
TAYLOR CONDITIONS OVER FINITE FIELDS

MATTHEW BERTUCCI

ABSTRACT. In [Poo04], Poonen proves a Bertini theorem over finite fields,
including prescribing the first few Taylor coefficients of sections at finitely
many points. In the motivic setting, [BH21] proved an analogous result
but allowing much more general Taylor conditions. We extend Poonen’s
result in the arithmetic setting to Taylor conditions arising as subsheaves
of the sheaf of differentials such that the corresponding quotient is locally
free.

CONTENTS

1. Introduction 1
2. Notation and definitions 3
2.1. Sheaves of principal parts 4
3. Counterexamples to most general Taylor conditions 4
4. More general Taylor conditions 5
4.1. Singular points of low degree 5
4.2. Singular points of medium degree 6
4.3. Singular points of high degree 6
4.4. Proof of Theorem 1.1 8
5. Applications 9
References 10

1. INTRODUCTION

For 𝑋 a smooth quasiprojective subscheme of ℙ𝑛 over a finite field 𝔽𝑞,
Poonen showed in [Poo04] the existence of smooth hypersurface sections of
𝑋 and computed the density of smooth hypersurface sections in all hyper-
surface sections to be 𝜁𝑋(dim𝑋 + 1)−1, where 𝜁𝑋 is the zeta function of
𝑋. He also allowed for prescribing the first few coefficients of the Taylor
expansions of hypersurfaces at finitely many points. It is natural to extend
the problem to more general conditions on the Taylor expansions. As far
as the author knows, questions like the following are not within the scope
of Poonen’s theorem or its existing generalizations which include [BK12],
[EW15], [GK23], [Gun17], [Poo08], and [Wut14].
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2 MATTHEW BERTUCCI

Question 1. Let char(𝔽𝑞) ≠ 2. Choose four closed points of ℙ2
𝔽𝑞

that are
geometrically in general position. Let 𝑖 ∶ 𝑋 ↪ ℙ2

𝔽𝑞
be a curve whose geo-

metric points are in general position with these four points. For each closed
point 𝑥 ∈ 𝑋, there is a unique conic 𝐶𝑥 passing through the four points
and 𝑋. What is the probability that a random plane curve intersects 𝐶𝑥
transversely at 𝑥 for each closed point 𝑥 ∈ 𝑋?

This question is answered in Example 5.3 and requires considering Taylor
conditions arising from subsheaves of the sheaf of differentials. Such Taylor
conditions are addressed in the following theorem which is the main result of
this paper. See Section 2.1 for the definition of the sheaf of principal parts
𝒫1.

Theorem 1.1. Let 𝑖 ∶ 𝑋 ↪ ℙ𝑛
𝔽𝑞

be a quasiprojective subscheme of dimension
𝑚. Let 𝒬 be a locally free quotient of 𝑖∗Ω1

ℙ𝑛 of rank ℓ ≥ 𝑚, and let 𝒦 denote
the kernel of 𝑖∗Ω1

ℙ𝑛 ↠ 𝒬. For each 𝑑, define

ℰ𝑑 ∶= (𝑖∗𝒫1(𝒪ℙ𝑛(𝑑)))/𝒦(𝑑)

where we view 𝒦(𝑑) as a subsheaf of 𝑖∗𝒫1(𝒪ℙ𝑛(𝑑)) via the exact sequence

0 → 𝑖∗Ω1
ℙ𝑛(𝑑) → 𝑖∗𝒫1(𝒪ℙ𝑛(𝑑)) → 𝒪𝑋(𝑑) → 0

At each closed point 𝑥 ∈ ℙ𝑛, this defines a 1-infinitesimal Taylor condition
𝒯𝑑,𝑥 ⊂ 𝒪ℙ𝑛(𝑑)𝑥/𝔪2

𝑥 at 𝑥 given by not vanishing in the fiber of ℰ𝑑 at 𝑥. By
convention, 𝒯𝑑 is always satisfied if 𝑥 ∉ 𝑋.

Then

lim
𝑑→∞

Prob(𝑓 ∈ 𝒯𝑑) = ∏
closed 𝑥∈𝑋

(1 − 𝑞−(ℓ+1)deg(𝑥)) = 𝜁𝑋(ℓ + 1)−1.

