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Projective structures with degenerate
holonomy and the Bers density conjecture

By K. Bromberg*

Abstract

We prove the Bers density conjecture for singly degenerate Kleinian sur-
face groups without parabolics.

1. Introduction

In this paper we address a conjecture of Bers about singly degenerate
Kleinian groups. These are discrete subgroups of PSL2C that exhibit some
unusual behavior:

• As groups of projective transformations of the Riemann sphere Ĉ they
act properly discontinuously on a topological disk whose closure is all of
Ĉ.

• As groups of hyperbolic isometries their action on H3 is not convex co-
compact.

• Viewed as dynamical systems they are not structurally stable.

These groups were first discovered by Bers ([Bers2]) where he made the con-
jecture that will be the focus of our work here.

Let M = S × [−1, 1] be an I-bundle over a closed surface S of genus > 1.
We will be interested in the space AH(S) of all Kleinian groups isomorphic
to π1(S). By a theorem of Bonahon, this is equivalent to studying complete
hyperbolic structures on the interior of M . A generic hyperbolic structure on
M is quasi-fuchsian and the geometry is well understood outside of a compact
set. In particular, although the geometry of the surfaces S × {t} will grow
exponentially as t limits to −1 or 1, the conformal structures will stabilize and
limit to Riemann surfaces X and Y . Then M can be conformally compacti-
fied by viewing X and Y as conformal structures on S × {−1} and S × {1},

*This work was partially supported by grants from the NSF and the Clay Mathematics
Institute.
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respectively. Bers showed that X and Y parametrize the space QF(S) of all
quasi-fuchsian structures. In other words QF(S) is isomorphic to T (S)×T (S)
where T (S) is the Teichmüller space of marked conformal structures on S. Let
the Bers slice BX be the slice of QF(S) obtained by fixing X and letting Y

vary in T (S).
This gives an interesting model of T (S) because BX naturally embeds as

a bounded domain in the space P (X) of projective structures on S with con-
formal structure X. The closure BX of BX in P (X) is then a compactification
of Teichmüller space. A point in ∂BX = BX −BX will again correspond to a
complete hyperbolic structure on M . As with structures in BX , the surfaces
S × {t} will converge to the conformal structure X as t → −1. However, as
t→ 1 the structures will not converge.

There are three possibilities for the limiting geometry of the S × {t}. In
the simplest case there will be an essential simple closed curve (or a collection
of curves) c on S such that the length of c on S × {t} limits to zero, while on
the complement of c the surfaces grow exponentially but converge to a cusped
conformal structure. In this case M is geometrically finite. In the other case
there will be a sequence ti → 1 such that S × {ti} has bounded area yet for
any simple closed curve c on S the length of c on S × {ti} will go to infinity
as ti → 1. In other words, the geometry of the S × {ti} is bounded but still
changing radically. Such manifolds are singly degenerate. The final possibility
is that M may have a combination of the first two behaviors.

Understanding such structures is a motivating problem in hyperbolic
3-manifolds and Kleinian groups. Bers made the following conjecture:

Conjecture 1.1 (Bers Density Conjecture [Bers2]). Let Γ ∈ AH(S) be
a Kleinian group. If M = H3/Γ is singly degenerate then Γ ∈ BX where X is
the conformal boundary of M .

There are some special cases where the conjecture is known. Abikoff
[Ab] proved the conjecture when M is geometrically finite. Recently Minsky
[Min3] has proved the conjecture in the case where there is a lower bound
on the length of any closed geodesic in M and Γ has no parabolics (M has
bounded geometry). In a separate, earlier paper ([Min2]), Minsky also proved
the conjecture if S is a punctured torus. In this paper we prove the conjecture
when M has a sequence of closed geodesics ci whose length limits to zero (M
has unbounded geometry). Combined with Minsky’s result we have an almost
complete resolution of Bers’s conjecture:

Theorem 5.4. Assume that Γ ∈ AH(S) has no parabolics. If M = H3/Γ
is singly degenerate then Γ ∈ BX where X is the conformal boundary of M .

There is a more general version of the density conjecture due to Sullivan
and Thurston. It states that every finitely generated Kleinian group is an
algebraic limit of geometrically finite Kleinian groups. In joint work with
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Brock ([BB]) we use some of the ideas of this paper to prove this more general
conjecture for freely indecomposable Kleinian groups without parabolics.

