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Introduction

This paper is inspired by two classical results in homological algebra of modules
over an enveloping algebra – lemmas of Casselman-Osborne and Wigner. They have
a common theme: they are statements about derived functors. While the statements
for the functors themselves are obvious, the statements for derived functors are not
and the published proofs were completely different from each other.

In the first section we give simple, pedestrian arguments for both results based
on the same principle. They suggest a common generalization which is the topic of
this paper.

In the second section we discuss some straightforward properties of centers of
abelian categories and their derived categories. In the third section, we consider
a class of functors and prove a simple result about their derived functors which
generalizes the first two results.

The original arguments were considerably more complicated and based on dif-
ferent ideas [1], [3] and [5].

1 Classical approach

1.1 Wigner’s lemma

Let g be a complex Lie algebra, U (g) its enveloping algebra and Z (g) the center
of U (g). Denote by M (U (g)) the category of U (g)-modules.
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Let χ : Z (g) −→ C be an algebra morphism of Z (g) into the field of complex
numbers. We say that a module V in M (g) has an infinitesimal character χ if

z · v = χ(z)v for any z ∈Z (g) and any v ∈V.

Theorem 1.1 Let U and V be two objects in M (U (g)) with infinitesimal charac-
ters χU and χV . Then χU 6= χV implies Extp

U (g)
(U,V ) = 0 for all p ∈ Z+.

Proof. Clearly, the center Z (g) of U (g) acts naturally on HomU (g)(U,V ) for any
two U (g)-modules U and V , by

z(T ) = z ·T = T · z for any z ∈Z (g) and any T ∈ HomU (g)(U,V ),

i.e., we can view it as a bifunctor from the category of U (g)-modules into the
category of Z (g)-modules. Hence, its derived functors Ext∗U (g) are bifunctors from
the category of U (g)-modules into the category of Z (g)-modules.

Fix now a U (g)-module U with infinitesimal character χU . Consider the func-
tor F = HomU (g)(U,−) from the category M (U (g)) into the category of Z (g)-
modules. Since the infinitesimal character of U is χU , any element of z ∈ Z (g)
acts on F(V ) = HomU (g)(U,V ) as multiplication by χU (z) for any object V in
M (U (g)).

Fix now a U (g)-module V with infinitesimal character χV . Let

0 −−−−→ V −−−−→ I0 −−−−→ I1 −−−−→ . . . −−−−→ In −−−−→ . . .

be an injective resolution of V . Let z ∈ ker χV . Then we have the commutative dia-
gram

0 −−−−→ I0 −−−−→ I1 −−−−→ . . . −−−−→ In −−−−→ . . .

z
y z

y yz

0 −−−−→ I0 −−−−→ I1 −−−−→ . . . −−−−→ In −−−−→ . . .

.

We can interpret this as a morphism φ · : I· −→ I· of complexes. Clearly, since
H0(I·) = V , we have H0(φ ·) = 0. Therefore, φ · is homotopic to 0. By applying
the functor F to this diagram we get

0 −−−−→ F(I0) −−−−→ F(I1) −−−−→ . . . −−−−→ F(In) −−−−→ . . .

F(z)
y F(z)

y yF(z)

0 −−−−→ F(I0) −−−−→ F(I1) −−−−→ . . . −−−−→ F(In) −−−−→ . . .

,

i.e., a morphism F(φ ·) : F(I·) −→ F(I·) of complexes. Since φ · is homotopic to 0,
F(φ ·) is also homotopic to 0. This implies that all H p(φ ·) : H p(I·) −→ H p(I·),
p ∈ Z, are equal to 0. Since H p(I·) = RpF(V ) = Extp

U (g)
(U,V ), we see that

Extp
U (g)

(U,V ) are annihilated by z.
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On the other hand, by the first remark in the proof, z must act on Extp
U (g)

(U,V )

as multiplication by χU (z).
Since χU 6= χV , there exists z ∈ ker χV such that χU (z) 6= 0. This implies that

Extp
U (g)

(U,V ) must be zero for all p ∈ Z+. ut

1.2 Casselman-Osborne lemma

Now we assume that g is a complex semisimple Lie algebra. Let h be a Cartan
subalgebra of g, R the root system of (g,h) and R+ a set of positive roots. Let n be the
nilpotent Lie algebra spanned by root subspaces of positive roots. Let γ : Z (g)−→
U (h) be the Harish-Chandra homomorphism, i.e., the algebra morphisms such that
z− γ(z) ∈ nU (g) [2, Ch. VIII, §6, no. 4].

