;(g;) € mE~! for 1 <i < ¢, 1 < j <n. This leads to D'g; € m, for

all I € Z% such that |I| < p, and by I1.2.15. we conclude that g; € m? for 1 <i <gq.
Therefore, by induction on p, ¢; € m® for 1 <4 < ¢ for all p € Z,. Hence,

g1 == gq =0. It follows that si, s2,..., 5, is a basis of the free O -module V,.
Therefore, we can consider the natural short exact sequence

0 —K—0%—V—0

where K is the kernel of the natural morphism of O% onto V. Clearly, K is a coherent
Ox-module, and by the preceding result, K, = 0. It follows that « ¢ supp(K),
and by shrinking X if necessary we can assume that K = 0. This means that
51,582,...,54 is a basis of the free Ox-module V. O

This result has the following obvious consequence.
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2.2. COROLLARY. Connections are holonomic Dx-modules.

The preceding proof shows that if X is sufficiently “small” and V a connection
on X, we can find a basis si,s2,...,54 of the free Ox-module V which identifies
V with O%. Let ¥ : O% — V be the corresponding Ox-module isomorphism
given by W(fi, fa,..., fg) = > fisi. Then there exist ¢ x g-matrices A; = (Aijr),
1 <4 < n, with entries from R(X) such that

q
DSJ = E Aikjsk-
k=1

Then
a
(DioW¥)(f1,.... fq) = nysy Z i(f)s; + [;Dis;)
= j=1
q q
Z( fJ SJ+ZfJ zk]5k> :Z (Di(fj)+z.fk14ijk> Sj-
j=1 = j=1 k=1
Hence

U 'oD;ol =D;+ 4
for any 1 < i < mn. Moreover, since [D;, D;] = 0 on V, we have
0= [Di+Ai, Dj+ Aj] = [Di, Aj]+ [Ai, Dj] +[Ai; Aj] = Di(Aj) = Dj(Ai) +[Ai, 4],
ie.,
Dj(Ai) = Di(A;) = [Ai, Aj]

for all 1 < 4,5 < n. Therefore, connections correspond locally to the classical notion
of the integrable connections.

3. Preservation of holonomicity under direct images

In this section we prove that holonomicity is preserved under direct images.

First we consider the case of morphisms of smooth affine varieties. Let X and Y
be two smooth affine varieties and ¢ : X — Y a morphism. Let Dx and Dy be the
rings of differential operators on X and Y respectively and M (Dyx) and M%Z(Dy)
the corresponding categories of right D-modules. Then we can consider the functor
¢4 : ME(Dx) — ME(Dy) of direct image and its left derived functors LP¢., .

3.1. THEOREM. Let V be a holonomic right Dx-module. Then LP¢, (V) are
holonomic right Dy -modules.

PROOF. In the case of affine spaces X = k™ and Y = k™ this result was proved
in 1.13.5. Now we shall reduce the proof of the theorem to this case. Clearly, we
can imbed X and Y into affine spaces k™ and k™ as closed algebraic sets. Let
ix : X — k"™ and iy : Y — k™. By Kashiwara’s theorem, the direct image
functors ix 4 : ME(Dx) — MJE(Dy») and iy 4 : ME(Dy) — ME(Dym) are
exact. By abuse of notation we denote by the same letters the corresponding direct
image functor between the categories M%(Dy) (resp. MZ(Dy)) and MT(D(n))



3. PRESERVATION OF HOLONOMICITY UNDER DIRECT IMAGES 137

(resp. ME(D(n))). Therefore, we have the commutative diagram of exact functors
for X

ME(Dx) 254 MR(D(n))

! L

ME(Dx) R ME (D)

where the vertical arrows are localization functors, and an analogous diagram for
Y. Since the vertical arrows are equivalences of categories, and the lower arrow
is fully faithful by the Kashiwara’s theorem, we conclude that the top horizontal
arrow is also fully faithful and establishes the equivalence of M (Dx) with the full
subcategory of M (D(n)) consisting of modules supported in X.

Let ® : k" — k™ be a polynomial map which is induces ¢ : X — Y. Then
we have the following commutative diagram of morphisms

X X 4 g

o E
Y —— k™

1y

By IV.2.7, we know that
LP(I)+ o 7:X7+ = LP((I)+ O iX7+) = Lp(l.y_’_i_ o ¢)+) = iY-,-‘r o LP¢+
for any p € —Z+..

Let V be a holonomic right D x-module on X. Since the functor ix ; maps holo-
nomic modules into holonomic modules by 1.2, the module ix 4+ (V') is a holonomic
right D(n)-module. Hence, by 1.13.5, LP®_ (ix 4 (V')) are holonomic D(n)-modules
for all p € —Z,. This implies that iy, (LP¢,(V)) are holonomic D(n)-modules.
Using again 1.2, we conclude that LP¢ (V) are holonomic Dy-modules for all

By localizing 3.1, we see that for any holonomic right Dx-module V), the right
Dy-modules H?(¢(D(V))) are holonomic for any p € Z.