The condition that Γ has no parabolics is a technical one and we be-
lieve with more work, present techniques could be used to prove the complete
conjecture. More precisely, if the surface S has punctures then instead of
studying all Kleinian groups isomorphic to π1(S), we study AH(S), the space
of Kleinian groups in which all of the punctures are parabolic. If one could
prove Conjecture 1.1 for all Γ ∈ AH(S) such that all parabolics in Γ corre-
spond to punctures then the entire conjecture would follow. If M = H3/Γ have
unbounded geometry most of the work in this paper would generalize easily.
If M has bounded geometry then one needs to generalize Minsky’s work. In
particular, most of Minsky’s work applies in this setting; it is only his earliest
paper on the problem ([Min1]) that needs to be generalized.

We also remark that the density conjecture is a consequence of the ending
lamination conjecture. In fact, Minsky’s results on the density conjecture are
a consequence of his work on the ending lamination conjecture. More recently
Brock, Canary and Minsky have annouced work that completes Minsky’s pro-
gram to prove the full ending lamination conjecture ([Min4], [BCM]).

We now outline our results.
Our approach to Conjecture 1.1 is to understand projective structures

with singly degenerate holonomy. Our study will be guided by Goldman’s
classification of all projective structures with quasi-fuchsian holonomy ([Gol]).
In particular, the two conformal structures X and Y that compactify a quasi-
fuchsian manifold also have projective structures Σ− and Σ+. Goldman showed
that all projective structures with quasi-fuchsian holonomy are obtained by
grafting on Σ− or Σ+. For a singly degenerate group we still have the projective
structure Σ− and all of its graftings. On the other hand, while the projective
structure Σ+ is gone we will show that its graftings still exist.

We will use these projective structures to construct a family of quasi-
fuchsian hyperbolic cone-manifolds that converge to the singly degenerate man-
ifold M . Here is our main construction. By a theorem of Otal [Ot], any suffi-
ciently short geodesic c will be unknotted. That is, the product structure can
be chosen such that c is a simple closed curve on S×{0}. Let A be the annulus
c× [0, 1) and let AZ be a lift of A to the Z-cover MZ of M associated to c. Now
remove A from M and AZ from MZ and take the metric completion of both
spaces. Both of these spaces will be manifolds with boundary isometric to two
copies of A meeting at the geodesic c. Next, glue the two manifolds together
along their isometric boundary to form a new manifold Mc. This new mani-
fold will be homeomorphic to M but the hyperbolic structure will be singular
along the geodesic c. In particular Mc will be a hyperbolic cone-manifold, for
a cross-section of a tubular neighborhood of c will be a cone of cone angle 4π.
We will show:
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Theorem 4.2. The hyperbolic cone-manifold Mc is a quasi-fuchsian cone-
manifold with projective boundary Σ and Σc.

The lower half of Mc is isometric to the lower half of M and is therefore
compactified by the same projective structure Σ on the conformal structure X.
The upper half of Mc will be compactified by the new projective structure Σc

which will have conformal structure Yc. Then there is a unique quasi-fuchsian
group Γc ∈ BX such that M ′c = H3/Γc has conformal boundary X and Yc.

If M has unbounded geometry there will be a sequence of closed geodesics
ci with length(ci)→ 0. Repeating the above construction for each ci we obtain
cone-manifolds Mi and quasi-fuchsian manifolds M ′i = H3/Γi. Let Σi be the
component of the projective boundary of M ′i corresponding to X. The final
step is to bound the distance between Σi and Σ in terms of length(ci).

This is done using the deformation theory of hyperbolic cone-manifolds
developed by Hodgson and Kerckhoff for closed manifolds and extended by
the author to geometrically finite cone-manifolds. For each Mi we can use this
deformation theory to find a smooth one-parameter family of cone-manifolds
that interpolates between Mi and M ′i . Furthermore this deformation theory
allows us to control how the projective structure Σ deforms to the projective
structure Σi. As we will discuss below, there is a canonical way to define a
metric on P (X) and in this metric we have:

d(Σ,Σi) ≤ K length(ci).

Therefore Σi → Σ in P (X) which implies that Γi → Γ in AH(S) and Γ ∈ BX .
A novel feature of the above estimate is its use of the analytic theory of cone-
manifolds to obtain results about infinite volume, hyperbolic 3-manifolds. This
approach has turned out to be fruitful in other problems (see [Br1], [BB],
[BBES]) and we expect it will have further applications as well.

Acknowledgments. The author would like to thank Manny Gabet for
drawing Figures 1 and 2 and Jeff Brock for many helpful comments on a draft
version of this paper.

2. Preliminaries

2.1. Kleinian groups. A Kleinian group Γ is a discrete subgroup of PSL2C.
In this paper we will assume that all Kleinian groups are torsion-free. The Lie
group PSL2C acts as both projective transformations of the Riemann sphere
Ĉ and as isometries on hyperbolic 3-space H3. The union H3 ∪ Ĉ is naturally
topologized as a closed 3-ball such that the action of PSL2C on H3 extends
continuously to the action on Ĉ.

