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2.3 Roots

Roots are the key to a deeper understanding of polynomials.

Definition: Any value r ∈ F that solves:

f(r) = 0

is called a root of the polynomial f(x) ∈ F [x].

Examples: (a) Every f(x) ∈ R[x] of odd degree has at least one real root. The
graph of y = f(x) crosses y = 0 at least once (Intermediate Value Theorem)
and if r is the x-coordinate of a crossing point, then f(r) = 0. In other words,
each crossing point produces a root.

(b) Linear polynomials always have one root. We can be specific in this case.
The linear polynomial f(x) = ax+ b has r = − b

a as its one and only root.

Proposition 2.3.1. (a) If x− r divides f(x), then r is a root of f(x).

(b) Conversely, if x− r doesn’t divide f(x), then r isn’t a root of f(x).

Proof: If x− r divides f(x) then f(x) = (x− r)q(x) and so:

f(r) = (r − r)q(r) = 0 · q(r) = 0

This gives (a). If x − r doesn’t divide f(x), division with remainders gives a
constant remainder: f(x) = (x− r)q(x) + a so that

f(r) = (r − r)q(r) + a = a 6= 0

This gives (b).

Corollary 2.3.2. A polynomial of degree d has at most d different roots.

Proof: Let {r1, ..., rn} be any set of distinct roots of f(x). We need to prove
that n ≤ d. Since r1 is a root, f(x) = (x − r1)q1(x) by the Proposition. All
the other roots must also be roots of q1(x), since f(ri) = (ri − r1)q1(ri) = 0
and ri − r1 6= 0. In particular, q1(x) = (x − r2)q2(x), and we can continue the
process, getting a string of equalities:

f(x) = (x− r1)q1(x) = (x− r1)(x− r2)q2(x) = · · ·

= (x− r1) · · · (x− rn)qn(x)

Thus n ≤ d because d = deg(f(x)) = n+ deg(qn(x)).

Of course a polynomial of degree d could have fewer than d roots. A prime
polynomial of degree ≥ 2, for example, has no roots at all.
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Proposition 2.3.3 (The Rational Roots Test). The only possible rational
roots of a polynomial with integer coefficients:

f(x) = adx
d + ad−1x

d−1 + ...+ a0

are the rational numbers a/b (written in lowest terms) such that b divides ad
and a divides a0

Proof: Suppose a/b is a rational root in lowest terms. Then

ad

(a
b

)d
+ ad−1

(a
b

)d−1

+ ...+ a1

(a
b

)
+ a0 = 0.

If we clear denominators by multiplying through by bd, we get:

ad(ad) + ad−1(ad−1b) + ...+ a1(abd−1) + a0(bd) = 0

and we can put a0(bd) to one side of the equation and collect an a out of each
of the terms on the other side to get:

a0(bd) = a
(
−adad−1 − ad−1a

d−2b− ...− a1b
d−1

)
and so we see that a divides a0(bd). Similarly:

ada
d = b

(
−ad−1a

d−1 − ad−2a
d−2b− ...− a0b

d−1
)

so we see that b divides ad(ad). But we chose a/b to be in lowest terms, so none
of the prime factors of a and of b are the same. It follows that a divides a0 and
b divides ad.

This gives us the following:

Strategy for finding all rational roots of f(x) with integer coefficients:

Step 1: Assemble all a/b’s for which a divides a0 and b divides ad.

Step 2: The ones that solve f(a/b) = 0 are all the rational roots.

Example: Find the rational roots of 2x3 + 11x2 + 17x+ 6. First, assemble:

1
2
,−1

2
, 1,−1,

3
2
,−3

2
, 2,−2, 3,−3, 6,−6

and then try them all!

f( 1
2 ) = 35

2 f(− 1
2 ) = 0 f(1) = 36 f(−1) = −2

f( 3
2 ) = 63 f(− 3

2 ) = − 3
2 f(2) = 100 f(−2) = 0

f(3) = 210 f(−3) = 0 f(6) = 936 f(−6) = −132

Thus −1/2,−2 and −3 are the rational roots.
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Corollary 2.3.4. None of the nth roots n
√

2 is rational (for n > 1).