Now we consider the general situation. We say that a complex V' of Dx-
modules is a holonomic complex if HP(V"), p € Z, are holonomic Dx-modules. Let
D*(M(Dx)) be the bounded derived category of Dx-modules. Since the category
Hol(Dx) is a thick abelian subcategory of the category of Dx-modules, the full
subcategory D! (M(Dx)) of D*(M(Dx)) consisting of all holonomic complexes
is a triangulated subcategory. The next result is a special case of [2, 77].

3.2. PROPOSITION. Holonomic Dx-modules form a generating class of the tri-
angulated category DY ,(M(Dx)).

Actually, we can find a smaller generating class in DY ,(M(Dx)). Let U C X
be an affine open set and ¢ : U — X the natural inclusion. Let V be a holonomic
module on U. We claim that i1 ()) is a holonomic module on X. In fact, since
holonomicity is a local property, it is enough to show that for any affine open set
V C X, the restriction ie(V)|y is holonomic. Let j : U NV — V be the natural
inclusion. Then ie(V)|v = je(V|unv), and since U NV is affine, by the first part
of the discussion, je(V|unv) is a holonomic module. This proves that (V) is a
holonomic module.
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3.3. PROPOSITION. Let 84 = (Uy,Us,...,U,) be an affine open cover of X and
ij : Uj — X the natural inclusions. Then the family G of modules ij 4(V), where
V are arbitrary holonomic modules on U;j and 1 < j <n, form a generating family

of D}, (M(Dx)).

PROOF. Let U be a holonomic module on X and C' (8, ) its Cech resolution
[3, ??]. Then U is quasiisomorphic to C (&, U). By [2, ?7], we see that G is a
generating class of DY  (M(Dx)). O

This finally allows us to prove the following generalization of 1.13.5.

3.4. THEOREM. Let X and Y be smooth algebraic varieties and ¢ : X — Y
a morphism of varieties. If V' is a bounded holonomic complexr of Dx-modules,
o+ (V") is a bounded holonomic complex of Dy -modules.

PROOF. Since holonomicity is a local property, we can assume that Y is affine
smooth variety.

Let U be an affine open set in X, ¢ : U — X the natural immersion and V
a holonomic module on U. Then i; (V) is a holonomic module. Since i (D(V)) =
D(ie(V)) by 5.7, we see that

¢+ (D(ie(V))) = ¢4 (i (D(V))) = (¢ 0 1) (D(V))
by ??. Since ¢oi: U — Y is a morphism of affine varieties, by localization of 3.1,
we see that H?(¢4(D(ie(V)))) are holonomic modules on Y for p € Z. Therefore,
by 3.3 and [2, ?7] the result follows. O

4. A classification of irreducible holonomic modules

Now we want to give a classification of irreducible holonomic Dx-modules. It
is based on the following result.

4.1. LEMMA. Let U be an open subset of X, i : U — X the natural immersion
and V an irreducible holonomic Dy -module. Then

(i) (V) contains a unique irreducible Dx -submodule W;

(ii) WIU = V.

PROOF. By 3.4, i4(V) is a holonomic Dx-module. Therefore, by 1.3, it is of
finite length. Let W be an irreducible Dx-submodule of (V). Since i, is the
right adjoint to the restriction functor to U, the restriction of W|y is nonzero and
therefore equal to V. This implies that the intersection of any two irreducible
Dx-submodules of i,(V) is different from zero, i.e., W is the unique irreducible
Dx-submodule of V. O

This result implies the following extension result for irreducible holonomic mod-
ules.

4.2. COROLLARY. Let U be an open subset of X and V an irreducible holo-
nomic Dy-module. Then there exists an irreducible holonomic Dx-module W such
that W|y is isomorphic to V. Moreover, W is unique up to an isomorphism and
supp(W) is the closure of supp(V) in X.

PRroOF. The existence part follows immediately from 4.1. Let YW’ be another
irreducible holonomic Dx-module such that W/|U is isomorphic to V. Since i, is
the right adjoint of the restriction to U there exists a natural morphism « : W' —
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(V) such that a|U is the isomorphism of W'|y onto V. Since W' is irreducible
the kernel of « is zero, and its image is an irreducible Dx-submodule of i, (V). By
4.1, it must be equal to W.

Clearly, supp(W) N U = supp(V). Therefore, the closure in X of the support
of V is contained in the support of WW. On the other hand, the support of W is
contained in supp(ie())), which is equal to the closure of supp(V) in X. O

Let V be an connected smooth subvariety in X and j : V — X the natural
immersion. Let 7 be an irreducible connection on V. Then the direct image

Z(V,7) = j(7)
is a holonomic Dx-module called the standard D-module attached to (V, 7). By 4.2,
its support is equal to V. Since V is locally closed in X, we can find an open set
U C X such that V is a closed subvariety of U. Denote by jy the immersion of V
into U and by ¢ the open immersion of U into X. Then, by 7?7, we have

Z(V.7) = j (1) = i ((ju)+(7))-
By Kashiwara’s theorem, the direct image of (jy)+(7) is an irreducible holonomic
Dy-module with support equal to V. By 4.1, it extends to an irreducible holonomic
Dx-module which is the unique irreducible submodule of Z(V, 7). We denote by
L(V,7) and call it irreducible module attached to the data (V,7). By 4.2, the
support of £(V,7) is equal to V. Therefore, we proved the first part of following
result.