The domain of discontinuity Ω ⊂ Ĉ for Γ is the largest subset of Ĉ such
that Γ acts properly discontinuously. The limit set Λ = Ĉ−Ω is the complement
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of Ω in Ĉ. The group Γ will act properly discontinuously on all of H3 so that
the quotient H3/Γ will be a 3-manifold. The quotient (H3 ∪ Ω)/Γ will be a
3-manifold with boundary.

2.2. Projective structures. Let S be a surface. A projective structure Σ
on S is an atlas of charts to Ĉ with transition maps elements of PSL2C, the
group of projective transformations of Ĉ. If Γ is a Kleinian group isomorphic
to π1(S) and Ω′ is a connected component of Ω that is fixed by Γ then the
quotient Ω′/Γ will be a projective structure on S.

As projective transformations are conformal maps, a projective structure
Σ also defines a conformal structure X on S. If T (S) is the Teichmüller
space of marked conformal structures on S and P (S) is the space of projective
structures, then there is a map P (S) −→ T (S) defined by Σ 7→ X.

Let P (X) be the pre-image of X in P (S) under this map. We now define
a metric on P (X). Given two projective structures Σ and Σ′ in P (X) there is
a unique conformal map f between them that is isotopic to the identity on S.
The Schwarzian derivative of f is a holomorphic, quadratic differential φ on X.
(See [Le] for the definition of the Schwarzian derivative.) If ρ is the hyperbolic
metric on X then φρ−2 is a function on X. We let ‖φ‖∞ be the sup norm of
this function. We define our metric on P (X) by setting

d(Σ,Σ′) = ‖φ‖∞.
A projective structure is Fuchsian if it is the quotient of a round disk in Ĉ.

There is a unique Fuchsian element ΣF in P (X) and we let ‖Σ‖∞ = d(Σ,ΣF ).

2.3. Hyperbolic structures. A hyperbolic structure on a 3-manifold M is
a Riemannian metric with constant sectional curvature equal to −1. Equiva-
lently, a hyperbolic structure can be defined as an atlas of local charts to H3

with transition maps that are hyperbolic isometries.
We will also be interested in certain singular hyperbolic structures. We

let H3
α be R3 with cylindrical coordinates (r, θ, z) and the Riemannian metric

dr2 + sinh2 rdθ2 + cosh2 rdz2 where θ is measure modulo α. The metric on
H3
α is a smooth metric of constant sectional curvature ≡ −1 when r 6= 0. It

extends to a complete, singular metric on all of H3
α. The sub-surfaces where

z is constant are hyperbolic planes away from r = 0. At r = 0 there is a
cone-singularity with cone angle α.

If α = 2π then H3
α is isometric to H3. If α = 2πn where n is a positive

integer then there is an obvious map from H3
α to H3 that is a local isometry

when r 6= 0 and has an order n branch locus at r = 0.
A metric on M is a hyperbolic cone-metric if all points in M are either

modeled on H3 or the point (0, 0, 0) in H3
α for some α. All points of the second

type are the singular locus C for M . Clearly C will consist of a collection of
disjoint, simple curves and all points in a component c of C will be modeled
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on H3
α for some fixed α. Then α is the cone-angle for c. In this paper we will

assume that the singular locus consists of a finite collection of simple closed
curves.

2.4. Kleinian surface groups. The space of representations of π1(S) in
PSL2C has a natural topology given by convergence on generators. Let AH(S)
be the space of conjugacy classes of discrete, faithful representations of π1(S)
in PSL2C with the quotient topology. The image of each representation is a
marked Kleinian group so we can view AH(S) as a space of Kleinian groups.
A group Γ ∈ AH(S) is quasi-fuchsian if the limit set of Γ is a Jordan curve.
The domain of discontinuity is then two topological disks Ω− and Ω+. Let
X = Ω−/Γ and Y = Ω+/Γ be the quotient conformal structures on S. The
assignment

Γ 7→ (X,Y )

defines a map from the space of quasi-fuchsian structures QF(S) to T (S) ×
T (S).

Theorem 2.1 (Bers [Bers1]). The above map from QF(S) to T (S) ×
T (S) is a homeomorphism.

We define a Bers’ slice by BX = {X}×T (S) ⊂ QF(S). This set of quasi-
fuchsian groups is isomorphic to T (S). Bers observed that BX embeds as a
bounded domain in P (X) and therefore the closure BX is a compactification
of Teichmüller space ([Bers2]).