Proof: An nth root of 2 is, by definition, a root of the polynomial:

f(x) = xn − 2

But the only possible rational roots of f(x) are 1,−1, 2,−2 by the test. Since
none of these solve xn − 2 = 0, we see that n

√
2 isn’t rational!

Amusing Observation: This is our third proof that
√

2 is irrational. This
one, however, proves much more.

Definition: Any complex number that is a root of a polynomial in Q[x] is
called an algebraic number (or just algebraic).

Proposition 2.3.5. If α = s+ it is an algebraic number, then α = s− it is an
algebraic number, too.

Proof: If α is algebraic, then by definition, f(α) = 0 where

f(x) = adx
d + ...+ a0 and each ai is rational.

But then 0 = 0 = f(α) = adα
d + ... + a0 = f(α) because complex conjugation

is linear and multiplicative! So α is a root of the same polynomial f(x).

Proposition 2.3.6. If f(x) and g(x) ∈ Q[x] have a complex root in common,
then “the” gcd of f(x) and g(x) has positive degree.

Proof: Euclid’s algorithm gives the same result for the gcd of f(x) and
g(x) whether we think of them as polynomials in Q[x] or as polynomials in C[x]
(See Exercise 5-3). As polynomials in C[x], they have a common factor, namely
x − α, where α is the complex root they have in common (Proposition 2.3.1).
So the gcd, whether thought of in C[x] or in Q[x], has positive degree.

Example: x4 + 2x2 + 1 and x4 + 3x2 + 2 have no rational roots at all. They
do have the complex root i in common, and x2 + 1 is a gcd.

Proposition 2.3.7. If α = s+ it is an algebraic number, there is exactly one
prime polynomial p(x) ∈ Q[x] with α as a root and of the form:

p(x) = xd + ad−1x
d−1 + ...+ a0

Proof: By definition, α is a root of some polynomial f(x) ∈ Q[x]. If we
factorize: f(x) = p1(x) · · · pn(x) in Q[x], then 0 = f(α) = p1(α)p2(α) · · · pn(α)
so (at least) one of the pi(α) = 0. Thus α is a root of some prime polynomial.
Suppose there are two prime polynomials p(x) and q(x) with α as a root. By
Proposition 2.3.6, we know that their gcd has positive degree. But the gcd must
have the same degree as p(x) and as q(x) since they are prime, and it follows
that p(x) is a constant (rational) multiple of q(x). There is exactly one constant
multiple of any polynomial that has the form xd + ad−1x

d−1 + · · · a0, so there
is exactly one such prime polynomial with α as a root.
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Definition: Given an algebraic number α, the prime polynomial p(x) of the
Proposition is called the characteristic polynomial of α.

Remark: The algebraic number α “knows” its characteristic polynomial p(x),
so it also knows all the other roots of p(x). These other roots are called the
(algebraic) conjugates of α.

Examples: (a) The golden mean −1+
√

5
2 has characteristic polynomial:

x2 + x− 1

and its algebraic conjugate is “little” golden mean: −1−
√

5
2 .

(b) The characteristic polynomial of 1√
2

+ 1√
2
i is:

x4 + 1

and there are three algebraic conjugates, which are the other fourth roots of −1:

− 1√
2

+
1√
2
i,

1√
2
− 1√

2
i and − 1√

2
− 1√

2
i

Notice that the “ordinary” complex conjugate is one of the algebraic conjugates.
This is always true of algebraic numbers that are not real (see Proposition 2.3.5).

A Hard Question: Which complex numbers are algebraic numbers?

The classical formulas for the roots of low degree polynomials give some clues.