Let V be a U (g)-module. Since h normalizes n, the quotient V/nV =C⊗U (n)V
has a natural structure of U (h)-module. Also, Z (g) acts naturally on V/nV , and
this action is given by the composition of γ and the U (h)-action.

We can consider F(V ) = V/nV as a right exact functor F from the category of
U (g)-modules into the category of U (h)-modules. Let Forg denote the forgetful
functor from the category of U (g)-modules into the category of U (n)-modules.
Let Forh denote the forgetful functor from the category of U (h)-modules into the
category of linear spaces. Then we have the following commutative diagram

M (U (g))
F−−−−→ M (U (h))

Forg

y yForh

M (U (n)) −−−−→
H0(n,−)

M (C)

.

By the Poincaré-Birkhoff-Witt theorem, a free U (g)-module is a free U (n)-
module, hence we can use free left resolutions in M (U (g)) to calculate Lie algebra
homology Hp(n,−) of U (g)-modules, i.e., we get the commutative diagram

M (U (g))
LpF
−−−−→ M (U (h))

Forg

y yForh

M (U (n)) −−−−−→
Hp(n,−)

M (C)

,

for any p ∈ Z+. Therefore, Lie algebra homology groups Hp(n,−) of U (g)-
modules have the structure of U (h)-modules.

Theorem 1.2 Let V be an object in M (U (g)). Let z ∈Z (g) be an element which
annihilates V . Then γ(z) annihilates Hp(n,V ), p ∈ Z+.

Proof. Let z ∈Z (g). Let
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. . . −−−−→ Pn −−−−→ . . . −−−−→ P1 −−−−→ P0 −−−−→ V −−−−→ 0

be a projective resolution of V in M (U (g)). Multiplication by z gives the following
commutative diagram:

. . . −−−−→ Pn −−−−→ . . . −−−−→ P1 −−−−→ P0 −−−−→ 0

z
y yz

yz

. . . −−−−→ Pn −−−−→ . . . −−−−→ P1 −−−−→ P0 −−−−→ 0

We can interpret this diagram as a morphism ψ· : P· −→ P· of complexes of U (h)-
modules. Applying the functor F we get the diagram

. . . −−−−→ F(Pn) −−−−→ . . . −−−−→ F(P1) −−−−→ F(P0) −−−−→ 0

F(z)
y yF(z)

yF(z)

. . . −−−−→ F(Pn) −−−−→ . . . −−−−→ F(P1) −−−−→ F(P0) −−−−→ 0

representing F(ψ·), where F(z) is the multiplication by γ(z).
Now, assume that z ∈ Z (g) annihilates V . Then we have H0(ψ·) = 0. It fol-

lows that ψ· is homotopic to 0. This in turn implies that F(ψ·) is homotopic to
0. Hence, the multiplication by γ(z) on F(P·) is homotopic to zero. Therefore, the
multiplication by γ(z) annihilates the cohomology groups of the complex F(P·), i.e.,
γ(z) ·Hp(n,V ) = 0 for p ∈ Z+. ut

2 Centers of derived categories

2.1 Center of an additive category

Let A be an additive category. This implies that for any object V in A , all its
endomorphisms form a ring End(V ) with identity idV .

An endomorphism z of the identity functor on A is an assignment to each object
U in A of an endomorphism zU of U such that for any two objects U and V in A
and any morphism ϕ : U −→V we have zV ◦ϕ = ϕ ◦ zU .

Lemma 2.1 Let z be an endomorphism of the identity functor on A and V an object
in A . Then zV is in the center of the ring End(V ).

Proof. Let e : V −→ V be an endomorphism of V . Then, zV ◦ e = e ◦ zV , i.e., zV
commutes with e. This implies that zV is in the center of End(V ). ut

All endomorphisms of the identity functor on A form a commutative ring with
identity which is called the center Z(A ) of A .

Let B be the full additive subcategory of A . Then, by restriction, any element of
the center of A determines an element of the center of B. Clearly, the induced map
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r : Z(A ) −→ Z(B) is a ring homomorphism. If the inclusion functor B −→A is
an equivalence of categories, the morphism of centers is an isomorphism.