Note that for 𝑋 smooth, taking 𝒬 = Ω1
𝑋 recovers Poonen’s Bertini theo-

rem.
Theorem 1.1 is motivated by the significantly more general Taylor condi-

tions considered by [BH21] in the motivic setting, i.e., in the Grothendieck
ring of varieties. There the authors ask if an arithmetic analog of the fol-
lowing theorem holds over 𝔽𝑞 (see the paper for notation):

Theorem ([BH21, Theorem B]). Fix 𝑓 ∶ 𝑋 → 𝑆, a proper map of varieties
over a field 𝐾, ℱ a coherent sheaf on 𝑋, ℒ a relatively ample line bundle
on 𝑋, and 𝑟,𝑀 ≥ 0. Then, there is an 𝜖 > 0 such that as 𝑇 ranges over
all 𝑟-infinitesimal Taylor conditions on ℱ(𝑑) = ℱ⊗ℒ𝑑 with 𝑀-admissible
complement,

[𝕍(𝑓∗ℱ(𝑑))𝑇- everywhere]
[𝕍(𝑓∗ℱ(𝑑))]

= ∏
𝑥∈𝑋/𝑆

(1 − [𝑇 𝑐]𝑥
[𝕍(𝒫𝑟

/𝑆ℱ(𝑑))]𝑥
𝑡)∣

𝑡=1

+𝑂(𝕃−𝜖𝑑)

in ̂̃ℳ𝑋.
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For Bilu and Howe, a Taylor condition is just a constructible subset of the
sheaf of principal parts (viewed as a scheme) and the 𝑀-admissible condition
ensures the motivic Euler product converges. In the arithmetic setting, we
also need a good notion of “admissibility” for a Taylor condition such that
the probability that the condition is satisfied everywhere factors into the
local probabilities at closed points. A counterexample to the most general
such Taylor conditions is given in Example 3.1, suggesting more structure,
possibly algebraic as in Theorem 1.1, is necessary.

This paper will set up our notation and give some properties of the sheaf of
principal parts in Section 2.1, provide a counterexample to the most general
Taylor conditions in Section 3, prove Theorem 1.1 in Section 4, and give
some applications in Section 5.

While this paper only deals with the case where 𝑆 = Spec𝔽𝑞, ℱ = 𝒪𝑋,
and 𝑟 = 1, our definitions below point toward the level of generality we feel
is possible.

2. NOTATION AND DEFINITIONS

Throughout, let 𝑞 be a prime power and 𝔽𝑞 the field with 𝑞 elements. Let
𝑆 = 𝔽𝑞[𝑥0,… , 𝑥𝑛] and identify 𝐻0(ℙ𝑛

𝔽𝑞
,𝒪(𝑑)) with degree 𝑑 homogeneous

polynomials 𝑆𝑑 in 𝑆. Let 𝐴 = 𝔽𝑞[𝑥1,… , 𝑥𝑛] and 𝐴≤𝑑 the polynomials in 𝐴
of degree at most 𝑑.

Definition. Let ℱ be a coherent sheaf on a variety 𝑋 over 𝔽𝑞. An 𝑟-
infinitesimal Taylor condition on ℱ at a closed point 𝑥 ∈ 𝑋 is a subset

𝒯𝑥 ⊆ ℱ𝑥 ⊗𝒪𝑋,𝑥
𝒪𝑋,𝑥/𝔪𝑟+1

𝑥 =∶ ℱ|𝑥(𝑟) .

An 𝑟-infinitesimal Taylor condition 𝒯 on ℱ is a choice of an 𝑟-infinitesimal
Taylor condition 𝒯𝑥 at 𝑥 on ℱ for each closed point 𝑥.

We say that a global section 𝑠 ∈ 𝐻0(𝑋,ℱ) satisfies 𝒯 at 𝑥 ∈ 𝑋 if its
image in ℱ|𝑥(𝑟) lies in 𝒯𝑥, and satisfies 𝒯 if it satisfies 𝒯 at every closed
point 𝑥 ∈ 𝑋.

Definition. Let ℱ be a coherent sheaf on a variety 𝑋 over 𝔽𝑞. For a subset 𝒫
of the finite dimensional 𝔽𝑞-vector space 𝐻0(𝑋,ℱ), denote by Prob(𝑠 ∈ 𝒫)
the probability that a random uniformly distributed global section 𝑠 of ℱ
belongs to 𝒫, i.e.,

Prob(𝑠 ∈ 𝒫) ∶= #𝒫
#𝐻0(𝑋,ℱ)

.