The Quadratic Formula: The roots of ax2 + bx+ c ∈ Q[x] are:

x =
−b±

√
b2 − 4ac

2a

where ±
√
b2 − 4ac are the square roots of b2 − 4ac.

Proof: Divide through by a and complete the square:

x2 +
b

a
x+

c

a
= (x+

b

2a
)2 +

(
c

a
− b2

4a2

)
= 0

The solutions are then:

x+
b

2a
= ±

√
b2

4a2
− c

a
=
±
√
b2 − 4ac
2a

or x =
−b±

√
b2 − 4ac

2a

Definition: ∆ = b2 − 4ac is the discriminant of ax2 + bx+ c.

Corollary 2.3.8. If ax2 + bx+ c ∈ Q[x] then:

(i) if ∆ > 0, there are two roots, both real.

(ii) if ∆ = 0, the two roots come together to one real root.

(iii) if ∆ < 0, there are two roots, both complex (i.e. not real).
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The Cubic Formula: The roots of

f(x) = ax3 + bx2 + cx+ d ∈ Q[x]

may be obtained as follows:

Preliminary Step: Divide through by a.

Next Step: Complete the cube. This is already a little messy:

x3 +
b

a
x2 +

c

a
x+

d

a
= (x+

b

3a
)3 + (

c

a
− b2

3a2
)(x+

b

3a
) + (

d

a
− bc

3a2
+

2b3

27a3
) = 0

We change variables before proceeding:

y = x+
b

3a
, p =

c

a
− b2

3a2
and q =

d

a
− bc

3a2
+

2b3

27a3

and then the roots of y3 + py + q = 0 minus b/3a are the roots of f(x).

If we are really lucky and q = 0, then the roots are y = 0,±
√
−p so:

x = − b

3a
and x = − b

3a
±

√
b2

3a2
− c

a
=
−b±

√
3b2 − 9ac
3a

are the roots of f(x). This looks a bit like the quadratic formula, which is no
accident. The first root could have been found with the rational roots test, and
then the other two by the quadratic formula.

If we are only a little lucky and p = 0, then the roots are y = 3
√
−q for the

three complex cube roots of −q, and then the roots of f(x) are:

x =
−b
3a

+ 3

√
bc

3a2
− 2b3

27a3
− d

a
=
−b+ 3

√
b3 − 27a2d

3a

which also looks a bit like the quadratic formula (but it produces three roots)!
Otherwise p 6= 0 and q 6= 0, and we turn to the:

Second Step (an inspired guess): Set

y = z − p

3z

Then:

y3 + py + q = (z − p

3z
)3 + p(z − p

3z
) + q = z3 − p3

27z3
+ q

which we multiply through by z3 to get a degree 6 equation:

z6 + qz3 − p3

27
= 0
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This looks like a strange thing to do, since it created a degree 6 polynomial.
However, we can use the quadratic formula to find the solutions to this:

z3 =
−q +

√
q2 + 4p3

27

2
= −q

2
+

√
q2

4
+
p3

27

so that the roots of z6 + qz3 − p3

27 are:

z =
3

√
−q

2
+

√
q2

4
+
p3

27

and then the roots of y3 + py + q are:

y = z − p

3z
=

3

√
−q

2
+

√
q2

4
+
p3

27
− p

3 3

√
− q

2 +
√

q2

4 + p3

27

and finally, the roots of f(x) are:

x = − b

3a
+ y = − b

3a
+

3

√
−q

2
+

√
q2

4
+
p3

27
− p

3 3

√
− q

2 +
√

q2

4 + p3

27

This looks like it gives six numbers (one for each square root and cube root).
But it actually only produces 3 different numbers.

Two “Easy” Examples (already of the form y3 + py + q).