4.3. PROPOSITION. Let Z(V,T) be the standard Dx-module attached to (V, ).
Then it contains the unique irreducible submodule L(V,T). The support of L(V,T)
is equal to V' and the support of T(Q,7)/L(Q,T) is contained in V — V.

PROOF. It remains to show that the support of @ = Z(V,7)/L(V,7)isin V-V
Consider the short exact sequence

0— L(V,7) —IZ(V,7) — Q — 0.

Let U = X — (V — V). Then U is an open subset of X and V is closed in U.
Therefore, by the preceding discussion and 4.1, from this short exact sequence
restricted to U we conclude that Q| = 0. Hence, supp(Q) C V — V. O

Now we can classify irreducible holonomic modules on X.

4.4. THEOREM. (i) LetV be an irreducible holonomic Dx-module. Then
there exist an irreducible open smooth affine subvariety V' of the support
of V and an irreducible connection 7 on V such that V is isomorphic to
L(V,1).

(ii) Let V, V' be two irreducible smooth affine subvarieties of X and 7,7’ irre-
ducible connections on V, V' respectively. Then L(V,T) is isomorphic to
LV 7") if and only if

(a) V=V';
(b) there exists a nonempty open affine subvariety V' of VNV’ such that
TV 2|V,

PROOF. (i) By ??, the support of V is an irreducible closed subset of X. Hence,
there exists an open affine subset U of X such that V' = supp(V) N U is a closed
smooth subvariety of U. Clearly, V|U is an irreducible holonomic Dy-module.
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If we denote by jy the natural immersion of V into U, by Kashiwara’s theorem
there exists an irreducible holonomic Dy-module W such that (jy )+ (W) = V|U.
In addition, supp(W) = V. Therefore, by 7?7, there exists an open dense affine
subvariety V' of V such that W|V’ is a connection. Hence, by shrinking U if
necessary, we can assume in addition that W is a connection. If we put 7 = W,
it follows that V|U and L(V,7)|U are isomorphic. By 4.2, this implies that ¥ and
L(V,T) are isomorphic.

(ii) If L(V, 7) is isomorphic to L(V', 7), their supports are equal and (a) follows.
Therefore we can assume that £(V,7) and £(V’,7’) have common support S. It
follows that V' and V' are open and dense in S, hence V NV’ is a nonempty open
affine subvariety of V and V’. Let V" be a nonempty open affine subvariety of
VNV’ Then V" is irreducible. Let U be an open subset of X such that V" =
SNU. Then, by 4.2, L(V,7)|U and L(V’,7")|U are isomorphic irreducible holonomic
Dy-modules with support equal to V" if and only if £(V,7) and L(V',7') are
isomorphic. In addition, if we denote by j the immersion of V" into U, L(V, 7)|U =
Je (V") and L(V',7)|U = j(7/|[V"). Since V" is a smooth closed subvariety of
U, by Kashiwara’s theorem j; (7|V") is isomorphic to j4(7/|V") if and only if 7|V"
is isomorphic to 7'|V". O

5. Local cohomology of holonomic modules

Let Y be a closed smooth subvariety of X and U = X —Y. Denote by i:Y —
X and j : U — X the canonical inclusion maps.

Let V' be a bounded holonomic complex of Dx-modules. Then, the restriction
V'|y of V' to the open set U is clearly a bounded holonomic complex od Dy-
modules. Therefore, by 7?7, j (V'|v) = Rje(V'|v) is a bounded holonomic complex
of Dx-modules. From the distinguished triangle

R.]O(V|U)

(1

RIv (V) V

we see that RI'y (V") is also a bounded holonomic complex of Dx-modules.
Therefore, we proved the following result.

5.1. LEMMA. Let V' be a bounded holonomic complex of Dx-modules. Then
RIy (V') is a bounded holonomic complex of Dx-modules.

6. Preservation of holonomicity under inverse images

By the results from ?? we know that RIy (V') =i (Ri'(V")).

By applying Ri' and using ??, we see that Ri'(V’) is also a bounded holo-
nomic complex of Dy-modules. This in turn implies that Lit (V") is a a bounded
holonomic complex of Dy -modules.

Therefore, we proved the following result.

6.1. LEMMA. Let V' be a bounded holonomic complex of Dx-modules. Then
Lit (V) is a bounded holonomic complex of Dy -modules.
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On the other hand, if p: X x Y — Y is the projection map, we have p™ (V") =
Ox ®V'. Hence, T : Myo(Dy) — Mye(Dxxy) is an exact functor. Moreover, we
have the following result.

6.2. LEMMA. Let V' be a bounded holonomic complex of Dy-modules. Then
pT (V') is a bounded holonomic complex of Dx xy -modules.

By combining these results with the graph construction and using 7?7, we get
the following result which generailzes ?7.

6.3. THEOREM. Let F': X — Y be a morphism of smooth algebraic varieties.
Then the inverse image functor Lft maps bounded holonomic complexes of Dy -
module into bounded holonomic complexes of Dx-modules.
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