To understand a general Γ ∈ AH(S), we need the following important
theorem:

Theorem 2.2 (Bonahon [Bon]). If Γ is in AH(S) then the quotient
3-manifold H3/Γ is homeomorphic to S × (−1, 1).

Bers original study was of groups Γ ∈ AH(S) such that the hyperbolic
structure H3/Γ on S × (−1, 1) extends to a projective structure Σ on S ×
{−1}. If such a Γ is not quasi-fuchsian and has no parabolics, then Γ is singly
degenerate. For a singly degenerate group the domain of discontinuity will be
a single topological disk. On the other hand, if Γ has parabolics then they
will correspond to a collection of disjoint, essential, simple closed curves on S.
The subgroups of Γ corresponding to the components of the complement of the
simple closed curves will either be quasi-fuchsian groups or singly degenerate
groups. We will not investigate groups with parabolics in this paper.

There is a further dichotomy for hyperbolic 3-manifolds with degener-
ate ends. Namely, M has bounded geometry if there is a lower bound on the
length of any closed geodesic in M . Otherwise M has unbounded geometry. As
mentioned in the introduction, Minsky has proved Bers’ conjecture (Conjec-
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ture 1.1) if M has bounded geometry. In fact he has proved a much stronger
result which we only partially state here:

Theorem 2.3 (Minsky [Min3]). Suppose Γ ∈ AH(S) has no parabolics.
Then if M = H3/Γ has bounded geometry, Γ ∈ QF(S). Furthermore if M is
singly degenerate with conformal boundary X then Γ ∈ BX .

2.5. Quasi-fuchsian cone-manifolds. There is an alternate definition of
a quasi-fuchsian manifold that extends naturally to cone-manifolds. A hyper-
bolic structure on the interior of S × [−1, 1] is quasi-fuchsian if it extends to a
projective structure on S × {−1} and S × {1}. More explicitly, for each point
x in S × {−1} or S × {1} there exists a local chart from a neighborhood of x
in S × [−1, 1] (not simply a neighborhood in S × {±1}) to H3 ∪ Ĉ. The tran-
sition maps will again be elements of PSL2C which act as automorphisms of
H3 ∪ Ĉ. This definition agrees with our previous definition of a quasi-fuchsian
structure and extends to a definition of quasi-fuchsian hyperbolic cone-metrics
on S × (−1, 1).

2.6. Handlebodies and Schottky groups. A Kleinian group Γ is a Schottky
group if H = (H3∪Ω)/Γ is a closed handlebody with boundary. A handlebody
has many distinct product structures. In particular if Y is a properly embedded
surface in H such that the inclusion map is a homotopy equivalence then H is
homeomorphic to a product S × [−1, 1] with S × {0} = Y .

2.7. Grafting. A projective structure Σ on a closed surface S defines a
holonomy representation of π1(S) via a developing map. In particular, Σ lifts to
a projective structure Σ̃ on the universal cover S̃. Any chart for Σ will lift to a
chart for Σ̃. Since Σ̃ is simply connected, this chart will extend to a projective
map D : S̃ −→ Ĉ on all of S̃. Furthermore there will be a representation
ρ : π1(S) −→ PSL2C such that

D(g(x)) = ρ(g)D(x)

for all g ∈ π1(S) and all x ∈ S̃. Then D is a developing map with holonomy ρ.
Note that D is unique up to post-composition with elements of PSL2C while
ρ is unique up to conjugacy.

Now let c be an essential, simple closed curve on S and c̃ a component
of the pre-image of c in S̃. Let g ∈ π1(S) generate the Z-subgroup that
preserves c̃. We also assume that ρ(g) is hyperbolic and that D(c̃) is a simple
arc in Ĉ. Then the quotient of Ĉ minus the fixed points of ρ(g) is a torus T ,
D(c̃) descends to an essential simple closed curve c′ on T and A = T − c′ is a
projective structure on an annulus. We can form a new projective structure
on S by removing the curve c from the projective structure Σ and gluing in
n copies of A. The new projective structure is then a grafting of Σ along the
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curve c. Most importantly for our purposes the grafted projective structure
has the same holonomy as Σ.

Goldman used grafting to classify projective structures with quasi-fuchsian
holonomy. Let Γ be a quasi-fuchsian group with Ω− and Ω+ the two compo-
nents of the domain of discontinuity. Then Σ± = Ω±/Γ are projective struc-
tures on S.

Theorem 2.4 (Goldman [Gol]). All projective structures with holonomy
Γ are obtained by grafting on either Σ− or Σ+.

In the next section, we will conjecture that a similar classification holds
for singly degenerate Kleinian groups.