(a) Find the roots of y3 − y + 1. Here p = −1, q = 1 and so:

y =
3

√
−1

2
+

√
1
4
− 1

27
+

1

3 3

√
− 1

2 +
√

1
4 −

1
27

From the positive square root:
√

1
4 −

1
27 ≈ 0.46148 we get:

z =
3

√
−1

2
+

√
1
4
− 1

27
≈ 3
√
−0.03852 ≈ 0.3377 3

√
−1

In polar coordinates:

z ≈ (0.3377;
π

3
), (0.3377;π), (0.3377;

5π
3

)

When we plug into the formula for y we get the roots:

y ≈ .6624− 0.5624i, x ≈ −1.325, and y ≈ .6624 + 0.5624i
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(b) Find the roots of y3 − 2y + 1. Here p = −2, q = 1 and so:

y =
3

√
−1

2
+

√
1
4
− 8

27
+

2

3 3

√
− 1

2 +
√

1
4 −

8
27

Right away we get complex numbers, since 1
4 −

8
27 is negative.

z =
3

√
−1

2
+ i

√
8
27
− 1

4
≈ 3

√
(0.54433; 2.73521)

This looks nasty! The cube roots are (approximately):

(0.8165; 0.9118), (0.8165; 3.0061) and (0.8165; 5.1005)

and when we plug these in to the formula for y, we get a surprise!

y ≈ 0.9999,−1.6180, 0.6180

which are familiar real numbers. The first is 1 (within margin of error) and
the others are (also within margin of error) the golden mean and its conjugate!
Looking back at the polynomial, we notice that it factors.

y3 − 2y + 1 = (y − 1)(y2 + y − 1)

so this shouldn’t have been a surprise after all.

Note: In the first example, only one root was real, while in the second there
were three real roots. There is a discriminant to detect this:

Definition: The discriminant of ax3 + bx2 + cx+ d is

∆ = a43322

(
q2

4
+
p3

27

)
and this gets pretty complicated when we substitute for a, b, c, d:

∆ = 27a2d2 − 18abcd+ 4ac3 + 4b3d− b2c2

Corollary 2.3.9. If ax3 + bx2 + cx+ d ∈ Q[x], then:

(i) if ∆ > 0, then there are three roots; one real and two complex.

(ii) if ∆ = 0, then two (or three) roots come together; all are real.

(iii) if ∆ < 0, then there are three roots; all real.

Note: Unlike the quadratic case, this isn’t obvious at all. In fact, it is pretty
counterintuitive. When ∆ < 0, the square root is purely imaginary, which means
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that in order to come up with three real roots, we are forced to go through the
“nastiness” with the complex numbers!

Proof: Consider:
f(y) = y3 + py + q

the polynomial we got after completing the cube in the cubic formula. Since
the roots of the original polynomial are translates by − b

3a of the roots of f(y),
we may work with f(y) instead.

Also, forget about the factor a43322, since it is always a positive number.
(This factor is only there to make discriminant look nicer!)

The idea is to study critical points of f(y). These are the two solutions to:

f ′(y) = 3y2 + p = 0; namely y = ±
√
−p

3

Two roots come together when a critical point is also a solution of f(y) = 0.
(Exercise!) Substituting y = ±

√
−p

3 into y3 + py + q = 0, this gives us:(
±

√
−p

3

)3

+ p

(
±

√
−p

3

)
+ q = 0

so

q = ∓2
3

√
−p

3
and then q2 = −4p3

27

(squaring both sides). But this is exactly what we get when we set ∆ = 0. It
also tells us that p ≤ 0 at each critical point (because q2 ≥ 0), and so the critical
point is always a real root (either

√
−p

3 or −
√
−p

3 ). This only leaves one more
root which has to be real, too, because if it weren’t, its complex conjugate would
be an additional root (see Proposition 2.3.5).

Next, notice that if p ≥ 0 then f(y) has zero (or one) real critical points, so
it is a strictly increasing function, and therefore has only one real root! In fact,
the only way f(y) can have three real roots is if p < 0 and if the critical points
c1 = −

√
−p

3 and c2 =
√
−p

3 satisfy f(c1) > 0 and f(c2) < 0. (Think about the
graph of f(y).)

