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I. Differential equations

1. Existence and uniqueness of solutions. Let Ω be a domain in C and ak,
k = 1, 2, . . . , n, holomorphic functions on Ω. We consider the following homogeneous
differential equation of order n

dny

dzn
+ a1

dn−1y

dzn−1
+ . . .+ an−1

dy

dz
+ any = 0

on Ω. Let y be a solution of this differential equation in Ω, and define Y : Ω −→ Cn by

Y1 = y, Y2 =
dy

dz
, . . . , Yn =

dn−1y

dzn−1
.

Then

dY

dz
=













y′

y′′

...
y(n−1)

y(n)













=













y′

y′′

...
y(n−1)

−a1y
(n−1) − a2y

(n−2) − . . .− an−1y
′ − any













= AY

where

A =

















0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1

−an −an−1 −an−2 . . . −a2 −a1

















.

Therefore, Y is a solution of the first order system of differential equations

dY

dz
= AY

in Ω. Clearly, if Z is a solution of this system, its first component is a solution of our
differential equation.

Therefore, we established the following simple result.

1.1. Lemma. The mapping y 7→ Y is a linear bijection from the vector space of all
solutions of the differential equation

dny

dzn
+ a1

dn−1y

dzn−1
+ . . .+ an−1

dy

dz
+ any = 0

in Ω, onto the space of all solutions of the first order system

dY

dz
= AY

1



2 DIFFERENTIAL EQUATIONS IN COMPLEX DOMAINS

in Ω.

Therefore instead of studying the space of all solutions of the differential equation, we
can study a more general problem of studying the solutions of the first order system

dY

dz
= AY

where A : Ω −→Mn(C) is an arbitrary holomorphic map.
The main result we want to prove is the following theorem.

1.2. Theorem. Let Ω be a simply connected region in C, z0 ∈ Ω and A : Ω −→Mn(C) a
holomorphic map. For any Y0 ∈ Cn there exists a unique holomorphic function Y : Ω −→ Cn

such that
dY

dz
= AY

in Ω, and
Y (z0) = Y0.

Therefore, the linear mapping Y 7→ Y (z0) is an isomorphism of the linear space of all
solutions of this system in Ω onto Cn. In particular we have the following consequence.

1.3. Corollary. The linear space of all solutions of the system

dY

dz
= AY

in a simply connected domain Ω is n-dimensional.

By 1, these results have their analogues for nth-order differential equations.

1.4. Theorem. Let Ω be a simply connected region in C, z0 ∈ Ω. For any complex
numbers y0, y1, . . . , yn there exists a unique holomorphic function y ∈ H(Ω) such that

dny

dzn
+ a1

dn−1y

dzn−1
+ . . .+ an−1

dy

dz
+ any = 0

in Ω, and
y(z0) = y0, y

′(z0) = y1, . . . , y
(n−1) = yn−1.

1.5. Corollary. The linear space of all solutions of the differential equation

dny

dzn
+ a1

dn−1y

dzn−1
+ . . .+ an−1

dy

dz
+ any = 0

in a simply connected domain Ω is n-dimensional.

Now we shall prove 2. Let D = D(z0, R) be a disk centered at z0 and contained in Ω.
We shall first consider the solutions on D. Since A is holomorphic on D we can represent
it by its Taylor series:

A(z) =

∞
∑

p=0

Bp(z − z0)
p
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where Bp ∈Mn(C), p ∈ Z. The solution Y of our system on D should also be represented
by its Taylor series

Y (z) =
∞
∑

p=0

Tp(z − z0)
p

with Tp ∈ Cn, p ∈ Z. The differential equation

dY

dz
= AY

now leads to

∞
∑

p=1

pTp(z − z0)
p−1 =

(

∞
∑

r=0

Br(z − z0)
r

)(

∞
∑

s=0

Ts(z − z0)
s

)

=
∞
∑

r=0

∞
∑

s=0

BrTs(z − z0)
r+s =

∞
∑

m=0

(

m
∑

k=0

Bm−kTk

)

(z − z0)
m

on D. By changing the index in the first sum we get

∞
∑

m=0

(m+ 1)Tm+1(z − z0)
m =

∞
∑

m=0

(

m
∑

k=0

Bm−kTk

)

(z − z0)
m

on D, which implies that

(m+ 1)Tm+1 =

m
∑

k=0

Bm−kTk

for any m ∈ Z+. Therefore,

Tm+1 =
1

m+ 1

m
∑

k=0

Bm−kTk

are the recursion relations for the coefficients. Since T0 = Y (z0) = Y0, and each Tm+1 is
expressed by these formulas in terms of T0, T1, . . . , Tm, we see that Y0 uniquely determines
the coefficients in the expansion. Therefore, the solution Y on D is uniquely determined by
its value at z0. This in turn implies the same assertion for solutions in Ω. This completes
the uniqueness part of the proof.

To show the existence on D, it is enough to show that the formal series

∞
∑

p=0

Tp(z − z0)
p

converges on D, for any initial condition T0 = Y0. We shall prove this by Cauchy’s
majorization method. For any matrix C we denote by ‖C‖ the maximum of absolute
values of its matrix coefficients. Assume that

‖Bp‖ ≤ bp,
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for some bp ≥ 0, for all p ∈ Z+. Consider the power series

a(z) =
∞
∑

p=0

bp(z − z0)
p

and assume that it converges on some D′ = D(z0, r) with r ≤ R. Then we can consider
the first order differential equation

dy(z)

dz
= na(z)y(z)

on D′. For any z ∈ D′ denote by [z0, z] the oriented segment connecting z0 with z. Then

F : z 7−→

∫

[z0,z]

a(w) dw

is a holomorphic function in D′ and

dF

dz
= a(z)

for z ∈ D′. This implies that the function

y = ‖Y0‖e
n

R

[z0,z]
a(w) dw

is holomorphic in D′,

y(z0) = ‖Y0‖

and
dy

dz
= ‖Y0‖e

n
R

[z0,z]
a(w) dw

na(z) = na(z)y.

Therefore, y is the solution of the initial value problem

dy(z)

dz
= na(z)y(z), y(z0) = ‖Y0‖.

Assume that

y(z) =

∞
∑

p=0

tp(z − z0)
p

is the Taylor series of y. Then we get the recursion relations

tm+1 =
n

m+ 1

m
∑

k=0

bm−ktk
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for all m ∈ Z+. Since all bp are non-negative, t0 ≥ 0 implies by induction in m that tm ≥ 0
for all m ∈ Z+. On the other hand, we see by induction that

‖Tp‖ ≤ tp

for all p ∈ Z. First, by definition this is true for m = 0. If p ≥ 0, we have

‖Tp+1‖ =
1

p+ 1

∥

∥

∥

∥

∥

p
∑

k=0

Bp−kTk

∥

∥

∥

∥

∥

≤
1

p+ 1

p
∑

k=0

‖Bp−kTk‖

≤
n

p+ 1

p
∑

k=0

‖Bp−k‖ ‖Tk‖ ≤
n

p+ 1

p
∑

k=0

bp−ktk = tp+1

what completes the argument.
This estimate implies that the radius of convergence of the power series

∞
∑

p=0

Tp(z − z0)
p

is at least equal to r. Therefore, it converges in D′.
Hence, to show the existence of solutions on a disk around z0 it is enough to find a

“good” majorization. For example, for any r < R, the function z 7→ ‖A(z)‖ is bounded on
D′. Fix r < R and M > 0 such that ‖A(z)‖ ≤M . By the Cauchy estimates, we have

‖Bp‖ ≤
M

rp

for all p ∈ Z+. Hence, we can take bp = M
rp , p ∈ Z+. Then

a(z) =
∞
∑

p=0

bp(z − z0)
p = M

∞
∑

p=0

(

z − z0
r

)p

=
M

1 − z−z0

r

=
Mr

r − (z − z0)
,

for z ∈ D′. Therefore, the power series

∞
∑

p=0

Tp(z − z0)
p

converges in D′. Since r < R was arbitrary, we finally conclude that this power series
converges in D. This completes the proof of the theorem for D.