Remark 2.1. The definition above differs from that of [EW15]. When they
write Prob(𝑠 ∈ 𝒫), they mean (in our notation) lim𝑑→∞ Prob(𝑠𝑑 ∈ 𝒫𝑑) where
for each 𝑑 ≥ 0, 𝒫𝑑 ⊆ 𝐻0(𝑋,ℱ(𝑑)) and 𝑠𝑑 is a uniform random global section
of ℱ(𝑑).
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2.1. Sheaves of principal parts. We recall the definition of the sheaf of prin-
cipal parts and collect some of its relevant properties.

Definition. Let 𝑋 → 𝑆 be a morphism of schemes and ℱ an 𝒪𝑋-module.
Let Δ(𝑟) be the 𝑟-th infinitesimal neighborhood of the diagonal Δ in 𝑋×𝑆𝑋
and let 𝛿(𝑟) ∶ Δ(𝑟) → 𝑋 ×𝑆 𝑋 be the canonical morphism. Denote by
𝜋1, 𝜋2 ∶ 𝑋×𝑆𝑋 → 𝑋 the corresponding projections and set 𝑝 = 𝜋1 ∘ 𝛿(𝑟) and
𝑞 = 𝜋2 ∘ 𝛿(𝑟). The sheaf of 𝑟-th order principal parts of ℱ on 𝑋 over 𝑆 is

𝒫𝑟
𝑋/𝑆(ℱ) ∶= 𝑝∗(𝑞∗ℱ).

By definition this is an 𝒪𝑋-module. If ℱ = 𝒪𝑋, we write 𝒫𝑟
𝑋/𝑆 ∶= 𝒫𝑟

𝑋/𝑆(𝒪𝑋).

References given below are not necessarily the original source of the result.

Lemma 2.2 ([Gro67, Proposition 16.7.3]). If ℱ is quasi-coherent (resp. co-
herent, of finite type, of finite presentation), then 𝒫𝑟

𝑋/𝑆(ℱ) is quasi-coherent
(resp. coherent, of finite type, of finite presentation).

Lemma 2.3 ([Gro67, Corollary 16.4.12] and [Ben70, III, Lemma 2.1 and
Proposition 2.2]). If 𝑆 = Spec 𝑘 for 𝑘 a field, ℱ is quasi-coherent, and
𝑥 ∈ 𝑋 is rational over 𝑘, then the fiber 𝒫𝑟

𝑋/𝑆(ℱ)|𝑥 = 𝒫𝑟
𝑋/𝑆(ℱ)𝑥 ⊗𝒪𝑋,𝑥

𝜅(𝑥)
is canonically isomorphic to ℱ𝑋,𝑥/𝔪𝑟+1

𝑥 .
If 𝑘 is perfect, then the same is true for any closed point 𝑥 ∈ 𝑋.

Remark 2.4. In our notation, Lemma 2.3 says that an 𝑟-infinitesimal Taylor
condition on ℱ is just a subset of the fiber of 𝒫𝑟

𝑋/𝑘(ℱ) at 𝑥.

Lemma 2.5 ([Per95, A, Proposition 3.4]). If 𝑋 → 𝑆 is differentially smooth
(see [Gro67, 16.10]), and ℱ is locally free on 𝑋, then there is an exact
sequence of 𝒪𝑋-modules

0 Sym𝑟
𝒪𝑋

(Ω1
𝑋/𝑆) ⊗𝒪𝑋

ℱ 𝒫𝑟
𝑋/𝑆(ℱ) 𝒫𝑟−1

𝑋/𝑆(ℱ) 0.

If 𝑋,𝑌 are smooth 𝑆-schemes, 𝑓 ∶ 𝑋 → 𝑌 is a morphism of 𝑆-schemes, and
𝒢 is locally free on 𝑌, then there is a map of exact sequences of 𝒪𝑋-modules

0 Sym𝑟
𝒪𝑋

(𝑓∗Ω1
𝑌 /𝑆) ⊗𝒪𝑋

𝑓∗𝒢 𝑓∗𝒫𝑟
𝑌 /𝑆(𝒢) 𝑓∗𝒫𝑟−1

𝑌 /𝑆 (𝒢) 0

0 Sym𝑟
𝒪𝑋

(Ω1
𝑋/𝑆) ⊗𝒪𝑋

𝑓∗𝒢 𝒫𝑟
𝑋/𝑆(𝑓

∗𝒢) 𝒫𝑟−1
𝑋/𝑆(𝑓

∗𝒢) 0

Corollary 2.6 ([Per95, A, Proposition 3.3]). In the setting of Lemma 2.5, if
ℱ is locally free of rank 𝑛, then 𝒫𝑟

𝑋/𝑆(ℱ) is locally free of rank 𝑛 ⋅ (dim𝑋+𝑟
𝑟 ).