3. Projective structures

Let S be a closed surface of genus g > 1 and Γ a singly degenerate Kleinian
group isomorphic to π1(S). Let Σ = Ω/Γ be the quotient projective structure
on S.

Let D : S̃ −→ Ω ⊂ Ĉ be a developing map for Σ with holonomy represen-
tation ρ : π1(S) −→ Γ. Choose an essential simple closed curve c on S and let
c̃ be the pre-image of c in the universal cover S̃. We will begin by assuming
that c is nonseparating and deal with the general case at the end of the section.
We also choose a component K̃ of S̃ − c̃. Note that since c is nonseparating
the action of π1(S) on the components of S̃ − c̃ has a single orbit. Let c̃K be
the components of c̃ which lie on the boundary of K̃.

Let ΓK be the subgroup of Γ which fixes D(K̃) setwise. Then Ω/ΓK will
be a cover of Σ corresponding to the restriction of π1(S) to S−c. In particular
ΓK will be isomorphic to π1(S − c), a free group on 2g − 1 generators. We
also note that D(c̃K) will descend to two simple closed curves c1 and c2 on the
cover Ω/ΓK .

Let ΩK be the domain of discontinuity for ΓK and let ΣK = ΩK/ΓK be
the quotient projective structure. Since ΩK ⊇ Ω, D(c̃K) will also descend to
two simple closed curves on ΣK . We abuse notation by also referring to these
curves as c1 and c2.

Lemma 3.1. The group ΓK is a Schottky group and the projective struc-
ture ΣK is homeomorphic to a surface of genus 2g−1. Furthermore there is an
orientation reversing involution φ : ΣK −→ ΣK that fixes c1 and c2 pointwise
and lifts to an orientation reversing, ΓK-invariant involution φ̃ : ΩK −→ ΩK

which fixes D(c̃K) pointwise.

Proof. We postpone the 3-dimensional proof of this lemma to the next
section where we will prove the stronger Lemma 4.1. 3.1
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Since D(K̃) is contained in ΩK , D(K̃)/ΓK is a subsurface of ΣK . Let
Σ−K be the closure of D(K̃)/ΓK in ΣK . Then Σ−K is homeomorphic to a genus
g− 1 surface with two boundary components c1 and c2. Let Σ+

K be the closure
of the complement of Σ−K in ΣK . The involution φ from Lemma 3.1 will then
restrict to a homeomorphism from Σ−K to Σ+

K and so Σ+
K is also a genus g − 1

surface with two boundary components. (See Figure 1.)
We also know that D(K̃) is contained in Ω so that Σ−K is also a subsurface

of the cover Ω/ΓK of Σ. In fact the covering map π : Ω/ΓK −→ Σ restricts to a
one-to-one map from the interior of Σ−K to Σ− c and is a two-to-one map from
c1 ∪ c2 to c. We use π to define an equivalence relation for points p1 ∈ c1 and
p2 ∈ c2 with p1 ∼ p2 if π(p1) = π(p2). Then the quotient Σ−K/ ∼ is exactly the
original projective structure Σ. More importantly, the quotient Σc = Σ+

K/ ∼
will also be a projective structure on S.

 

ΣK Σ+
K

Σ−K

c1 c2

Figure 1: Cutting ΣK along c1 and c2 produces Σ+
K and Σ−K .

Theorem 3.2. Σc is a projective structure on S with holonomy ρ.

Proof. We can explicitly write down a formula for a developing map for
Σc by modifying the developing map D for Σ. Namely define Dc : S̃ −→ Ĉ by
the formula

Dc(x) = ρ(g−1) ◦ φ̃ ◦D(g(x)) if g(x) is in the closure of K̃ and g ∈ π1(S).

It is a simple matter of retracing definitions to see that Dc is well defined, a
developing map for Σc, and has holonomy ρ. 3.2

Corollary 3.3.The projective structure Σc is not obtained by grafting Σ.

Proof. The developing map Dc has the opposite orientation to that of D
so that Σc cannot be a grafting of Σ. 3.3
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In the above work we have assumed that c is nonseparating. This is not
essential. In fact, after minor modifications, the construction works for any
collection C of n disjoint, homotopically distinct and essential simple closed
curves. If C̃ is the pre-image of C in S̃ then the action of π1(S) on S̃ − C̃ will
have k orbits where k is the number of components of S − C. We choose a
component K̃i corresponding to each orbit and let ΓKi

be the subgroup of Γ
that fixes D(K̃i) setwise with ΩKi

the domain of discontinuity of ΓKi
. Each

projective structure ΣKi
= ΩKi

/ΓKi
can then be cut into two pieces Σ−Ki

and
Σ+
Ki

and there is an involution φi of ΣKi
swapping the two pieces. Then the

Σ−Ki
can be glued together to reform Σ. The Σ+

Ki
can also be glued together

to form a new projective structure ΣC . As before we can explicitly define a
developing map DC : S̃ −→ Ĉ for ΣC by the formula

DC(x) = ρ(g−1) ◦ φ̃i ◦D(g(x)) if g(x) is in the closure of K̃i.