It remains to prove the existence for Ω. This follows from the monodromy theorem.
Let z ∈ Ω be arbitrary and let γ : [a, b] −→ Ω be a path connecting z0 with z. Since γ∗ is
compact, there exists R > 0 such that all open disks of radius R with center in γ∗ lie in Ω.
Also, we can find a finite family D0, D1, . . . , Dn of disks of radius R

2
, such that the center

zj of Dj is in Dj−1 for j = 1, 2, . . . , n, and zn = z. Since the disk of radius R centered at
zj contains Dj−1, by the previous result, we can find find solutions Z0, Z2, . . . , Zn of our
system on disks D0, D1, . . .Dn such that

(i) Z0(z0) = Y0;
(ii) the function element (Zj , Dj) is a direct continuation of the element (Zj−1, Dj−1)

for j = 1, 2, . . . , n.
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Therefore (Z0, D0) allows analytic continuation along γ. Since Ω is simply connected, by
the monodromy theorem Z0 extends to a holomorphic map from Ω into Cn. Also, it is
evident that this map is a solution of our system. This completes the proof of 2.

2. Fundamental matrix. Let Ω be a simply connected domain in C, A : Ω −→Mn(C)
a holomorphic map and

dY

dz
= AY

a first order system in Ω. Fix a base point z0. Let e1, e2, . . . , en be the canonical basis of
Cn, i. e.

e1 =

















1
0
0
...
0
0

















, e2 =

















0
1
0
...
0
0

















, . . . , en−1 =

















0
0
0
...
1
0

















, en =

















0
0
0
...
0
1

















.

Then, by 2, we can find solutions S1, S2, . . . , Sn−1, Sn of our system in Ω satisfying the
following initial conditions

S1(z0) = e1, S2(z0) = e2, . . . , Sn−1(z0) = en−1, Sn(z0) = en.

Let S : Ω −→Mn(C) be the holomorphic function such that its columns are S1, S2, . . . , Sn.
Then S satisfies the differential equation

dS

dz
= AS

in Ω, and
S(z0) = I,

where I ∈Mn(C) is the identity matrix. Clearly, by 1.2, S is uniquely determined by these
properties. We call S the fundamental matrix of the system

dY

dz
= AY

in Ω for the base point z0.
Evidently, the solution Y of our system for the initial condition Y (z0) = Y0 is given by

Y (z) = S(z)Y0

for z ∈ Ω. The columns S1, S2, . . . , Sn of S are linearly independent solutions of our
system. Hence, by 1.3, they form a basis of the vector space of all solutions in Ω. By 1.2,
their evaluations S1(z), S2(z), . . . , Sn(z) are linearly independent vectors in Cn for any
z ∈ Ω. In other words, we have the following result.
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2.1. Proposition. Let S be the fundamental matrix of the system

dY

dz
= AY

in Ω. Then S(z) ∈ GL(n,C) for any z ∈ Ω.

Actually, we can calculate the determinant of the fundamental matrix S. Let

∆(z) = detS(z)

for z ∈ Ω. Then ∆ is a holomorphic function in Ω and ∆(z0) = 1. Let Sn be the
permutation group of {1, 2, . . . , n}, and ǫ : Sn −→ {−1, 1} the parity homomorphism.
Then

∆(z) =
∑

σ∈Sn

ǫ(σ)S1σ(1)(z)S2σ(2)(z) . . . Snσ(n)(z)

for any z ∈ Ω. Hence, we have

d∆(z)

dz
=
∑

σ∈Sn

ǫ(σ)
d

dz

(

S1σ(1)(z)S2σ(2)(z) . . . Snσ(n)(z)
)

=

n
∑

i=1

(

∑

σ∈Sn

ǫ(σ)S1σ(1)(z) . . . Si−1σ(i−1)(z)
dSiσ(i)(z)

dz
Si+1σ(i+1)(z) . . . Snσ(n)(z)

)

=

n
∑

i=1

(

∑

σ∈Sn

ǫ(σ)S1σ(1)(z) . . . Si−1σ(i−1)(z)

(

n
∑

k=1

Aik(z)Skσ(i)(z)

)

. . . Snσ(n)(z)

)

=
n
∑

i=1

n
∑

k=1

Aik(z)

(

∑

σ∈Sn

ǫ(σ)S1σ(1)(z) . . . Si−1σ(i−1)(z)Skσ(i)(z) . . . Snσ(n)(z)

)

.

If k 6= i the inner sum represents the expression for the determinant with equal ith and
kth rows. Therefore, these terms vanish and we get

d∆(z)

dz

=

n
∑

i=1

Aii(z)

(

∑

σ∈Sn

ǫ(σ)S1σ(1)(z) . . . Si−1σ(i−1)(z)Siσ(i)(z)Si+1σ(i+1)(z) . . . Snσ(n)(z)

)

=

n
∑

i=1

Aii(z) detS(z) = TrA(z) ∆(z).

2.2. Lemma. The determinant ∆ of the fundamental matrix S of the system

dY

dz
= AY
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satisfies the differential equation
d∆

dz
= TrA∆

in Ω.

Since Ω is simply connected, the integral along a path γ in Ω connecting z0 to z
∫

γ

TrA(w) dw

doesn’t depend on the choice of γ. Hence we can put
∫ z

z0

TrA(w) dw =

∫

γ

TrA(w) dw.

This integral is a holomorphic function of z, and

d

dz

∫ z

z0

TrA(w) dw = TrA(z)

for z ∈ Ω. Therefore,

∆(z) = e
R

z

z0
Tr A(w) dw

for z ∈ Ω.

II. Systems with regular singularities

1. Functions of moderate growth. Let D = D(0, R) = {z ∈ C | |z| < R} be the disk
in C of radius R centered at 0. Denote by D∗ = D−{0} the corresponding punctured disk.

Let D̃∗ be the universal cover of D∗ and p : D̃∗ −→ D∗ the corresponding projection. We
can realize D̃∗ as the half-plane {t ∈ C | Re t < logR} and p(t) = et. Fix a base point z0
in D∗ and t0 ∈ D̃∗ such that p(t0) = z0. For any m ∈ Z we define the map Tm : D̃∗ −→ D̃∗

by Tm(t) = t+2πim for t ∈ D̃∗. Then p(Tm(t)) = p(t) for any t ∈ D̃∗, and m 7→ Tm is the

map of the fundamental group π1(D
∗) = Z into the group of deck transformations of D̃∗.

By abuse of language, we call holomorphic functions on D̃∗ “multivalued” holomorphic
functions on D∗. Holomorphic functions f on D∗ correspond in this identification to
functions of the form f̃ = f ◦ p.

Let C = {reiθ | 0 < r < R, θ0 ≤ θ ≤ θ1} be a sector of D∗ for some θ0, θ1 ∈ R such that
θ1 − θ0 < 2π. We say that a function f on C has moderate growth at 0 if there exist ǫ > 0,
c > 0 and k ∈ Z+ such that

|f(z)| ≤ c
1

|z|k

for z ∈ C and |z| ≤ ǫ. A holomorphic function on D∗ has moderate growth at 0 if and
only if it has at most a pole at 0.

The strip C̃ = {t ∈ C | Re t < logR, θ0 ≤ Im t ≤ θ1} ⊂ D̃∗ evenly covers C. We say
that a “multivalued” holomorphic function f on D∗ has moderate growth at 0 if all its
restrictions to such strips C̃ are pulbacks of functions of moderate growth on sectors C.
Examples of such functions are: zα for any α ∈ C — it is actually the function eαt on
C̃∗ = C, log z — it is actually the function t on C̃∗ = C.

The following result is evident.
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1.1. Lemma. All “multivalued” holomorphic functions of moderate growth on D∗ form
a ring.

Since D̃∗ is simply connected, any holomorphic function on D̃∗ is derivative of some
other holomorphic function on D̃∗. This implies that for any “multivalued” holomorphic
function f on D∗ there exists a “multivalued” holomorphic function g on D∗ such that
z dg

dz
= f .

1.2. Lemma. Let f be a “multivalued” holomorphic function on D∗. Then the following
conditions are equivalent:

(i) f has moderate growth at 0;

(ii) z df
dz

has moderate growth at 0.