3. COUNTEREXAMPLES TO MOST GENERAL TAYLOR CONDITIONS

The following example shows that arbitrary set-theoretic constructions of
Taylor conditions can produce local probabilities whose product is not the
global probability of the condition being satisfied.
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Example 3.1 (Diagonal argument). Let 𝑋 = ℙ𝑛
𝔽𝑞

and ℱ = 𝒪ℙ𝑛 . Both the
union of global sections 𝑆𝑑 over all 𝑑 ∈ ℕ and the set of closed points of ℙ𝑛

are countably infinite; let 𝑓1, 𝑓2,… and 𝑥1, 𝑥2,… be enumerations of them,
respectively. For every closed point 𝑥, fix an isomorphism 𝒪ℙ𝑛(𝑑)|𝑥(1) ≅
𝒪ℙ𝑛 |𝑥(1) . Define a 1-infinitesimal Taylor condition as follows: for each 𝑖, set
𝒯𝑑,𝑥𝑖

to be all of 𝒪ℙ𝑛 |𝑥(1)
𝑖

except the Taylor expansion of 𝑓𝑖 (this does not
depend on 𝑑). Then the local probabilities are 𝑝𝑥𝑖

= 1 − 𝑞−deg(𝑥𝑖)(𝑛+1), and
the product over all closed points is 𝜁ℙ𝑛(𝑛 + 1)−1. But by construction, no
section can satisfy this Taylor condition at all closed points.

Some algebraic nature to the condition is likely necessary in general. In
Theorem 1.1, this manifests as “locally free quotients of the sheaf of principal
parts”.

4. MORE GENERAL TAYLOR CONDITIONS

We now use Poonen’s method of the closed point sieve to prove Theo-
rem 1.1.

4.1. Singular points of low degree. The following lemma says that for finitely
many closed points, the local probabilities are independent.

Lemma 4.1 (Singularities of low degree). Let 𝑋, 𝒬, and 𝒯𝑑 be as in Theo-
rem 1.1. For 𝑒 > 0, define

𝒫low
𝑒,𝑑 ∶= {𝑓 ∈ 𝑆𝑑 ∣ 𝑓 satisfies 𝒯𝑑 at all 𝑥 with deg(𝑥) < 𝑒}.

Let 𝑋<𝑒 be the closed points of 𝑋 of degree less than 𝑒. Then

lim
𝑑→∞

Prob(𝑓 ∈ 𝒫low
𝑒,𝑑 ) = ∏

𝑥∈𝑋<𝑒

(1 − 𝑞−(ℓ+1)deg(𝑥)).

Proof. Let 𝑋<𝑒 = {𝑥1,… , 𝑥𝑠}. By definition, 𝑓 ∈ 𝑆𝑑 fails 𝒯𝑑 at 𝑥𝑖 if and
only if it vanishes under the composition

𝑆𝑑 → 𝒪ℙ𝑛(𝑑)𝑥𝑖
/𝔪2

𝑥𝑖
→ ℰ𝑑|𝑥𝑖

for some 𝑖 ∈ {1,… , 𝑠}. Thus 𝒫low
𝑒,𝑑 consists of the preimage of ∏𝑠

𝑖=1(ℰ𝑑|𝑥𝑖
∖

{0}) under the composition

𝑆𝑑 →
𝑠
∏
𝑖=1

𝒪ℙ𝑛(𝑑)𝑥𝑖
/𝔪2

𝑥𝑖
→

𝑠
∏
𝑖=1

ℰ𝑑|𝑥𝑖

This first map is surjective for 𝑑 ≫ 1 by [Poo04, Lemma 2.1] and the second
since 𝑖∗𝒫1(𝒪ℙ𝑛(𝑑)) → ℰ𝑑 is surjective, so the composition is surjective.