Let U and V be two objects in A . Then the center Z(A ) acts naturally on
Hom(U,V ) by

z(ϕ) = zV ◦ϕ = ϕ ◦ zU

for z ∈ Z(A ). Therefore, Hom(U,V ) has a natural structure of a Z(A )-module.
Clearly, in this way Hom(−,−) becomes a bifunctor from A ◦×A into the category
of Z(A )-modules.1

Assume that C is a triangulated category and T its translation functor. Let z be
an element of the center of C . Let U and V be two objects in C and ϕ : U −→V a
morphism. Then T−1(ϕ) : T−1(U)−→ T−1(V ) is a morphism and we have

zT−1(V ) ◦T−1(ϕ) = T−1(ϕ)◦ zT−1(U).

By applying T to this equality we get

T (zT−1(V ))◦ϕ = ϕ ◦T (zT−1(U)).

Since ϕ : U −→V is arbitrary, we conclude that the assignment U 7−→ T (zT−1(U)) is
an element of the center of A , which we denote by T (z). It follows that T induces
an automorphism of the center Z(C ) of C . The elements of the center Z(C ) fixed
by this automorphisms form a subring with identity which we call the t-center of C
and denote by Z0(C ).

Let
W

[1]
h

��
U

f
// V

g

[[

be a distinguished triangle in C and z an element of the t-center Z0(C ) of C . Clearly,
since z is in the center, we have the commutative diagram

U
f−−−−→ V

g−−−−→ W

zU

y yzV

yzW

U −−−−→
f

V −−−−→
g

W

.

Moreover, since z is in the t-center of C , we have T (zU ) = zT (U) and the diagram

1 A ◦ is the category opposite to A .



6 Dragan Miličić

W h−−−−→ T (U)

zW

y yT (zU )

W −−−−→
h

T (U)

commutes. Therefore,

U
f−−−−→ V

g−−−−→ W h−−−−→ T (U)

zU

y yzV

yzW

yT (zU )

U −−−−→
f

V −−−−→
g

W −−−−→
h

T (U)

is an endomorphism of the above distinguished triangle. It follows that the elements
of the t-center induce endomorphisms of distinguished triangles in C .

Let X be another object of C . The above remark implies that the distinguished
triangle determines long exact sequences

· · · → Hom(X ,U)→ Hom(X ,V )→ Hom(X ,W )→ Hom(X ,T (U))→ . . .

and

· · · → Hom(T (U),X)→ Hom(W,X)→ Hom(V,X)→ Hom(U,X)→ . . .

of Z0(C )-modules.

2.2 Center of a derived category

Let C∗(A ) (where ∗ is b, +,− or nothing, respectively) be the category of (bounded,
bounded from below, bounded from above or unbounded) complexes of objects of
A . Then C∗(A ) is also an additive category.

Let z be an element of the center of A . If

. . . −−−−→ V 0 −−−−→ V 1 −−−−→ . . . −−−−→ V n −−−−→ . . .

is an object in C∗(A ), we get the commutative diagram

. . . −−−−→ V 0 −−−−→ V 1 −−−−→ . . . −−−−→ V n −−−−→ . . .

zV 0

y zV 1

y yzV n

. . . −−−−→ V 0 −−−−→ V 1 −−−−→ . . . −−−−→ V n −−−−→ . . .

which we can interpret as an endomorphism zV · of V ·.
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Let ϕ · : U ·−→V · be a morphism in C∗(A ). Then zV p ◦ϕ p =ϕ p◦zU p for any p∈
Z, i.e., zV · ◦ϕ · = ϕ · ◦ zU · . Therefore, the assignment V · 7−→ zV · defines an element
C∗(z) of the center of C∗(A ). Moreover, we have the following trivial observation.

Lemma 2.2 The map z 7−→C∗(z) defines a homomorphism of the center Z(A ) of
A into the center Z(C∗(A )) of C∗(A ).

Let K∗(A ) be the corresponding homotopic category of complexes. Let [zV · ] be
the homotopy class of endomorphism zV · of V · in C∗(A ). Then it defines an endo-
morphism of V · in K∗(A ). Clearly, the assignment V · 7−→ [zV · ] is an endomorphism
K∗(z) of the identity functor in K∗(A ). Moreover, the category K∗(A ) is triangu-
lated and the translation functor is given by T (U ·)p = U p+1 for any p ∈ Z for any
object U · in K∗(A ). If a morphism ϕ : U · −→ V · is the homotopy class of a mor-
phism of complexes f · : U · −→ V ·, the morphism T (ϕ) : T (U ·) −→ T (V ·) is the
homotopy class of the morphism of complexes given by f p+1 : T (U ·)p −→ T (V ·)p

for p ∈ Z. This immediately implies that T ([zU · ]) = [zT (U ·)] for any element z of the
center of A . It follows that K∗(z) is in the t-center Z0(K∗(A )) of K∗(A ).