Proof. (i)⇒(ii) If f has moderate growth at 0, this means that the corresponding

function f̃ on D̃∗ satisfies

|f̃(t)| ≤ ce−k Re t

on each strip C̃. Let ǫ > 0 be small and C̃′ the strip corresponding to the sector C′ =
{reiθ | 0 < r < e−ǫR, θ0 + ǫ ≤ θ ≤ θ1 − ǫ}. By Cauchy estimates applied to the circle of

radius ǫ around t ∈ C̃′ we see that

∣

∣

∣

∣

∣

df̃

dt

∣

∣

∣

∣

∣

≤
c

ǫ
e−k(Re t+ǫ) ≤ c′e−k Re t,

hence
∣

∣

∣

∣

z
df

dz

∣

∣

∣

∣

≤ c′
1

|z|k

on C′. Since C and ǫ were arbitrary, z df
dz

has moderate growth at 0.

(ii)⇒(i) In this case, we have z df
dz

has moderate growth at 0, i. e.

∣

∣

∣

∣

∣

df̃

dt

∣

∣

∣

∣

∣

≤ ce−k Re t

on C̃. Let t0, t1 ∈ C̃ with Re t0 ≤ Re t1 and Im t0 = Im t1. Integrating along the line γ
connecting t0 with t1 we get

|f̃(t1) − f̃(t0)| ≤

∣

∣

∣

∣

∣

∫

γ

df̃

dt
dt

∣

∣

∣

∣

∣

≤ c

∫ Re t1

Re t0

e−ksds =
c

k
(e−k Re t0 − e−k Re t1).

By leaving Re t1 fixed we get

|f̃(t0)| ≤ ce−k Re t0

for sufficiently large c > 0 and t0 ∈ C̃ with Re t0 sufficiently negative. This implies that f
has moderate growth at 0. ˜
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Let A ∈Mn(C). We define

eA =

∞
∑

k=0

1

k!
Ak.

Then, t 7→ etA is a holomorphic map from C into GL(n,C). Clearly,

detA

dt
= AetA = etAA.

Moreover, if B ∈Mn(C) is another matrix commuting with A, we have

eAeB = eA+B .

Let N ∈ Mn(C) be a nilpotent matrix such that Nn = 0 and Nn−1 6= 0. Then N is
equivalent to the matrix

















0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1
0 0 0 . . . 0 0

















,

i. e. the matrix λI +N is equivalent to the Jordan cell matrix with eigenvalue λ. Now

et(λI+N) = eλtetN = eλt

∞
∑

k=0

1

k!
tkNk = eλt

n−1
∑

k=0

1

k!
tkNk,

i. e. the matrix coefficients of this matrix are linear combinations of functions of the form
tkeλt, k ∈ Z+. Since every matrix is equivalent to a direct sum of Jordan cell matrices,
we conclude that the matrix coefficients of etA are linear combinations of functions of the
form tkeλt, where k ∈ Z+ and λ is an eigenvalue of A.

We can view etA as a “multivalued” holomorphic map zA from C∗ into GL(n,C). Its ma-

trix coefficients are linear combinations of “multivalued” holomorphic functions zλ logk z,
where k ∈ Z+ and λ is an eigenvalue of A. This immediately implies that zA has moderate
growth at 0.

2. First order systems on a punctured disk. Let A : D∗ −→Mn(C) be a holomor-
phic map. We consider the system of first order differential equations

dU

dz
= AU (1)

onD∗. Let Ω be a simply connected open neighborhood of z0 inD∗, and let Ω̃ be the simply
connected neighbourhood of t0 which evenly covers Ω. Then any local solution Y of (1) in

Ω lifts to the holomorphis function Ỹ = Y ◦ p in Ω̃. Since Y can be analytically continued
along any path in D∗, the monodromy theorem implies that Ỹ extends to a holomorphic
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function in D̃∗. In particular, this implies that the lifting S̃ of the fundamental matrix S
of (1) in Ω extends to a holomorphic function on D̃∗. We denote it by the same letter.

Therefore, the restricitions of function t 7→ (S̃ ◦ T1)(t) = S̃(t + 2πi) to Ω̃ is a lifting of
a holomorphic function in Ω which satisfies the same differential equation as S. Hence,
t 7→ S̃(t + 2πi)S̃(t0 + 2πi)−1 is the lifting of a function satisfying the same differential

equation as S and also has the value S̃(t0 + 2πi)S̃(t0 + 2πi)−1 = I at t0. Therefore, it is

the lifting to Ω̃ of S on Ω. This implies that

S̃(t) = S̃(t+ 2πi)S̃(t0 + 2πi)−1

for any t ∈ D̃∗. Therefore,

S̃(t+ 2πi) = S̃(t)S̃(t0 + 2πi)

for any t ∈ D̃∗. Let R ∈Mn(C) be such that

M = S̃(t0 + 2πi) = e2πiR.

The matrix M is called the monodromy of (1). Then, consider the function t 7→ S̃(t)e−tR.
Then

S̃(t+ 2πi)e−(t+2πi)R = S̃(t)S̃(t0 + 2πi)e−2πiRe−tR = S̃(t)e−tR

for all t ∈ D̃∗. Therefore, this function is invariant under deck transformations. It follows
that there exists a holomorphic map P : D∗ −→Mn(C) such that

S̃(t)e−tR = P (et)

for all t ∈ D̃∗. Since the fundamental matrix is always a regular matrix, P is actually
taking values in GL(n,C). Hence,

S̃(t) = P (et)etR

for all t ∈ D̃∗. Formally we write that the “multivalued” function S on D∗ is given as

S(z) = P (z)zR.

Therefore we proved the following result.

2.1. Proposition. Let M be the monodromy of the system (1). Then for any R ∈
Mn(C) such that M = e2πiR, there exists a holomorphic map P : D∗ −→ GL(n,C) such
that

S(z) = P (z)zR.

This result has the following consequence.
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2.2. Corollary. There exists a “multivalued” solution of the system (1) of the form
zαF (z) where F : D∗ −→ Cn is a holomorphic map and e2πiα is an eigenvalue of the
monodromy matrix M .

Proof. Let M = e2πiR for some R ∈Mn(C). Let v be an eigenvector of R and denote
by α its eigenvalue. Then zRv = zαv, hence

S(z)v = P (z)zRv = zαP (z)v = zαF (z). ˜

Now we study an example which will play a critical role later. Let R ∈Mn(C). Consider

dV

dz
=
R

z
V. (2)

on C∗.

2.3. Lemma.

(i) The fundamental matrix of (2) is given by

S(z) = C0z
R

where C0 is a constant regular matrix.
(ii) The monodromy of (2) is given by

M = e2πiR.

Proof. (i) Clearly,
dC0z

R

dz
= C0

dzR

dz
= C0

R

z
zR.

If we put C0 = z−R
0 = e−t0R, C0 commutes with R. Hence, we have

dS

dz
=
R

z
C0z

R =
R

z
S

and
S(z0) = C0z

R
0 = I.

(ii) We have
S(z0e

2πi) = C0z
R
0 e

2πiR = e2πiR,

which implies that M = e2πiR is the monodromy of (2). ˜

Let R′ be another matrix such that M = e2πiR′

. Then 1. implies that the fundamental
matrix of (2) can be written as P (z)zR′

. This implies that there exists a holomorphic
function Q : C∗ −→ GL(n,C) such that

zR = Q(z)zR′
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on C∗. Since the matrix coefficients of zR and zR′

are functions of moderate growth at
0 we conclude that Q is of moderate growth at 0, i. e. it has at most a pole at 0. This
implies that

z−R = Q

(

1

z

)

z−R′

and again z 7→ Q( 1
z
) is of moderate growth at 0. Therefore, it has at most a pole at 0.

It follows that the matrix coefficients of Q are rational functions with possibe poles at 0,
i. e. they are linear combinations of powers of z.

If we differentiate the equality

Q(z) = zRz−R′

,

we get
dQ

dz
=
R

z
Q−Q

R′

z
.

Hence, we have the following result.

2.4. Lemma. Let R,R′ ∈Mn(C) be such that e2πiR = e2πiR′

. Then there exists a map
Q : C∗ −→ GL(n,C) with the following properties:

(i) the matrix coefficients of Q are linear combinations of powers of z;
(ii)

dQ

dz
=
R

z
Q−Q

R′

z

on C∗.