We have a filtration of 𝜅(𝑥𝑖)-vector spaces 0 ⊂ 𝒬(𝑑)|𝑥𝑖
⊂ ℰ𝑑|𝑥𝑖

whose
quotients have dimensions 1 and ℓ, respectively, hence ℰ𝑑|𝑥𝑖

∖ {0} has size
𝑞(ℓ+1)deg(𝑥𝑖) − 1, and the local probability of vanishing is 1 − 𝑞−(ℓ+1)deg(𝑥𝑖).
As this does not depend on 𝑑, the result follows. �
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4.2. Singular points of medium degree.

Lemma 4.2 (Singularities of medium degree). Let 𝑋, 𝒬, and 𝒯𝑑 be as in
Theorem 1.1. For 𝑒 > 0, define

𝒬med
𝑒,𝑑 ∶= {𝑓 ∈ 𝑆𝑑 ∣ 𝑓 fails 𝒯𝑑 at some 𝑥 with 𝑒 ≤ deg(𝑥) ≤ 𝑑

ℓ+1}.
Then

lim
𝑒→∞

lim
𝑑→∞

Prob(𝑓 ∈ 𝒬med
𝑒,𝑑 ) = 0.

Proof. Let 𝑥 be a closed point with 𝑒 ≤ deg(𝑥) ≤ ℓ+1. We have dim𝔽𝑞
ℰ𝑑|𝑥 =

(ℓ + 1) deg(𝑥) ≤ 𝑑 by assumption. Note the argument in [Poo04, Lemma
2.1] works exactly the same here with the map 𝑆𝑑 → ℰ𝑑|𝑥, so this map
is surjective and identical reasoning as in [Poo04, Lemma 2.3] shows the
fraction of 𝑓 ∈ 𝑆𝑑 that vanish in ℰ𝑑|𝑥 is 𝑞−(ℓ+1)deg(𝑥).

Now we follow Poonen’s proof of [Poo04, Lemma 2.4]. By [LW54], there
is a constant 𝑐 > 0 depending only on 𝑋 such that #𝑋(𝔽𝑞𝑟) ≤ 𝑐𝑞𝑟𝑚. With
the result above, this gives

Prob(𝑓 ∈ 𝒬med
𝑒,𝑑 ) ≤

⌊𝑑/(𝑚+1)⌋

∑
𝑟=𝑒

(# of points of degree 𝑟) ⋅ 𝑞−(ℓ+1)𝑟

≤
⌊𝑑/(𝑚+1)⌋

∑
𝑟=𝑒

#𝑋(𝔽𝑞𝑟) ⋅ 𝑞−(ℓ+1)𝑟

≤
∞
∑
𝑟=𝑒

𝑐𝑞𝑟𝑚𝑞−(ℓ+1)𝑟

Since ℓ ≥ 𝑚, this converges to 𝑐𝑞𝑒(𝑚−ℓ−1)

1−𝑞𝑚−ℓ−1 . This is independent of 𝑑 and goes
to zero as 𝑒 goes to ∞. �

4.3. Singular points of high degree. As usual with proofs using the closed
point sieve, showing the contribution from high degree points is negligible
is the hardest part of the proof.

Lemma 4.3. Let 𝑋, 𝒬, and 𝒯𝑑 be as in Theorem 1.1. Define

𝒬high
𝑑 ∶= {𝑓 ∈ 𝑆𝑑 ∣ 𝑓 fails 𝒯𝑑 at some 𝑥 with deg(𝑥) > 𝑑

ℓ+1}.

Then lim𝑑→∞ Prob(𝑓 ∈ 𝒬high
𝑑 ) = 0.

Proof. As in [Poo04, Lemma 2.6], we reduce to the affine case 𝑖 ∶ 𝑋 ↪ 𝔸𝑛,
also dehomogenizing to identify 𝑆𝑑 with 𝐴≤𝑑.

Consider the commutative diagram

0 𝑖∗Ω1
𝔸𝑛/𝔽𝑞

𝑖∗𝒫1(𝒪𝔸𝑛) 𝒪𝑋 0

0 𝒬 ℰ
𝐹

Given a closed point 𝑥 ∈ 𝑋, choose elements 𝑡1,… , 𝑡ℓ ∈ 𝐴 such that the
images under 𝐹 of the pullbacks of 𝑑𝑡1,… , 𝑑𝑡ℓ form a basis for (im𝐹)𝑥 ⊂ ℰ𝑥
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over 𝒪𝑋,𝑥 (recall ℰ has rank ℓ + 1). Call these basis elements 𝑄1,… ,𝑄ℓ.
Let 𝜕1,… , 𝜕ℓ be the corresponding dual basis.