Again, it is a simple matter of tracing through the definitions to see that DC
is a developing map for a projective structure on S and that the holonomy of
DC is ρ.

We also remark that if c is a component of C and C′ = C − c, then ΣC can
also be obtained by either grafting ΣC′ along c or grafting Σc along C′.

This construction also works if Γ is quasi-fuchsian. In this case we have two
initial projective structures Σ− and Σ+ corresponding to the two components
of the domain of discontinuity. We leave the following theorem as an exercise
for the reader.

Theorem 3.4. The projective structure Σ−C is equivalent to grafting Σ+

along C.

This leads us to make the following conjecture for projective structures
with singly degenerate holonomy:

Conjecture 3.5. Let S be a closed surface and Γ a singly degenerate
group in AH(S). Let Σ = Ω/Γ be the quotient projective structure where Ω is
the domain of discontinuity for Γ. Every projective structure with holonomy Γ
is either :

1. Σ,

2. ΣC for some collection C,

3. grafting of Σ,

4. grafting of ΣC along C.
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4. Cone-manifolds

We carry over our notation from the previous section. Let M = (H3∪Ω)/Γ
be the quotient 3-manifold with boundary. By Bonahon’s theorem (Theo-
rem 2.2), we can fix an identification of M with the product S× [−1, 1) which
we will use throughout this section. The interior of M will have a complete
hyperbolic structure while the boundary S×{−1} is the projective structure Σ.

We recall the construction described in the introduction, adding more
details. Let c be an essential simple closed curve on S and make the further
assumption that c× {0} is a geodesic in M . Let A = c× [0, 1) be an annulus
in M . Then A lifts homeomorphically to an annulus AZ in the Z-cover MZ
of M associated to c. Let M −A and MZ −AZ be the metric completions of
M −A and MZ −AZ, respectively.

The boundaries of both M −A and MZ −AZ are isometric to two copies
of A glued at c × {0}. Orient A by choosing a normal for A in M . We then
distinguish between the two copies of A in the boundary of M −A by labeling
A+ the copy of A where the normal points outward and A− the copy of A
where the normal points inward. Similarly label the two copies of A in the
boundary of MZ −AZ, A+

Z and A−Z . All four of these annuli are isometric to A
and we use this isometry to define an equivalence relation between points on
A+ and A−Z and between A− and A+

Z . Namely, if p1 ∈ A+ and p2 ∈ A−Z then
p1 ∼ p2 if they are mapped to the same point by the isometry to A. Similarly
define an equivalence relation for points in A− and A+

Z . Then

Mc = (M −A ∪MZ −AZ)/ ∼ .

The hyperbolic structures on M − A and on MZ − AZ will extend to a
smooth hyperbolic structure in Mc except at c × {0}. At c × {0} the metric
has a cone singularity of cone angle 4π. Furthermore Mc is homeomorphic
to S × [−1, 1) with S × {−1} the projective structure Σ. Our goal for the
remainder of this section is to show that Mc is a quasi-fuchsian cone-manifold.
That is, we will show that Mc extends to the projective structure Σc on S×{1}.

As in the previous section we assume for simplicity that c is nonseparating.
The general case is the same with more notation. Let B = c × [−1, 0] be an
annulus in M and let B̃K = c̃K × [−1, 0] be the components of the pre-image
of B that bound K̃ × [−1, 0] in M̃ . Let L̃ = (K̃ × {0}) ∪ B̃K .

Let H = (H3∪ΩK)/ΓK . Since ΓK restricts to an action on L̃, the quotient
L = L̃/ΓK is a surface in H.

Lemma 4.1. H is a genus 2g−1 handlebody with boundary. Furthermore,
there is an orientation reversing involution φ : H −→ H with φ|L ≡ id which
lifts to an orientation reversing, ΓK-equivariant involution φ̃ : (H3 ∪ ΩK) −→
(H3 ∪ ΩK) with φ̃|L̃ ≡ id.
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Proof. The interior of H is a genus 2g − 1 handlebody since ΓK is a free
group on 2g − 1 generators and intH covers M which is homeomorphic to
the product S × (−1, 1). The covering map intH −→ M is infinite-to-one so
on the single end of H it is infinite-to-one. By the covering theorem ([Can]),
either ΓK is geometrically finite or M is covered by a finite volume manifold
that fibers over the circle. Since M has infinite volume ΓK must be geomet-
rically finite. Furthermore, ΓK does not contain parabolics. A geometrically
finite Kleinian group without parabolics is convex co-compact and a convex
co-compact Kleinian group that is also free is a Schottky group. Therefore ΓK
is a Schottky group with 2g− 1 generators and H = (H3 ∪ΩK)/ΓK is a genus
2g − 1 handlebody with boundary.