3. Systems with regular singularities. We consider the system of differential equa-
tions (1) on D∗. We say that this system is equivalent to the system

dV

dz
= BV, (3)

where B : D∗ −→Mn(C) is holomorphic, if there is a holomorphic map Φ : D∗ −→ GL(n,C)
with at most a pole at 0 satisfying the differential equation

dΦ

dz
= BΦ − ΦA

on D∗.
We claim that this relation is an equivalence relation. First we remark that the formula

for inverse of a matrix implies that Φ−1 : z 7→ Φ(z)−1 is a holomorphic map from D∗

into GL(n,C) and that it has at most a pole at 0. Also, by differentiating the relation
Φ(z)Φ(z)−1 = I we get that

dΦ

dz
Φ−1 = −Φ

dΦ−1

dz
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which implies that

Φ
dΦ−1

dz
= −

dΦ

dz
Φ−1 = −B + ΦAΦ−1 = Φ(AΦ−1 − Φ−1B),

and
dΦ−1

dz
= AΦ−1 − Φ−1B

on D∗. This implies that our relation is symmetric.
Assume that C : D∗ −→Mn(C) is a holomorphic map and consider the system

dW

dz
= CW. (4)

Assume that it is equivalent to the second system, i. e. that there exists a a holomorphic
map Ψ : D∗ −→ GL(n,C) with at most a pole at 0 satisfying the differential equation

dΨ

dz
= CΨ − ΨB

on D∗. Then the map ΨΦ : D∗ −→ GL(n,C) has at most a pole at 0 and

dΨΦ

dz
=
dΨ

dz
Φ + Ψ

dΦ

dz
= (CΨ − ΨB)Φ + Ψ(BΦ − ΦA) = CΨΦ − ΨΦA.

Therefore, our relation is also transitive.
To se the actual meaning of this equivalence relation, assume that Y is a solution of the

first system on an open subset Ω of D∗, i. e.

dY

dz
= AY

on U . Then
dΦY

dz
=
dΦ

dz
Y + Φ

dY

dz
= (BΦ − ΦA)Y + ΦAY = BΦY,

i. e. ΦY is a solution of the second system on Ω. Therefore, the systems are equivalent if
there exists a holomorphic map Φ : D∗ −→ GL(n,C) with at most pole at 0 which maps
solutions of one system into the solutions of the other system.

Now we can reformulate the result of 2.3. and 2.4.

3.1. Lemma. Let R,R′ ∈Mn(C) be such that e2πiR = e2πiR′

. Then the systems

dU

dz
=
R

z
U

and
dV

dz
=
R′

z
V
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on D∗ are equivalent, and their monodromy is

M = e2πiR = e2πiR′

.

Consider now two equivalent systems

dU

dz
= AU

and
dV

dz
= BV

on D∗. Assume that Φ : D∗ −→ GL(n,C) gives the equivalence. If SA is the fundamental
matrix of the first system,

SB(z) = Φ(z)SA(z)Φ(z0)
−1

is the fundamental matrix of the second system. Really,

SB(z0) = Φ(z0)SA(z0)Φ(z0)
−1 = Φ(z0)Φ(z0)

−1 = I

and

dSB(z)

dz
=
dΦ(z)

dz
SA(z)Φ(z0)

−1 + Φ(z)
dSA(z)

dz
Φ(z0)

−1

= (B(z)Φ(z) − Φ(z)A(z))SA(z)Φ(z0)
−1 + Φ(z)A(z)SA(z)Φ(z0)

−1

= B(z)Φ(z)SA(z)Φ(z0)
−1 = B(z)SB(z),

what proves our assertion. This implies that the monodromy MB of the second system is
equal to

MB = SB(z0e
2πi) = Φ(z0)SA(z0e

2πi)Φ(z0)
−1 = Φ(z0)MAΦ(z0)

−1

where MA is the monodromy of the first system. Therefore, we proved the following result.

3.2. Proposition. Equivalent systems on D∗ have equivalent monodromies.

Therefore, there is a well-defined map, given by the monodromy map, from the equiva-
lence classes of first order systems of rank n on D∗ into conjugacy classes in GL(n,C).

We say that a system
dU

dz
= AU,

where A : D∗ −→ Mn(C) is a holomorphic map, has a regular singularity at 0 if all its
“multivalued” solutions have moderate growth at 0. For example, by 2.3. the system

dV

dz
=
R

z
V

has a regular singularity at 0.
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3.3. Lemma. Let
dU

dz
= AU

be a system on D∗ with regular singularity at 0. Then any system equivalent to it also has
a regular singularity at 0.

Proof. Let
dV

dz
= BV

be a system equivalent to the first one. Then there exists a function Φ : D∗ −→ GL(n,C)
with at most a pole at 0 such that all solutions of the second system have the form ΦU ,
for a solution U of the first system. Since Φ has moderate growth at 0, this implies that
all solutions of the second systems have moderate growth at 0. ˜

Therefore, having regular singularity at 0 is a property which depends on the equivalence
class only.

3.4. Theorem. Let
dU

dz
= AU

be a system on D∗ with a regular singularity at 0. Let M be its monodromy and R ∈Mn(C)
such that M = e2πiR. Then this system is equivalent to the system

dV

dz
=
R

z
V

Proof. Let S be the fundamental matrix of this system. By 2.1. it has the form
S(z) = P (z)zR. Since our system has regular singularity at 0, its fundamental matrix has
moderate growth at 0. Hence, P (z) = S(z)z−R has at most a pole at 0. Also

dP (z)

dz
=
dS(z)

dz
z−R + S(z)

dz−R

dz
= A(z)S(z)z−R − S(z)

R

z
z−R = A(z)P (z) − P (z)

R

z

and our systems are equivalent. ˜

An immediate consequence is the following fundamental result.

3.5. Theorem. The monodromy map defines a bijection between equivalence classes
of systems of rank n on D∗ with regular singularity at 0 and the conjugacy classes in
GL(n,C).

Proof. Let M ∈ GL(n,C) and R ∈ Mn(C) such that e2πiR = M . By a previous
remark the system

dV

dz
=
R

z
V

has a regular singularity at 0. By 2.3. its monodromy is equal to M . Therefore, the map
is surjective.
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By the preceding theorem and 2.3, every system of rank n on D∗ with a regular singu-
larity at 0 is equivalent to a system of this form with the same monodromy. Therefore it
is enough to show that the systems

dV

dz
=
R

z
V

and
dW

dz
=
R′

z
W,

such that their monodromies M = e2πiR and M ′ = e2πiR′

belong to the same conjugacy
class in GL(n,C), are equivalent. Assume that M ′ = TMT−1 with T ∈ GL(n,C). Then
the second system is equivalent to the system

dU

dz
=
T−1R′T

z
U

with monodromy e2πT−1R′T = T−1e2πiR′

T = T−1M ′T = M . By 3.1. it follows that this
system is equivalent to the first one. ˜

Finally, we want to prove the following useful criterion for a system to have a regular
singularity at 0.

3.6. Theorem. Let

z
dU

dz
= AU

be a system on D∗ with a holomorphic map A : D −→ Mn(C). Then this system has a
regular singularity at 0.

Proof. By shrinking D a bit we can assume that ‖A(z)‖ is bounded on D.
Let U be a solution of this system in a sector defined by C = {reiθ | 0 < r < R, θ0 ≤

θ ≤ θ1} for some θ0, θ1 ∈ R such that θ1 − θ0 < 2π. Then C̃ = {t ∈ C | Re t < logR, θ0 ≤

Im t ≤ θ1} ⊂ D̃∗ evenly covers C. Therefore we can pull U to a holomorphic function U ◦p
with walues in Cn. Let Uj be the jth component of U . Then, if we put s = Re t, we have

∣

∣

∣

∣

∂(Uj ◦ p)

∂s

∣

∣

∣

∣

=

∣

∣

∣

∣

d(Uj ◦ p)

dt

∣

∣

∣

∣

=

∣

∣

∣

∣

dUj

dz
et

∣

∣

∣

∣

=

∣

∣

∣

∣

z
dUj

dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

k=1

Ajk(z)Uk(z)

∣

∣

∣

∣

∣

≤M‖U(z)‖.