Therefore, we have the following observation.

Lemma 2.3 The map z 7−→ K∗(z) defines a homomorphism of the center Z(A ) of
A into the t-center Z0(K∗(A )) of K∗(A ).

Finally, assume that A is an abelian category and let D∗(A ) be the correspond-
ing derived category of A , i.e., the localization of K∗(A ) with respect to all quasi-
isomorphisms. Clearly, for any z ∈ Z(A ), [zV · ] determines an endomorphism [[zV · ]]
of V · in D∗(A ).

Let U · and V · be two complexes in D∗(A ) and ϕ : U · −→V · a morphism of U ·

into V · in D∗(A ). We can represent ϕ by a roof (see, for example [4]):

W ·

s
∼

}}

f

  
U · V ·

where s : U · −→W · is a quasiisomorphism and f : W · −→ V · is a morphism in
K∗(A ). On the other hand, [[zU · ]] and [[zV · ]] are represented by roofs

U ·
idU ·

∼
~~

[zU · ]

  
U · U ·

and
V ·

idU ·

∼
~~

[zV · ]

""
V · V · .
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To calculate the composition [[zV · ]]◦ϕ we consider the composition diagram

W ·
id·W

∼
}}

f

  
W ·

s
∼

}}

f

!!

V ·
id·V

∼
~~

[zV · ]

  
U · V · V ·

which obviously commutes. This implies that the composition is represented by the
roof

W ·

s
∼

}}

[zV · ]◦ f

""
U · V · .

Analogously, to calculate ϕ ◦ [[zU · ]] we consider the composition diagram

W ·

s
∼

}}

[zW · ]

!!
U ·

idU ·

∼
~~

[zU · ]

!!

W ·

s
∼

}}

f

  
U · U · V ·

which commutes since K∗(z) is in the center of K∗(A ). This implies that the com-
position is represented by the roof

W ·

s
∼

}}

f◦[zW · ]

""
U · V · .

Since f ◦ [zW · ] = [zV · ] ◦ f , these two roofs are identical and [[zV · ]] ◦ϕ = ϕ ◦ [[zV · ]].
Hence, the assignment V · 7−→ [[zV · ]] defines an element of the t-center Z0(D∗(A ))
of D∗(A ) which we denote by D∗(z). Moreover, we have the following result.

Lemma 2.4 The map z 7−→D∗(z) defines an injective morphism of the center Z(A )
of A into the t-center Z0(D∗(A )) of D∗(A ).

For any z ∈ Z(A ), we have

H p([[zV · ]]) = zH p(V ·) for any V · in D∗(A ) and any p ∈ Z.

Proof. The second statement follows immediately from the construction.
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To prove injectivity, assume that D∗(z) = 0 for some z ∈ Z(A ). For an object V
in A , denote by D(V )· the complex such that D(V )0 =V and D(V )p = 0 for p 6= 0.
By our assumption, we have [[zD(V )· ]] = 0. This implies that zV = H0([[zD(V )· ]]) = 0.
Therefore, zV = 0 for any V in A , i.e., z = 0. ut

Let z be an element of the t-center Z0(D∗(A )) of D∗(A ). Then

H p+1(zU ·) = H p(T (zU ·)) = H p(zT (U ·))

for any object U · in D∗(A ) and p ∈ Z. Therefore, H0(zU ·) = 0 for all objects U ·

in D∗(A ) is equivalent to H p(zU ·) = 0 for all objects U · in D∗(A ) and p ∈ Z. In
particular,

I0(D∗(A )) = {z ∈ Z0(D∗(A )) | H p(zU ·) = 0 for all U · in D∗(A ) and p ∈ Z}
= {z ∈ Z0(D∗(A )) | H0(zU ·) = 0 for all U · in D∗(A )}

is an ideal in Z0(D∗(A )).
On the other hand, let D : A −→ D∗(A ) be the functor which attaches to each

object V in A the complex D(V )·, such that D(V )0 =V and D(V )p = 0 for all p 6= 0.
This functor is an isomorphism of A onto the full additive subcategory of D∗(A )
consisting of all complexes U · such that U p = 0 for all p 6= 0 [4]. Therefore, we have
a natural homomorphism r of Z(D∗(A )) into Z(A ) which attaches to an element z
of the center of D∗(A ) the element of the center of A given by V 7−→ H0(zD(V ))
for any V in A . In particular, we have a natural homomorphism r : Z0(D∗(A ))−→
Z(A ).