Now we mimic Poonen’s proof of [Poo04, Lemma 2.6].
We have

Hom𝒪𝑋,𝑥
(ℰ𝑥,𝒪𝑋,𝑥) ⊂ Hom𝒪𝑋,𝑥

((𝑖∗Ω1
𝔸𝑛)𝑥,𝒪𝑋,𝑥)

= Hom𝒪𝔸𝑛,𝑥
(Ω1

𝔸𝑛,𝑥,𝒪𝑋,𝑥)
= Der𝔽𝑞

(𝒪𝔸𝑛,𝑥,𝒪𝑋,𝑥)

Thus we can think of the dual basis elements 𝜕𝑖 as 𝔽𝑞-derivations 𝒪𝔸𝑛,𝑥 →
𝒪𝑋,𝑥. Choose 𝑠 ∈ 𝐴/𝐼(𝑋) with 𝑠(𝑥) ≠ 0 to clear denominators so 𝐷𝑖 = 𝑠𝜕𝑖
is a global derivation 𝐴 → 𝐴/𝐼(𝑋). We can find a neighborhood 𝑁𝑥 of 𝑥
on which 𝑄1,… ,𝑄ℓ generate im𝐹 and such that 𝑠 ∈ 𝒪𝑋(𝑁𝑥)×. As we can
cover 𝑋 with finitely many such 𝑁𝑥, we may assume 𝑋 ⊂ 𝑁𝑥, and that the
𝑄1,… ,𝑄ℓ generate im𝐹 globally.

Set 𝜏 = max𝑖{deg 𝑡𝑖}, 𝛾 = ⌊(𝑑 − 𝜏)/𝑝⌋, and 𝜂 = ⌊𝑑/𝑝⌋. If 𝑓0 ∈ 𝐴≤𝑑,
𝑔1,… , 𝑔ℓ ∈ 𝐴≤𝛾, and ℎ ∈ 𝐴≤𝜂 are selected uniformly at random, then the
distribution of

𝑓 = 𝑓0 + 𝑔𝑝1𝑡1 +⋯+ 𝑔𝑝ℓ 𝑡ℓ + ℎ𝑝

is uniform over 𝐴≤𝑑. We’ll bound the probability that for such an 𝑓, there’s a
closed point 𝑦 ∈ 𝑋>𝑑/(ℓ+1) where 𝑓 is zero in the fiber of ℰ at 𝑦; equivalently,
when (𝐷1𝑓)(𝑦) = ⋯ = (𝐷ℓ𝑓)(𝑦) = 0.

We have 𝐷𝑖𝑓 = 𝐷𝑖𝑓0 + 𝑔𝑝𝑖 𝑠 for 𝑖 = 1,… , ℓ. By abuse of notation we’ll
consider the 𝐷𝑖𝑓 as defining hypersurfaces in 𝔸𝑛 by choosing a lift to 𝐴 of
minimal degree. Define

𝑊𝑖 = 𝑋 ∩ {𝐷1𝑓 = ⋯ = 𝐷𝑖𝑓 = 0}.

Claim 1. For 0 ≤ 𝑖 ≤ ℓ−1, conditioned on a choice of 𝑓0, 𝑔1,… , 𝑔𝑖 such that
dim(𝑊𝑖) ≤ 𝑚− 𝑖, the probability that dim(𝑊𝑖+1) ≤ 𝑚− 𝑖 − 1 is 1 − 𝑜(1) as
𝑑 → ∞.

Let 𝑉1,… , 𝑉𝑒 be the (𝑚−𝑖)-dimensional irreducible components of (𝑊𝑖)red.
By Bézout’s theorem,

𝑒 ≤ (deg𝑋)(deg𝐷1𝑓) ⋯ (deg𝐷𝑖𝑓) = 𝑂(𝑑𝑖)

as 𝑑 → ∞, where 𝑋 is the projective closure of 𝑋. As dim𝑉𝑘 ≥ 1, there
exists a coordinate 𝑥𝑗, depending on 𝑘, such that the projection 𝑥𝑗(𝑉𝑘) has
dimension 1.