Therefore,

∣

∣

∣

∣

∂|Uj ◦ p|
2

∂s

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∂(Uj ◦ p)

∂s
(Uj ◦ p) + (Uj ◦ p)

∂(Uj ◦ p)

∂s

∣

∣

∣

∣

∣

= 2

∣

∣

∣

∣

∂(Uj ◦ p)

∂s

∣

∣

∣

∣

· |Uj ◦ p| ≤M‖U(z)‖2 ≤M

(

n
∑

k=1

|Uj ◦ p|
2

)

.
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If we put

F =
n
∑

k=1

|Uj ◦ p|
2

we get
∣

∣

∣

∣

∂F

∂s

∣

∣

∣

∣

≤ nMF

and
∣

∣

∣

∣

∂ logF

∂s

∣

∣

∣

∣

≤ nM.

This implies that

−nM ≤
∂ logF

∂s
≤ nM,

and by integration from s0 to s1, s0 ≤ s1, we get

−nM(s1 − s0) ≤ logF (s1 + iθ) − logF (s0 + iθ) ≤ nM(s1 − s0),

i. e.

| logF (s1 + iθ) − logF (s0 + iθ)| ≤ nM |s1 − s0|

for all s0 + iθ, s1 + iθ ∈ C̃. Hence, if we fix s1 we get

| logF (s0 + iθ)| ≤ nM |s0| +M ′,

uniformly in θ0 ≤ θ ≤ θ1, for sufficiently large M ′ > 0. This implies that

logF (t) ≤ −nM Re t+M ′

for t ∈ C̃ with Re t ≤ 0. For some sufficiently large c > 0, we finally have

0 ≤ F (t) ≤ c
∣

∣e−nMt
∣

∣

for all t ∈ C̃ with Re t ≤ 0. Hence, near 0 in C we have

‖U(z)‖ ≤ d
1

|z|k

for some sufficiently large d > 0 and k ∈ Z+. This implies that U is of moderate growth
at 0. ˜

4. Fuchs’ theorem. Now we want the following remarkable theorem due to Fuchs.
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4.1. Theorem. Let

P = a0
dn

dzn
+ a1

dn−1

dzn−1
+ . . .+ an−1

d

dz
+ an

be a differential operator with holomorphic coefficients on D. Assume that a0 has no zeros
in D except maybe at 0. Then the following statements are equivalent:

(i) all “multivalued” solutions of the differential equation Py = 0 on D∗ have moderate
growth at 0;

(ii) the functions ak

a0
have at most a pole of order k at 0 for k = 1, 2, . . . , n.

We start the proof with the following remark.

4.2. Lemma. Let D = z d
dz

. Then

(i)

Dn = zn dn

dzn
+

n
∑

i=1

ciz
n−i d

n−i

dzn−i

with ci ∈ Z;
(ii)

zn dn

dzn
= Dn +

n
∑

j=1

djD
n−j

with dj ∈ Z.

Proof. (i) Clearly, the assertion is true for n = 1. Also, D(zk) = kzk for any k ∈ Z+.
Therefore,

D

(

zk dk

dzk

)

= zk+1 d
k+1

dzk+1
+ kzk dk

dzk

for any k ∈ Z+. Hence, if we assume that the assertion holds for n− 1, we get

Dn = DDn−1 = D

(

zn−1 d
n−1

dzn−1
+

n−1
∑

i=1

ci
dn−1−i

dzn−1−i

)

= D

(

zn−1 d
n−1

dzn−1

)

+
n−1
∑

i=1

ciD

(

dn−1−i

dzn−1−i

)

,

and the relation follows from the previous formula.
(ii) follows immediately from (i). ˜

Therefore, by dividing the differential equation Py = 0 with a0 and multiplying by zn,
we get the differential equation

zn d
ny

dzn
+

(

z
a1

a0

)

zn−1 d
n−1y

dzn−1
+ . . .+

(

zn−1 an−1

a0

)

z
dy

dz
+

(

zn an

a0

)

y = 0.
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The condition (ii) in 1. is equivalent with the condition that all coefficients zk ak

a0
, k =

1, 2, . . . , n, have removable singularities at 0.
Therefore, 2. implies that if the condition (ii) holds the equation Py = 0 can be written

as
Dny + b1D

n−1y + . . .+ bn−1Dy + bny = 0

where bk, k = 1, 2, . . . , n, are holomorphic on D. Applying 2. in the opposite direction,
we see that if the equaton can be written in this for with holomorphic bk, k = 1, 2, . . . , n,
P satisfies the condition (ii).

Define
Y1 = y, Y2 = Dy, . . . , Yn = Dn−1y,

and Y as the column vector with components Y1, Y2, . . . , Yn. Then

DY1 = Y2, DY2 = Y3, . . . , DYn−1 = Yn, DYn = −b1Yn − b2Yn−1 − . . .− bn−1Y2 − bnY1,

i. e.

z
dY

dz
= BY

where

B =

















0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1

−bn −bn−1 −bn−2 . . . −b2 −b1

















.

By 3.6. this system on D∗ has a regular singularity at 0. Hence, its solutions have moderate
growth at 0. This proves that (ii)⇒(i) in 1.

Now we want to prove the converse. The proof is by induction in degree of P . Assume
that all solutions of Py = 0 have moderate growth at 0. By 2.2. there exists a “multivalued”
solution u(z) = zαf(z) where α ∈ C and f is holomorphic on D∗. Since y has moderate
growth at 0, f has at most a pole at 0 and by changing α we can actually assume that f
is holomorphic on D and f(0) 6= 0. Also, by shrinking D if necessary we can assume in
addition that f has no zeros in D.

Assume first that the degree of P is 1. In this case, P = D + b1. Therefore,

0 = P (u) = D(zαf) + b1z
αf = αzαD(f) + b1z

αf = zα(αD(f) + b1f).

Therefore,

b1 = α
D(f)

f

and it is holomorphic in D. This proves the assertion in this case.
Consider the differential equation P (uv) = 0 with degP > 1. Clearly,

D(uv) = D(u)v + uD(v),
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hence by induction

Dk(uv) =

k
∑

j=0

(

k

j

)

Dk−juDjv

for k ∈ Z+. This implies that, if we put b0 = 1, we have

P (uv) = Dn(uv) + b1D
n−1(uv) + . . .+ bn−1D(uv) + bn(uv) =

n
∑

k=0

bn−kD
k(uv)

=
n
∑

k=1

bn−k

k
∑

j=0

(

k

j

)

Dk−juDjv + bnuv = P (u)v +
n
∑

k=1

k
∑

j=1

(

k

j

)

bn−kD
k−juDj−1(Dv)

=
n−1
∑

k=0

k
∑

j=0

(

k + 1

j + 1

)

bn−k−1D
k−juDj(Dv)

=
n−1
∑

j=0





n−1
∑

k=j

(

k + 1

j + 1

)

bn−k−1D
k−ju



Dj(Dv)

=
n−1
∑

j=0

(

n−j−1
∑

p=0

(

p+ j + 1

j + 1

)

bn−j−1−pD
pu

)

Dj(Dv)

after relabeling the indices. Since

D(u) = D(zαf) = D(zα)f + zαD(f) = αzαf + zαD(f) = zα(αf +D(f))

by induction we see that for any j ∈ Z+ we have

Dj(u) = zαhj

where hj is holomorphic in D and h0 = f . Therefore,

P (uv) = zα





n−1
∑

j=0

(

n−j−1
∑

p=0

(

p+ j + 1

p

)

bn−j−1−php

)

Dj(Dv)





and P (uv) = 0 is equivalent to

n−1
∑

j=0

dn−1−jD
j(Dv) = 0

with d0 = 1 and

dk =
k
∑

p=0

(

p+ n− k

p

)

bk−php

= bkh0 +

k
∑

p=1

(

p+ n− k

p

)

bk−php = bkf +

k
∑

p=1

(

p+ n− k

p

)

bk−php
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for k = 1, 2, . . . , n−1. Therefore, all solutions v of P (uv) = 0 have the form z−α 1
f
y where

y is a solution of P (y) = 0. By our assumption, all solutions of P (y) = 0 have moderate
growth at 0. Therefore, all solutions v of P (uv) = 0 have moderate growth at 0. By 1.2. all
functions Dv have also moderate growth at 0. Let w be a “multivalued” solution of the
equation

n−1
∑

j=0

djD
jw = 0,

then there exists a “multivalued” holomorphic function v such thatDv = w. Hence, w must
have moderate growth at 0. By the induction assumption it follows that the coefficients
dk are holomorphic in D. By induction in k, this implies that all bk, k = 1, 2, . . . , n, are
holomorphic in D∗. This completes the proof of the implication (i)⇒(ii).