The inclusion of L in H is a homotopy equivalence. Therefore H is home-
omorphic to S′ × [−1, 1] where S′ is a genus g − 1 surface with two boundary
components and S′×{0} = L. This product structure defines an obvious invo-
lution of H which lifts to the universal cover to obtain the desired involution
φ̃ of H3 ∪ ΩK . 4.1

Remark. Note that although the handlebody H covers M the product
structure we have chosen for H is not equivariant and does not descend to the
product structure on M .

Theorem 4.2. The hyperbolic cone-manifold Mc is quasi-fuchsian with
projective boundary Σ and Σc.

Proof. To prove the theorem we make an alternative construction of Mc.
We begin with an observation about the surface S. Let S′ be the cover

of S corresponding to π1(S − c). As we have already noted, in S′, c has two
homeomorphic lifts c1 and c2. Next we divide S′ into three subsurfaces S0, S1

and S2 with S0 a compact genus g− 1 surface with two boundary components
and S1 and S2 both homeomorphic to the annulus S1× [0, 1). We also assume
that S0 ∩ S1 = c1 and S0 ∩ S2 = c2. Note that the covering map π : S′ −→ S

defines an equivalence relation on points p1 ∈ c1 and p2 ∈ c2 by p1 ∼ p2 if
π(p1) = π(p2). Then π restricts to a homeomorphism from the quotient S0/ ∼
to S. On the quotient (S1 ∪ S2)/ ∼, π becomes the covering map for the
Z-cover of S associated to c. (See Figure 2.)

We now repeat the above construction with the product M = S× (−1, 1).
We again have a cover π : S′ × (−1, 1) −→ M where the product structure
S′ × (−1, 1) is the pre-image of the product structure on M . Let Xi = Si ×
(−1, 1) be submanifolds of S′ × (−1, 1). As above we define an equivalence
relation for points in p1 ∈ c1× (−1, 1) and p2 ∈ c2× (−1, 1) by setting p1 ∼ p2

if π(p1) = π(p2). Then X0/ ∼ is homeomorphic and isometric to M while
(X1 ∪X2)/ ∼ is the Z-cover MZ of M associated to c× {0}. (See Figure 3.)
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c1 c2

c

c

Figure 2: If we cut S′ along c1 and c2 we have three pieces which can be reglued
to form the original surface S and the cover of S associated to c.

c1 c2

X0X1
X2

A1 A2

B1 B2

c1 c2

Figure 3: The rectangle gives a schematic picture of the product structure
on H. The horizontal lines represent the cover S′ of S

To construct Mc we subdivide the annuli that bound the Xi. The bound-
ary of X1 is the annulus c1×(−1, 1). Let A+

1 = c1×[0, 1) and B+
1 = c1×(−1, 0].

Similarly divide the boundary of X2 into two annuli A−2 and B−2 . We also di-
vide each of the two annuli that bound X0 into two sub-annuli A−1 , B−1 , A+

2 and
B+

2 . To construct M −A we start with X0 and glue B−1 to B+
2 . To construct

MZ −AZ we glue X1 to X2 by attaching B+
1 to B−2 . Finally, to construct Mc

we glue the A annuli together. Namely we glue A+
1 to A−1 and A+

2 to A−2 .
Of course this is simply restating our original construction of Mc. As an

alternative we first glue the A annuli and then glue the B annuli. In both cases
we use the same gluing pattern and so we get the same hyperbolic structure
Mc. To see the advantage of gluing in this order we recall that the cover
S′ × (−1, 1) of M is the interior of the handlebody H. The boundary of H is
the projective structure ΣK . The annulus B lifts to two annuli B1 and B2 in
H which extend to closed curves c1 and c2 on ΣK . Next we note that when
we glue X1 and X2 to X0 along the A annuli we get the metric completion
of H − (B1 ∪ B2). This compact manifold has boundary consisting of the
B annuli and the projective structures Σ+

K and Σ−K . When we glue the B
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annuli the two boundary curves of Σ+
K are identified to form the projective

structure Σc. Similarly the boundary curves of Σ−K are identified to form the
original projective structure Σ. Therefore Mc is compactified by its projective
boundary and is a quasi-fuchsian cone-manifold. (See Figure 4.) 4.2

X0

X1 X2

A+
1 A−1 A+

2 A−2

B+
1 B−1 B+

2 B−2

MZ − AZ

M − A

Mc

H − (B1 ∪ B2)

Σ+
K

Σ−K

X1 X2

X0

X0
X2 X1

X0

Figure 4: The figure gives a schematic description of the two constructions of
Mc. On the left is the original construction while on the right is the alternative
construction.