We want to bound the set

𝐺bad
𝑘 ∶= {𝑔𝑖+1 ∈ 𝐴≤𝛾 ∣ 𝐷𝑖+1𝑓 = 𝐷𝑖+1𝑓0 + 𝑔𝑝𝑖+1𝑠 vanishes identically on 𝑉𝑘}

since for any 𝑔𝑖+1 ∈ 𝐺bad
𝑘 , 𝑉𝑘 ⊂ 𝑊𝑖+1 and then dim(𝑊𝑖+1) would fail to be

≤ 𝑚− 𝑖 − 1.
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If 𝑔, 𝑔′ ∈ 𝐺bad
𝑘 , then on 𝑉𝑘,

0 = 𝑔𝑝𝑠 − 𝑔′𝑝𝑠
𝑠

= 𝑔𝑝 − 𝑔′𝑝

= (𝑔 − 𝑔′)𝑝

so if 𝐺bad
𝑘 is nonempty, it is a coset of the subspace of functions in 𝐴≤𝛾 that

vanish on 𝑉𝑘. The codimension of that subspace is at least 𝛾 + 1 since a
nonzero polynomial in 𝑥𝑗 alone does not vanish on 𝑉𝑘. Thus the probability
that 𝐷𝑖+1𝑓 vanishes on some 𝑉𝑘 is at most 𝑒𝑞−(𝛾+1) = 𝑜(1) as 𝑑 → ∞.

Claim 2. Conditioned on a choice of 𝑓0, 𝑔1,… , 𝑔ℓ for which 𝑊ℓ is finite,
Prob(𝐻𝑓 ∩𝑊ℓ ∩𝑋>𝑑/(ℓ+1) = ∅) = 1 − 𝑜(1) as 𝑑 → ∞.

In fact, we need only show this for 𝐻𝑓∩𝑊𝑚∩𝑋>𝑑/(ℓ+1). The same Bézout
argument as above shows #𝑊𝑚 is 𝑂(𝑑𝑚). For a given 𝑦 ∈ 𝑊𝑚, the set 𝐻bad

of ℎ ∈ 𝐴≤𝜂 for which 𝐻𝑓 passes through 𝑦 is either empty or a coset of
ker(eval𝑦 ∶ 𝐴≤𝜂 → 𝜅(𝑦)).

If deg(𝑦) > 𝑑
ℓ+1 , then [Poo04, Lemma 2.5] implies #𝐻bad

#𝐴≤𝜂
≤ 𝑞−𝜈 where

𝜈 = min(𝜂 + 1, 𝑑
ℓ+1). Hence

Prob(𝐻𝑓 ∩𝑊𝑚 ∩𝑋>𝑑/(ℓ+1) = ∅) ≤ #𝑊𝑚𝑞−𝜈 = 𝑂(𝑑𝑚𝑞−𝜈)

which by assumption is 𝑜(1) as 𝑑 → ∞.
Given the two claims, we have

lim
𝑑→∞

Prob(dim𝑊𝑖 = 𝑚− 𝑖 and 𝐻𝑓 ∩𝑊𝑚 ∩𝑋>𝑑/(ℓ+1) = ∅)

=
𝑚−1
∏
𝑖=0

(1 − 𝑜(1)) ⋅ (1 − 𝑜(1))

= 1 − 𝑜(1)

So the same holds for 𝑊ℓ. But now 𝐻𝑓 ∩𝑊ℓ is the subvariety of 𝑋 defined
by failing 𝒯𝑑, so 𝐻𝑓 ∩ 𝑊ℓ ∩ 𝑋>𝑑/(ℓ+1) is the set of points of degree > 𝑑

ℓ+1
where 𝐻𝑓 ∩𝑋 fails 𝒯𝑑. �

4.4. Proof of Theorem 1.1.

Proof. We have
𝒯𝑑 ⊆ 𝒫low

𝑒,𝑑 ⊆ 𝒯𝑑 ∪ 𝒬med
𝑒,𝑑 ∪ 𝒬high

𝑑

so

Prob(𝑠 ∈ 𝒫low
𝑒,𝑑 ) ≥ Prob(𝑠 ∈ 𝒯𝑑)

≥ Prob(𝑠 ∈ 𝒫low
𝑒,𝑑 ) − Prob(𝑠 ∈ 𝒬med

𝑒,𝑑 ) − Prob(𝑠 ∈ 𝒬high
𝑑 ).