5. Formal solutions. Let C[[z]] be the ring of formal series, i. e. the ring consisting
of series

∞
∑

p=0

apz
p

where ap ∈ C and ap = 0 for p sufficiently negative. Clearly, the addition

∞
∑

p=0

apz
p +

∞
∑

p=0

bpz
p =

∞
∑

p=0

(ap + bp)z
p

and multiplication by a complex number

λ

(

∞
∑

p=0

apz
p

)

=

∞
∑

p=0

λapz
p

and the multiplication

(

∞
∑

p=0

apz
p

)(

∞
∑

q=0

bqz
q

)

=

∞
∑

s=0

(

s
∑

k=0

akbs−k

)

zs

are well-defined operations in C[[z]].
Let A be the complex vector space with the basis {zα |α ∈ C}. Then we can define a

multiplication A× A −→ A via
zα zβ = zα+β

for α, β ∈ C. One can check that this defines a commutative ring structure on A.
Let B be the complex vector space with the basis {logk z | k ∈ Z+}. Then we can define

a multiplication B ×B −→ B via

logk z logl z = logk+l z
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for any k, l ∈ Z. One can check that this defines a commutative ring structure on B.
Now, A⊗C B ⊗C C[[z]] is a commutative ring. Let I be its ideal generated by elements

of the form z ⊗ 1 ⊗ 1 − 1 ⊗ 1 ⊗ z. The ring

L = (A⊗C B ⊗C C[[z]])/I

is called the ring of formal logarithmic series. Elements of L are finite sums of the type

Φ =
∑

α,k

zα logk z Φα,k

where Φα,k are formal power series. We say that this expression is reduced if Φα,k 6= 0
and Φβ,l 6= 0 implies that α − β /∈ Z. Clearly, every Φ can be represented by a reduced
expression.

5.1. Lemma. Let Φ ∈ L. If

Φ =
∑

α,k

zα logk z Φα,k

is a reduced expression, the following assertions are equivalent:

(i) Φ = 0;
(ii) Φα,k = 0 for all α ∈ C and k ∈ Z+.

Proof. Clearly, (ii) implies (i).
To prove the converse, first define an automorphism ψ of A by

ψ(zα) = e2πiαzα

for α ∈ C. This automorphism defines an automorphism of the ring A⊗CB⊗C C[[z]] which
acts as identity on the second and third factor. This automorphisms leaves z⊗1⊗1−1⊗1⊗z
fixed, hence it leaves I invariant. It follows that it defines an automorphism Ψ of L which
satisfies

Ψ(zα logk zΦ) = e2πiαzα logk z Φ

for any α ∈ C, k ∈ Z+ and formal series Φ.
Therefore

0 = Φ =
∑

α

zα

(

∑

k

logk z Φα,k

)

,

and each term in the first sum is an eigenvector of Ψ for the eigenvalue e2πiα. Since all of
these eigenvalues are mutually different by our assumption, we conclude that

∑

k

logk z Φα,k = 0

for all α ∈ C.
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Now we can define an automorphism ω of B by

ω(log z) = c log z

where c ∈ R∗
+, and extend to an automorphism of the ring A ⊗C B ⊗C C[[z]] which acts

as identity on the first and third factor. Again, this automorphism acts as identity on
z ⊗ 1 ⊗ 1 − 1 ⊗ 1 ⊗ z, hence it leaves the ideal I invariant. Therefore, it induces an
automorphism Ω of L given by

Ω(zα logk z Φ) = ckzα logk z Φ

for any α ∈ C, k ∈ Z+ and formal series Φ.
Therefore, each term in the sum

∑

k

logk z Φα,k = 0

is an eigenvector of Ω with eigenvalue ck. Since c is a positive number, all its powers are
mutually different and Φα,k = 0. ˜

We can define the action of d
dz

on L by

d

dz

(

zα logk z

∞
∑

p=0

apz
p

)

= (αzα−1 logk z+kzα−1 logk−1 z)

∞
∑

p=0

apz
p + zα logk z

∞
∑

p=0

papz
p−1

for any α ∈ C and k ∈ Z+.

5.2. Lemma. Let Φ be a formal logarithmic series such that dΦ
dz

= 0. Then Φ is a
constant.

Proof. Let
Φ =

∑

α,k

zα logk z Φα,k

be a reduced expression of Φ. In this case,

0 =
dΦ

dz
=
∑

α

zα−1
∑

k

(

(α logk z + k logk−1 z)Φα,k + z logk z
dΦα,k

dz

)

.

By 1, this immediately implies that for each α we have

0 =
∑

k

(

(α logk z + k logk−1 z)Φα,k + z logk z
dΦα,k

dz

)

=
∑

k

logk z

(

αΦα,k + (k + 1)Φα,k+1 + z
dΦα,k

dz

)

.
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For a fixed α, take the largest k with Φα,k 6= 0. Then Φα,k+1 = 0, hence

αΦα,k + z
dΦα,k

dz
= 0.

On the other hand, if Φα,k =
∑∞

p=0 apz
p we have

αΦα,k + z
dΦα,k

dz
= 0,

and

0 = α
∞
∑

p=0

apz
p +

∞
∑

p=1

papz
p =

∞
∑

p=0

(α+ p)apz
p.

Hence ap 6= 0 implies α+ p = 0. Hence, if α /∈ −Z, we have Φα,k = 0. Therefore, Φα,k 6= 0
implies that α = −s ∈ −Z and Φ−s,k = azs for some a ∈ C. Now,

−sΦ−s,k−1 + kazs + z
dΦ−s,k−1

dz
= 0.

Therefore, if Φ−s,k−1 =
∑∞

p=0 bpz
p, we get

0 = −s
∞
∑

p=0

bpz
p + kazs +

∞
∑

p=0

pbpz
p =

∞
∑

p=0

(p− s)bpz
p + kazs.

This implies that (p− s)bp = 0 for p 6= s, i. e. bp = 0 in this case. Also, ka = 0. Therefore,
k = 0. It follows finally that Φα,k 6= 0 implies that α = −s ∈ −Z, k = 0 and Φ−s,0 = azs

for some a ∈ C. Hence, Φ = z−sΦ−s,0 = a. ˜

We say that a formal logarithmic series Φ is convergent if there exists a reduced expres-
sion

Φ =
∑

α,k

zα logk z Φα,k

such that the formal power series Φα,k converge in some disk D around 0. Clearly, if one
reduced expression of Φ has this property all other reduced expresions have it too.

The next result claims that in the case of a regular singularity formal solutions of a first
order system are automatically convergent.

5.3. Theorem. Let
dU

dz
= AU

be a first order system on D∗ with a regular singularity at 0. Let

F (z) =
∑

α,k

zα logk z Fα,k
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be a reduced expression of a formal logarithmic series which is a formal solution of this
system. Then formal power series Fα,k converge in D.

Proof. Let S(z) = P (z)zR be the fundamental matrix of our system. Then its inverse
is given by

S(z)−1 = z−RP (z)−1,

hence its matrix coefficients are formal logarithmic series. This implies that the matrix
coefficients of S(z)−1F (z) are formal logarithmic series. Also,

d(S(z)−1F (z))

dz
=
dS(z)−1

dz
F (z) + S(z)−1 dF (z)

dz
=
dS(z)−1

dz
F (z) + S(z)−1A(z)F (z).