From 2.4, we see that

r(D∗(z))V = H0(D∗(z)D(V )) = H0([[zD(V )]]) = zV

for any z in the center of A and any V in A . Therefore, we have the following
result.

Proposition 2.5 The natural homomorphism r : Z0(D∗(A ))−→ Z(A ) is a left in-
verse of the homomorphism D∗ : Z(A ) −→ Z0(D∗(A )). In particular, it is surjec-
tive.

Its kernel is the ideal I0(D∗(A )).

The situation is particularly nice for bounded derived categories.2

Proposition 2.6 The natural homomorphism r : Z0(Db(A )) −→ Z(A ) is an iso-
morphism.

Proof. We have to prove that I0(Db(A )) = 0. Let z be an element of I0(Db(A )).
Clearly, for any object V in A , we have zD(V ) = 0. Moreover, since z is in the

t-center, zT p(D(V )) = 0 for any p ∈ Z.

2 I do not know any example where this result fails in unbounded case.
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For any object U · in Db(A ) we put

`(U ·) = Card{p ∈ Z | H p(U ·) 6= 0},

and call `(U ·) the cohomological length of U ·.
Now we want to prove that zU · = 0 for all U · in Db(A ). The proof is by induction

in the cohomological length `(U ·). If `(U ·) = 0, U · = 0 and zU · = 0. If `(U ·) = 1,
there exists p ∈ Z such that Hq(U ·) = 0 for all q 6= p. In this case, U · is isomorphic
to the complex which is zero in all degrees q 6= p and in degree p is equal to H p(U ·),
i.e., to T−p(D(H p(U ·))). Hence, by the above remark, zU · = 0.

Assume now that `(U ·) > 1. Let τ≤p and τ≥p be the usual truncation functors
[4]. Then, for any p ∈ Z, we have the truncation distinguished triangle

τ≥p+1(U ·)

[1]

||
τ≤p(U ·) // U ·

__

and by choosing a right p ∈ Z, we have `(τ≤p(U ·)) < `(U ·) and `(τ≥p+1(U ·)) <
`(U ·). Therefore, by the induction assumption, there exists p∈Z such that zτ≤p(U ·)=
0 and zτ≥p+1(U ·) = 0. As we remarked before, this distinguished triangle leads to the
long exact sequence

· · · → Hom(U ·,τ≤p(U ·))→ Hom(U ·,U ·)→ Hom(U ·,τ≥p+1(U ·))→ . . .

of Z0(Db(A ))-modules. By our construction, z annihilates the first and third mod-
ule. Therefore, it must annihilate Hom(U ·,U ·) too. This implies that

0 = z(idU ·) = idU · ◦ zU · = zU · .

ut

3 Centers and derived functors

3.1 Homogeneous functors

Let A and B be two abelian categories. Let R be a commutative ring with identity
and α : R−→ Z(A ) and β : R−→ Z(B) ring morphisms of rings with identity.

By 2.4, α and β define ring morphisms α = D∗ ◦α : R −→ Z0(D∗(A )) and
β = D∗ ◦β : R−→ Z0(D∗(B))

Let F : A −→B be an additive functor. We say that F is R-homogeneous if for
any r ∈ R we have
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β (r)F(V ) = F(α(r)V ) for any object V in A .

Assume now that F is left exact. Assume that there exists a subcategory R of
A right adapted to F [4, ch. III, §6, no. 3]3. Then F has the right derived functor
RF : D+(A )−→ D+(B).

Theorem 3.1 The functor RF : D+(A )−→ D+(B) is R-homogeneous.

Proof. Let V · be a complex in D+(A ). Since R is right adapted to F , there exists a
bounded from below complex R· consisting of objects in R and a quasiisomorphism
q : V · −→ R·. Let z be an element of the center of A . Then we have the commutative
diagram

V ·
q−−−−→ R·

[[zV · ]]

y y[[zR· ]]

V · −−−−→
q

R·
.

By applying the functor RF to it, we get the diagram

RF(V ·)
RF(q)−−−−→ F(R·)

RF([[zV · ]])

y y[[F(z)F(R·)]]

RF(V ·) −−−−→
RF(q)

F(R·)

.