Substituting into f(y) (and remembering that p < 0), we see that:

f(c1) = −2p
3

√
−p

3
+ q > 0 and f(c2) =

2p
3

√
−p

3
+ q < 0

both happen exactly when:

|q| < |2p
3
|
√
−p

3
and q2 < −4p3

27

which is to say, exactly when ∆ < 0. This the Corollary.
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Examples: (a) x3 − 3x+ 4 has only one real root because ∆ = 324.

(b) x3 − 3x+ 1 has three real roots because ∆ = −81.

(c) x3 − 3x+ 2 has less than three roots because ∆ = 0.

Just to see that it is possible, here is (without proof):

The Quartic Formula: The four roots of:

ax4 + bx3 + cx2 + dx+ e ∈ Q[x]

are obtained as follows:

First Step: Divide through by a and complete the quartic, to get:

y4 + py2 + qy + r = 0

with the substitutions:

y = x+
b

4a

p =
c

a
− 3b2

8a2

q =
d

a
− bc

2a2
+

b3

8a3

r =
e

a
− bd

4
+

b2c

16a3
− 3b4

256a4

Second Step (a truly inspired guess): Solve a different cubic(!)

g(y) = y3 − 2py2 + (p2 − 4r)y + q2 = 0

with the cubic formula, and let s1, s2, s3 be the roots. Then it turns out that:

− b

4a
+
√
−s1 +

√
−s2 +

√
−s3

2
, − b

4a
+
√
−s1 −

√
−s2 −

√
−s3

2

− b

4a
−
√
−s1 +

√
−s2 −

√
−s3

2
and − b

4a
−
√
−s1 −

√
−s2 +

√
−s3

2

are the four roots of the original quartic!

Remark: This inspired guess is very misleading! It seems to suggest that
trickery will allow you to solve high degree polynomials by solving lower degree
ones and combining the roots in clever ways. This turns out to be impossible
already for degree 5 polynomials, as we will see.
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2.3.1 Roots Exercises

7-1 Define the derivative transformation on polynomials:

d

dx
: F [x] → F [x] by setting

dxn

dx
= nxn−1

By calling it a transformation, I am putting linearity into the definition:

d

dx
(f + g) =

df

dx
+
dg

dx
and

d

dx
(kf) = k

df

dx

(a) Prove Leibniz’ rule:

d

dx
(f · g) =

df

dx
· g + f · dg

dx

Hint: You only need to prove it when f(x) = xn and g(x) = xm.

(b) Prove that if (x− r)2 divides f(x), then r is a root of f(x) and df
dx (x).

(c) Prove the converse of (b) (see Proposition 2.3.1 (b)).

(d) If f(x) ∈ Q[x] is the characteristic polynomial of α, prove that (x− α)2

does not divide f(x). (So an algebraic number is never a conjugate of itself.)

Hint: Think about the gcd of f(x) and of df
dx (x).

(e) If f(x) ∈ Q[x] has degree n, then prove that for each x0 ∈ Q:

f(x) = f(x0) +
1
1!
df

dx
(x0)(x− x0) + ...+

1
n!
dnf

dxn
(x0)(x− x0)n

In other words, each polynomial has a Taylor expansion at each x0.

Hint: Again, you only need to check it for f(x) = xn (see Exercise 5-1).

7-2 Find all of the roots (some only approximate) of:

(a) x3 + x+ 2 (b) x3 + x− 3

(c) x3 − 3x+ 1 (d) x3 − 3x+ 2

(e) x3 + x2 + x+ 1 (f) x3 + x2 + x+ 2

7-3 Find the characteristic polynomials and all conjugates of:

(a) 1−
√

7
2 (b) 1+

√
7 i

2 (c) 3
√

2

(d) −1+ 3√−26
3 (e)

√
2 +

√
3 i (f)

√
3+
√

2
2