Moreover, by differentiation of S(z)−1S(z) = I, we get

dS(z)−1

dz
S(z) = −S(z)−1 dS(z)

dz
= −S(z)−1A(z)S(z),

what leads to
dS(z)−1

dz
= −S(z)−1A(z),

and finally to

d(S(z)−1F (z))

dz
= −S(z)−1A(z)F (z) + S(z)−1A(z)F (z) = 0.

By 1, we conclude that S(z)−1F (z) = C0 ∈ Cn and F (z) = S(z)C0. Therefore, F is
convergent. ˜

6. Frobenius method. In this section we shall discuss a method for solving differential
equations near regular singular points due to Frobenius. We shall restrict ourselves to the
treatment of a second order differential equation

P (y) =
d2y

dz2
+ p(z)

dy

dz
+ q(z)y = 0

on D∗. By Fuchs’ theorem, p has at most a pole of order 1 at 0, and q at most a pole of
order 2 at 0. Let

zp(z) =

∞
∑

r=0

arz
r

and

z2q(z) =

∞
∑

s=0

bsz
s

be the corresponding Taylor series in D. We want to find a formal solution y of the
equation of the form

y(z) = y(λ, z) = zλ

∞
∑

t=0

ctz
t =

∞
∑

t=0

ctz
t+λ.
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We have

z2y′′ + zp(z)zy′ + z2q(z)y

=

∞
∑

t=0

(t+λ)(t+λ−1)ctz
t+λ+

(

∞
∑

r=0

arz
r

)(

∞
∑

t=0

(t+ λ)ctz
t+λ

)

+

(

∞
∑

s=0

bsz
s

)(

∞
∑

t=0

ctz
t+λ

)

=

∞
∑

t=0

(t+ λ)(t+ λ− 1)ctz
t+λ +

∞
∑

t=0

(

t
∑

k=0

(t− k + λ)akct−k

)

zt+λ +

∞
∑

t=0

(

t
∑

l=0

blct−l

)

zt+λ

=

∞
∑

t=0

(

(t+ λ)(t+ λ− 1)ct +

t
∑

k=0

((t− k + λ)ak + bk)ct−k

)

zt+λ.

Denote by
f(λ) = λ(λ− 1) + λa0 + b0

the indicial polynomial of our equation at 0. Assume that ct are rational functions in λ
satisfying

0 = (t+ λ)(t+ λ− 1)ct +

t
∑

k=0

((t− k + λ)ak + bk)ct−k

=
(

(t+ λ)(t+ λ− 1) + (t+ λ)a0 + b0
)

ct +

t
∑

k=1

((t− k + λ)ak + bk)ct−k

for t ∈ N. Then

ct =

t
∑

k=1

((t− k + λ)ak + bk)ct−k

f(λ+ t)

for t ∈ N, and all coefficients are uniquely determined by c0 using these recursion relations.
Also, in this case we get

P (y) = z2y′′ + zp(z)zy′ + z2q(z)y = f(λ)c0z
λ.

The equation
f(λ) = λ(λ− 1) + λa0 + b0 = 0

If r is a root of the indicial equation such that r+ N doesn’t contain any other root, λ = r
is a regular point of all ct if it is a regular point of c0. Therefore, if we put c0 = 1, we see
that y(r, z) is a formal solution of our equation.

There are two possibilities for the roots of the indicial equation.
(A) The difference of the roots r and s of the indicial equation is not an integer. In this

case we immediately see that by putting c0 = 1 and

y1(z) = y(r, z) = zrf1(z), y2(z) = y(s, z) = zsf2(z)
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we get two formal solutions of our differential equation with formal power series f1 and
f2. By 5.3, we see that f1 and f2 converge in D and these solutions are actual solutions
of our equation in D∗. Also, they are clearly linearly independent since r − s /∈ Z.

(B) The difference of the roots r − s ∈ Z+. In this case we can get one solution
corresponding to the root r by putting c0 = 1:

y1(z) = y(r, z) = zrf1(z)

and as before we conclude that f1 is a convergent power series inD. It remains to determine
another, linearly independent solution. There are two slightly different cases:

(B1) Assume in addition that r = s. Then f(λ) = (λ− r)2. Hence if we put c0 = 1 and

P

(

∂y

∂λ

)

=
∂P (y)

∂λ
= f ′(λ)zλ + f(λ)zλ log z = (λ− r)(2zλ + (λ− r)zλ log z).

Hence

y2(z) =
dy(λ, z)

dλ

∣

∣

∣

∣

λ=r

is also a formal solution of this equation. To find its form we remark that

∂y

∂λ
= zλ log z

∞
∑

t=0

ctz
t + zλ

∞
∑

t=0

∂ct
∂λ

zt,

hence
y2(z) = log z y1(z) + zrf2(z)

where f2 is a formal power series. As before, we conclude that it converges in D. Clearly,
this solution is linearly independent from y1.

(B2) Assume that r 6= s. Then f(λ) = (λ − r)(λ − s) and t0 = r − s ∈ N. Therefore,
f(s+ t0) = 0 and if we solve the recursion relations with c0 = 1 we see that ct0 can have a
pole at s, and we cannot get a formal solution by evaluating y(λ, z) at λ = s. To eliminate
this problem we put c0 = λ− s. In this case c0, c1, c2, . . . , ct0−1 contain λ− s as a factor.
Since they all have a zero at s, ct0 is regular at s and all ct, t > t0, are regular at s. By
evaluating y(λ, z) at s we would get a formal solution

Y (z) = zs

∞
∑

t=0

ct(s)z
t = zs

∞
∑

t=t0

ct(s)z
t = zr

∞
∑

t=0

ct+t0(s)z
t

since all coefficients c0, c1, . . . , ct0−1 would vanish. By 5.3, it is a converges. On the other
hand,

P

(

∂y

∂λ

)

=
∂P (y)

∂λ
= f ′(λ)c0z

λ + f(λ)c′0z
λ + f(λ)c0z

λ log z

= f ′(λ)(λ− s)zλ + f(λ)zλ + f(λ)(λ− s)zλ log z,
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hence
∂y

∂λ
= zλ log z

∞
∑

t=0

ctz
t + zλ

∞
∑

t=0

∂ct
∂λ

zt,

evaluated at λ = s is also a formal solution. Since ∂c0

∂λ
= 1 we see that this solution has

the form
y2(z) = log z Y (z) + zsf2(z)

where f2 is a convergent series in D with f2(0) = 1, hence it is not proportional to y1.
Therefore, every solution is a linear combination of y1 and y2. In particular,

zr

∞
∑

t=0

ct+t0(s)z
t = Y = c1y1 + c2y2 = c1z

rf1(z) + c2z
sf2(z) + c2 log zY (z).

Since there are no terms involving log z on the left side this implies that c2 = 0, and Y is
proportional to y1. Therefore,

y2(z) = a log zy1(z) + zsf2(z)

for some a ∈ C.

Remark. The eignvalues of the monodromy in the case (A) are e2πir and e2πis and
correspond to eigenvectors y1 and y2. Therefore, in this case the monodromy is a semisim-
ple matrix. In case (B) the monodromy has one eigenvalue e2πir = e2πis. In the case (B1)
it is not semisimple, while in the case (B2) it is semisimple if and only if the constant a is
zero.

6. Bessel equation. As an example, we consider now the Bessel equation

z2y′′ + zy′ + (z2 − ρ2)y = 0

where ρ ∈ C. Clearly, this differential equation has only 0 as a singular point in C, and
this is a regular singular point. Therefore, we can apply the Frobenius method to find
solutions in C∗. Lrt

y = y(λ, z) = zλ

∞
∑

p=0

cpz
p

λ ∈ C. Then

z2y′′ + zy′ + (z2 − ρ2)y

=
∞
∑

p=0

(p+ λ)(p+ λ− 1)cpz
p+λ +

∞
∑

p=0

(p+ λ)cpz
p+λ +

∞
∑

p=0

cpz
p+λ+2 − ρ2

∞
∑

p=0

cpz
p+λ

=

∞
∑

p=0

(

(p+ λ)2 − ρ2
)

cpz
p+λ +

∞
∑

p=2

cq−2z
q+λ

= (λ2 − ρ2)c0z
λ +

(

(λ+ 1)2 − ρ2
)

c1z
λ+1 +

∞
∑

p=2

(

(

(p+ λ)2 − ρ2
)

cp + cp−2

)

zp+λ.
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Assume that c1 = 0 and that

(

(p+ λ)2 − ρ2
)

cp + cp−2 = 0

for all p ≥ 2. Then we have
c2p+1 = 0

for p ∈ Z+ and

cp = −
cp−2

(p+ λ)2 − ρ2

for p ≥ 2, and
z2y′′ + zy′ + (z2 − ρ2)y = (λ2 − ρ2)c0z

λ.