If r ∈ R, α(r) is in the center of A and the above diagram implies that

RF(V ·)
RF(q)−−−−→ F(R·)

RF([[α(r)V · ]])
y y[[β (r)F(R·)]]

RF(V ·) −−−−→
RF(q)

F(R·)

is commutative. Moreover, β (r) is in the center of B, hence we also have

RF(V ·)
RF(q)−−−−→ F(R·)

[[β (r)RF(V ·)]]
y y[[β (r)F(R·)]]

RF(V ·) −−−−→
RF(q)

F(R·)

.

Hence, we conclude that RF([[α(r)V · ]])= [[β (r)RF(V ·)]], i.e., RF is R-homogeneous.
ut

3 I would prefer a proof of the next theorem which doesn’t use the construction of the derived
functor, but its universal property. Unfortunately, I do not know such argument.
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Let V be an object in A . Then

β (r)RF(D(V )) = RF(α(r)D(V )) for any r ∈ R.

By taking cohomology, we get

β (r)RpF(V ) = H p(β (r)RF(D(V ))) = RpF(α(r)V ) for any r ∈ R and p ∈ Z+.

Therefore, we have the following consequence.

Corollary 3.2 The functors RpF : A −→B are R-homogeneous.

We leave to the reader the formulation and proofs of the analogous results for a
right exact functor F and its left derived functor LF : D−(A )−→ D−(B).

3.2 Special cases

Now we are going to illustrate how 1.1 and 1.2 follow from the above discussion.
First, we prove a well-known result about the center of the category of modules.

This is not necessary for our applications, but puts the constructions in a proper
perspective.

Let A be a ring with identity and Z its center. Let M (A) be the category of A-
modules. Any element z in Z determines an endomorphism zU of an A-module U .
Clearly, the assignment U 7−→ zU defines an element of the center Z(M (A)) of
M (A). Therefore, we have a natural homomorphism i : Z −→ Z(M (A)) of rings.

Lemma 3.3 The morphism i : Z −→ Z(M (A)) is an isomorphism.

Proof. If we consider A as an A-module for the left multiplication, we see that
i(z)A is the multiplication by z for any z ∈ Z. Therefore, i(z)A(1) = z and i : Z −→
Z(M (A)) is injective.

Let ζ be an element of the center of A . Then ζA is an endomorphism of A
considered as A-module for left multiplication. Let z = ζA(1). Then

ζA(a) = aζA(1) = az

for any a ∈ A. Moreover, any b ∈ A defines an endomorphism ϕb of A given by
ϕb(a) = ab for all a ∈ A. Since we must have ζA ◦ϕb = ϕb ◦ζA, it follows that

bz = (ζA ◦ϕb)(1) = (ϕb ◦ζA)(1) = zb.

Since b ∈ A is arbitrary, z must be in the center Z of A.
Let M be an arbitrary A-module and m ∈M. Then m determines a module mor-

phism ψm : A−→M given by ψm(a) = am for any a ∈ A. Therefore,

ζM(m) = (ζM ◦ψm)(1) = (ψm ◦ζA)(1) = zm = i(z)Mm.
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Hence ζ = i(z), and i is surjective. ut

Now we return to the notation from the first section. By 3.3, the center of the
category M (U (g)) is isomorphic to Z (g).

First we discuss 1.1. The functor F = HomU (g)(U,−) is a functor from the cat-
egory U (g) into the category of Z (g)-modules. If we define α as the natural mor-
phism of Z (g) into the center of M (U (g)) and β as multiplication by χU (z),
F is clearly Z (g)-homogeneous. This implies that the functors RpF are Z (g)-
homogeneous. Hence, for any V in M (U (g)) we have RpF(zV ) = χU (z) for all
p ∈ Z+. In, particular, if z ∈ ker χV we have

0 = RpF(0) = RpF(zV ) = χU (z).

This clearly contradicts χU 6= χV if Extp
U (g)

(U,V ) 6= 0 for some p ∈ Z.
No we discuss 1.2. The functor F = H0(n,−) is a functor from the category

U (g) into the category of Z (g)-modules. If we define α as the natural morphism of
Z (g) into the center of M (U (g)) and β as the composition of the Harish-Chandra
homomorphism with the natural morphism of U (h) into the center of M (U (h)),
F is clearly Z (g)-homogeneous. This implies that the functors LpF are Z (g)-
homogeneous. Hence for any V in M (U (g)), we have LpF(zV ) = γ(z)LpF(V ) for
all p ∈ Z+. In, particular, if z annihilates V , γ(z) annihilates LpF(V ) = Hp(n,V ) for
all p ∈ Z.
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