5. The Bers conjecture

In the previous section we constructed quasi-fuchsian hyperbolic cone-
manifolds. We now use the deformation theory of hyperbolic cone-manifolds
to show that these cone structures are geometrically close to a smooth quasi-
fuchsian structure. The analytic deformation theory of hyperbolic cone-man-
ifolds was developed by Hodgson and Kerckhoff in a series of papers ([HK1],
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[HK2], [HK3]) and extended to the geometrically finite setting in [Br2], [Br1].
The basic idea is that if the cone singularity is short and has a large tube
radius then there is a one-parameter family of cone-manifolds decreasing the
cone angle from 4π to a cone-manifold with cone angle 2π. When the cone
angle is 2π the hyperbolic structure is nonsingular.

Although the theory applies in greater generality, we will confine ourselves
to quasi-fuchsian cone-manifolds. The following result is essentially Theorems
1.2 and 1.3 of [Br1].

Theorem 5.1. Suppose Mα is a quasi-fuchsian cone manifold with cone
singularity c, cone angle α and conformal boundary X and Y . Also assume
the tube radius of c is greater than sinh−1

√
2. Then:

1. There exists an `0 > 0 depending only on α such that for all t ≤ α there
exists a quasi-fuchsian cone-manifold Mt with cone singularity c, cone
angle t and conformal boundary X and Y .

2. Furthermore if Σα and Σt are the projective boundaries corresponding to
X for Mα and Mt, respectively, there exists a K depending only on α,
‖Σα‖∞ and the injectivity radius of the hyperbolic metric on X such that

d(Σα,Σt) ≤ K length(c)

where the length is measured in the Mα-metric.

We can now prove our main theorem:

Theorem 5.2. Assume that Γ ∈ AH(S) has no parabolics. If M = H3/Γ
is singly degenerate and has unbounded geometry then Γ ∈ BX where X is the
conformal boundary of M .

Proof. By the Margulis lemma there exists an `1 such that if c is a closed
geodesic in M with length(c) < `1 then c has an embedded tubular neighbor-
hood of radius sinh−1

√
2. We need the following theorem of Otal:

Theorem 5.3 (Otal [Ot]). Let c be a simple closed geodesic in M . There
exists an `2 > 0 such that if length(c) < `2 then c is isotopic to a simple closed
curve on S × {0} in M .

Let ` = min(`0, `1, `2) where `0 is the constant from Theorem 5.1. Since
M has unbounded geometry there are a sequence of closed geodesics ci in M

with length(ci) → 0. Therefore we can assume that length(ci) < ` for all i.
We can then apply Theorem 4.2 to construct a sequence of cone-manifolds
Mi with cone-singularity ci and cone-angle 4π. Furthermore, an embedded
tubular neighborhood of ci in M will lift to an embedded tubular neighborhood
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of ci in Mi of the same radius. Therefore ci will have an embedded tubular
neighborhood of radius sinh−1

√
2 in Mi.

We can now apply Theorem 5.1 to the Mi. If X and Yi are the components
of conformal boundary of Mi let M ′i be the quasi-fuchsian cone manifold with
cone singularity ci, cone angle 2π and conformal boundary X and Yi given by
(a) of Theorem 5.1. Since the cone angle is 2π the hyperbolic structure on
M ′i will be smooth so there will be a unique Kleinian group Γi ∈ BX such
that M ′i = H3/Γi. Note that for each Mi the component of the projective
boundary associated to X will be Σ, the projective boundary of the original
hyperbolic structure M . Let Σi be the component of the projective boundary
of M ′i associated to X. By Theorem 5.1,

d(Σ,Σi) ≤ K length(ci).

Therefore we have Σi → Σ in P (X) which implies that Γi → Γ in AH(S).
Since each Γi is contained in BX , we conclude Γ ∈ BX . 5.4

Combining Theorem 5.2 with Theorem 2.3 we have:

Theorem 5.4. Assume that Γ ∈ AH(S) has no parabolics. If M = H3/Γ
is singly degenerate then Γ ∈ BX where X is the conformal boundary of M .
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