It remains to find even coefficients c2p, p ∈ Z+. We have

c2p = −
c2(p−1)

(2p+ λ)2 − ρ2
= −

c2(p−1)

(2p+ λ− ρ) (2p+ λ+ ρ)
= −

c2(p−1)

22 (p+ λ−ρ
2 ) (p+ λ+ρ

2 )
.

By induction we see that

c2p =
(−1)p

22p

Γ(λ−ρ
2 + 1) Γ(λ+ρ

2 + 1)

Γ(λ−ρ
2

+ p+ 1) Γ(λ+ρ
2

+ p+ 1)
c0

for p ∈ Z+.
Assume now that Re ρ ≥ 0. The indicial equation is λ2 = ρ2, so its roots are ρ and −ρ.

This implies that one solution of the equation is

zρ

∞
∑

p=0

c2p(ρ)z
2p = zρ

∞
∑

p=0

(−1)p Γ(ρ+ 1)

Γ(p+ 1) Γ(ρ+ p+ 1)
c0

(z

2

)2p

= zρ

∞
∑

p=0

(−1)p Γ(ρ+ 1)

p! Γ(ρ+ p+ 1)
c0

(z

2

)2p

.

If we put

c0 =
1

2ρΓ(ρ+ 1)

we get that one solution is given by

Jρ(z) =

∞
∑

p=0

(−1)p 1

p! Γ(ρ+ p+ 1)

(z

2

)ρ+2p

.

Since 1
Γ is an entire function, this defines a formal series for arbitrary ρ ∈ C. This formal

series is always a formal solution of the Bessel equation, hence by 5.3. it is convergent.
The function Jρ is called the ρth Bessel function. If ρ /∈ −N, 1

Γ(ρ+1) 6= 0, hence the leading

coefficients of Jρ and J−ρ are nonzero. This implies that the solutions Jρ and J−ρ of the
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Bessel differential equation are not proportional for for ρ /∈ −Z+, i. e. the arbitrary solution
of this equation has the form

y = C1 Jρ + C2 J−ρ.

The functions Γ(ρ+p+1) have a first order pole for p = 0, 1, . . . , n−1, at ρ = −n, n ∈ Z.
Therefore, the corresponding coefficients are all zero. It follows that

J−n(z) =
∞
∑

p=n

(−1)p 1

p! Γ(−n+ p+ 1)

(z

2

)−n+2p

= (−1)n

∞
∑

q=0

(−1)q 1

(q + n)! q!

(z

2

)n+2q

= (−1)n

∞
∑

q=0

(−1)q 1

q! Γ(n+ q + 1)

(z

2

)n+2p

,

i. e.
J−n = (−1)nJn

for n ∈ Z+. Therefore, we have to determine another linearly independent solution of
Bessel equation for integral ρ = n.

Assume first that ρ = 0. Then, if we put c0 = 1, we get

y = zλ

∞
∑

p=0

(−1)p Γ(λ
2

+ 1)2

Γ(λ
2

+ p+ 1)2

(z

2

)2p

.

Let

dp =
Γ(λ

2 + 1)2

Γ(λ
2 + p+ 1)2

.

Then d0 = 1 and

∂dp

∂λ

∣

∣

∣

∣

λ=0

= 2
1

p!

∂

∂λ

(

Γ(λ
2 + 1)

Γ(λ
2 + p+ 1)

)∣

∣

∣

∣

∣

λ=0

= 2
1

p!

∂

∂λ

(

1

(λ
2

+ 1)(λ
2

+ 2) . . . (λ
2

+ p)

)∣

∣

∣

∣

∣

λ=0

= −
1

p!2

p
∑

q=1

1

q
,

for p ∈ N. Hence,

∂y

∂λ

∣

∣

∣

∣

λ=0

= log z

∞
∑

p=0

(−1)p 1

Γ(p+ 1)2

(z

2

)2p

−

∞
∑

p=1

(−1)p 1

p!2

(

p
∑

q=1

1

q

)

(z

2

)2p

= log zJ0(z) +

∞
∑

p=1

(−1)p+1 1

p!2

(

p
∑

q=1

1

q

)

(z

2

)2p

.

This implies that a solution of the Bessel equation linearly independent from J0 for ρ = 0
is given by

log z J0(z) +

∞
∑

p=1

(−1)p+1

p!2

(

p
∑

q=1

1

q

)

(z

2

)2p

.
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It remains to treat the case ρ = n ∈ N. As we remarked

y(λ, z) = zλ

∞
∑

p=0

(−1)p Γ(λ−n
2

+ 1) Γ(λ+n
2

+ 1)

Γ(λ−n
2

+ p+ 1) Γ(λ+n
2

+ p+ 1)
c0

(z

2

)2p

.

Denote

dp =
Γ(λ−n

2
+ 1) Γ(λ+n

2
+ 1)

Γ(λ−n
2

+ p+ 1) Γ(λ+n
2

+ p+ 1)
c0

for p ∈ Z+. Then

dp =
c0

(λ−n
2

+ 1)(λ−n
2

+ 2) . . . (λ−n
2

+ p)(λ+n
2

+ 1)(λ+n
2

+ 2) . . . (λ+n
2

+ p)
,

hence, if p ≥ n the first factor has a first order pole at λ = −n. If we put

c0 = −2n−1 (n− 1)! (λ+ n),

we eliminate this pole. Also, we get dp(−n) = 0 for p < n. On the other hand, for p ≥ n
we get

dp(−n) = −
2n(n− 1)!

p!

1

(−n+ 1)(−n+ 2) . . . (−2) · (−1) · 1 · 2 . . . (p− n)

= 2n(−1)n 1

p!(p− n)!
.

Therefore,

y2(z) = 2n log z z−n

∞
∑

p=n

(−1)p+n 1

p!(p− n)!

(z

2

)2p

+ z−n

∞
∑

p=0

(−1)p ∂dp

∂λ
(−n)

(z

2

)2p

= log z
∞
∑

q=0

(−1)q 1

(q + n)!q!

(z

2

)2q+n

+ 2−n

∞
∑

p=0

(−1)p ∂dp

∂λ
(−n)

(z

2

)2p−n

= log zJn(z) + 2−n

∞
∑

p=0

(−1)p ∂dp

∂λ
(−n)

(z

2

)2p−n

.

Now, for 0 ≤ p ≤ n− 1,

∂dp

∂λ
(−n) = −

2n−1(n− 1)!

p!

1

(−n+ 1)(−n+ 2) . . . (−n+ p)
= (−1)p−1 2n−1(n− p− 1)!

p!
.

For p = n, we have

∂dp

∂λ
(−n) = (−1)n−1 2n−1

n!

n
∑

q=1

1

q
;
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and for p > n, we have

∂dp

∂λ
(−n) = (−1)n−1 2n−1

p!(p− n)!

(

p
∑

q=1

1

q
+

p−n
∑

q=1

1

q

)

.

This finally leads to

y2(z) = log zJn(z) −
1

2

n−1
∑

p=0

(n− p− 1)!

p!

(z

2

)2p−n

−
1

2

1

n!

(

n
∑

q=1

1

q

)

(z

2

)n

−
1

2

∞
∑

p=n+1

(−1)p+n 1

p!(p− n)!

(

p
∑

q=1

1

q
+

p−n
∑

q=1

1

q

)

(z

2

)2p−n

= log zJn(z) −
1

2

n−1
∑

p=0

(n− p− 1)!

p!

(z

2

)2p−n

−
1

2

1

n!

(

n
∑

q=1
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Therefore, for ρ /∈ Z the monodromy of the Bessel equation is semisimple with eigenvalues
e±2πiρ, and for ρ ∈ Z the monodromy is not semisimple and its eigenvalue is e2πiρ.