By Lemmas 4.1 to 4.3, letting 𝑑, then 𝑒 go to ∞ gives the result. �
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5. APPLICATIONS

Example 5.1 (Poonen’s Bertini). To get [Poo04, Theorem 1.1], assume 𝑋 is
smooth and take 𝒬 = Ω1

𝑋/𝔽𝑞
in Theorem 1.1.

Example 5.2. Let 𝑖 ∶ 𝑋 ↪ ℙ𝑛
𝔽𝑞

be a quasiprojective subscheme of dimension
𝑚 and let Δ ∶ 𝑋 ↪ 𝑋×𝔽𝑞

ℙ𝑛 be the graph of 𝑖. Suppose 𝑗 ∶ 𝑍 ↪ 𝑋×𝔽𝑞
ℙ𝑛 is

a closed subscheme such that the projection 𝜑 ∶ 𝑍 → 𝑋 is smooth of relative
dimension ℓ ≥ 𝑚, and such that Δ factors as

𝑋
𝛼
−→ 𝑍

𝑗
↪−→ 𝑋 × ℙ𝑛

for some morphism 𝛼 ∶ 𝑋 → 𝑍.
We have a surjection of sheaves

Ω1
𝑋×ℙ𝑛/𝑋 ↠ 𝑗∗Ω1

𝑍/𝑋

which induces a surjection
Δ∗Ω1

𝑋×ℙ𝑛/𝑋 ↠ Δ∗𝑗∗Ω1
𝑍/𝑋

The left side is isomorphic to 𝑖∗Ω1
ℙ𝑛 ; indeed, let 𝑝 ∶ 𝑋×ℙ𝑛 → ℙ𝑛 be projection

onto the second coordinate. Then by standard base change for the sheaf of
differentials,

Δ∗Ω1
𝑋×ℙ𝑛/𝑋 ≅ Δ∗𝑝∗Ω1

ℙ𝑛/𝔽𝑞

= (𝑝 ∘ Δ)∗Ω1
ℙ𝑛/𝔽𝑞

= 𝑖∗Ω1
ℙ𝑛/𝔽𝑞

.

Define 𝒬 = Δ∗𝑗∗Ω1
𝑍/𝑋. This is locally free: by assumption, Δ = 𝑗 ∘ 𝛼 so

𝒬 = 𝛼∗𝑗∗𝑗∗Ω1
𝑍/𝑋 ≅ 𝛼∗Ω1

𝑍/𝑋. As 𝜑 is smooth of relative dimension ℓ, Ω1
𝑍/𝑋

is locally free of rank ℓ and thus so is 𝒬.
Define 𝒯𝑑 = 𝒬(𝑑)|𝑥 ∖ {0}. Applying Theorem 1.1, we get

lim
𝑑→∞

Prob(𝑓 ∈ 𝒯𝑑) = 𝜁𝑋(ℓ + 1)−1.

Example 5.3. We now answer Question 1 as a specific instance of Exam-
ple 5.2. Let char(𝔽𝑞) ≠ 2. Choose four closed points of ℙ2

𝔽𝑞
that are geo-

metrically in general position. Let 𝑖 ∶ 𝑋 ↪ ℙ2
𝔽𝑞

be a curve whose geometric
points are in general position with these four points. Then for each closed
point 𝑥 ∈ 𝑋, there is a unique smooth conic 𝐶𝑥 passing through the four
points and 𝑋. Let 𝑗 ∶ 𝐶 ↪ 𝑋 × ℙ2 be the inclusion of the subscheme 𝐶 pa-
rameterizing the data {(𝑥, 𝑦) ∣ 𝑥 ∈ 𝑋, 𝑦 ∈ 𝐶𝑥}. Then Δ factors as 𝑗∘𝛼 where
𝛼 is the diagonal into 𝐶, and 𝜑 ∶ 𝐶 → 𝑋 is smooth of relative dimension 1,
so the conditions of the example are satisfied.

Let 𝑓 ∈ 𝑆𝑑. With 𝒬 defined as in Example 5.2, the hypersurface 𝐻𝑓
intersects 𝐶𝑥 transversely at 𝑥 if and only if it does not vanish in the fiber
of 𝒬 at 𝑥. Thus the example above shows the probability that a random
plane curve intersects 𝐶𝑥 transversely at 𝑥 for all closed 𝑥 ∈ 𝑋 is 𝜁𝑋(2)−1.
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