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2.1 Polynomial Basics
Definition: A polynomial in the variable z has the following form:
flz) = agz® + ag_12¥ N+ -+ a1+ ag

where the coefficients ag, aq, ..., aq are elements of a field.

Note: We have seen three fields so far: Q, R, C. We will see many other fields!
The set of all polynomials with coefficients in a given field F' will be denoted:

Fla]

so for example Q[x] is the set of all polynomials with rational coefficients.
Examples: Some polynomials have special names:

(a) The zero polynomial is f(z) = 0.

(b) The constants are f(z) = a with a # 0.

(c) The linear polynomials are f(z) = ax + b, with a # 0.

(d) The quadratic polynomials are f(z) = az? + bx + ¢, with a # 0.

(e) The cubic polynomials are f(x) = az® + bx? + cx + d, with a # 0.

Padding polynomials: The two polynomials:
f(z) and 0z + f(x)

will be considered to be equivalent. That is why, for example, we do not consider
0z + b to be a linear polynomial. It is a constant that has been padded with the
fake linear term Oz, and similarly 022 + azx + b is a padded linear polynomial,
not a quadratic polynomial. In every equivalence class of polynomials except
the zero polynomial, there is exactly one “unpadded” polynomial:

f(x) = agz® + - + ap with ag # 0

and the degree of this f(z) (or any padding of it) is well-defined to be d. Thus
only the zero polynomial does not have a well-defined degree (after you unpad
all the zero coefficients, it completely disappears!). Some texts set the degree
of the zero polynomial to be —oco. We won’t do that here. We will simply leave
the degree of the zero polynomial undefined.

Examples: The special names correspond to low degree polynomials:
(b) The constants are the polynomials of degree 0.
(c) The linear polynomials are the polynomials of degree 1.
(d) The quadratic polynomials are the polynomials of degree 2.
(

e) The cubic polynomials are the polynomials of degree 3.
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Definition of Addition. This is done coefficient by coefficient:
d

aqr + -+ ag
+ bgz? + o+ bo
= (aa+ba)z? + -+ + (ao+bo)

More on Addition: F[z] is a vector space with (infinite) basis: 1,z, 22,23, ....
The addition is vector addition, which is associative and commutative with
additive identity element 0, and additive inverses always exist. Also:

bagz™ + -+ ag) = (bag)x™ + - -+ + (bag)
is scalar multiplication (and F' is often called the scalar field.)
Note: You may have only seen linear algebra in the case of the scalar field R.

In this course, it will be important to consider other scalar fields. See §3.1.

Definition of Multiplication. This is not just scalar multiplication above.
It is determined by “foil” (the distributive law) and the rule for exponents

z%2® = z%°. The bookkeeping may be done in the following way:

adxd + e + oo + ai1x + ag
X bex¢® + -+ bz + bo
(adbo)ﬂid + e + e + (albo)l‘ + aobo
(agb))z?t  +  (ag_1b)zd + .- + -+ (agh)x

just as you do the bookkeeping when you multiply many-digit numbers, adding
up each of the columns under the bar. Notice that in the far left column, there
will only be one term to add, namely aqb.z%t¢ just as on the far right there is
only the constant term agbg, so the final answer looks like:

agbex ™€ + (agbe_1 + ad_lbe)xd+e_1 + -+ (a1bg + apb1)x + apbo

with a jumble of terms in the middle. In summation notation (from calculus)
the final answer is written really simply like this:

d e
33 et

i=0 j=0
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Example: Calculate (22 +2z+1)(z —1) =23 - 1:

x? + T + 1
X x +  (-1)
(-2 + (-Dz + (1)
2+ z? + x
3+ 022 + Ox + (-1)

Multiplication is associative, commutative and distributes with addition.
The constant 1 is the multiplicative identity element, but F[z] is not a field
because not every non-zero polynomial has a multiplicative inverse. In fact, only
the constants have multiplicative inverses. All but the last of these statements
follow from the rules of arithmetic for F', and can be seen quite elegantly with
the summation notation (see Exercise 5-7). The last statement is a corollary of
the following:

Proposition 2.1.1. If f(x) has degree d and g(x) has degree e, then
f(x)g(x) has degree d + €
Proof: Unpad all the zero terms from f(x) and g(x). Then
f(2)g(x) = (aqz? + - + ag) (bex® + -+ + bo) = aghex™* + - + agbo

and aqg # 0 and b, # 0 by the definition of degree. Since aq # 0 and b, # 0
and F' is a field, there are multiplicative inverses é and b% in F', and then

decgree of f(x)g(z).

Corollary 2.1.2. Only the constants have multiplicative inverses in F[x].

L) (bl ) is the multiplicative inverse of agbe, so agb. # 0. Thus d + e is the

Proof: If f(z) and g(z) have degrees d and e and are multiplicative inverses
of each other, then f(z)g(z) = 1, which has degree 0, so d + e = 0. But d > 0
and e > 0, so d+ e = 0 can only happen if both d = 0 and e = 0. That is, f(x)
and g(z) can only be multiplicative inverses if they are both constants.

Corollary 2.1.3. If f(z)g(z) =0, then f(z) =0 or g(x) = 0.

Proof: If f(z)g(xz) = 0, then its degree is undefined. By Proposition 2.1.1,
this means that either the degree of f(x) or the degree of g(x) is undefined
(otherwise, the degree of f(x)g(z) would be d + e!). Thus either f(z) =0 or
g(x) =0 (or both).

Corollary 2.1.4. If f(z) # 0 and f(z)g(x) = f(z)h(x), then g(x) = h(z).

(in other words, f(x) can be cancelled from both sides).

Proof: After subtracting and distributing: f(x)(g(z) — h(x)) = 0, so either
f(z) =0 or g(z) — h(z) = 0 by Corollary 2.1.3. But f(z) # 0 by assumption,
so g(x) — h(z) = 0, and adding h(x) to both sides gives g(x) = h(z).
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No multiplicative inverses (of non-constant polynomials) means we don’t
have an honest division. But as in §1.1 there is a consolation prize:

Division with Remainders: If f(z) and g(z) have degrees d and e, with
d < e, then:

9(x) = f(z)q(z) +r(z)
where r(z) is either 0 or else a polynomial of smaller degree than d.

I won’t burden you with the proof. Suffice it to say that as with the nat-
ural numbers, you can, using induction, turn the familiar long division into a
mathematical proof of division with remainders.

Example: In Q[z], long divide 23 + 1 by 2z + 1:

1,2 _ 1 1
Pl T+ 3

20 +1 |3 + 0x? + 0z + 1

3, 1,2
T°+ 5T
—122 4+ 0x
—32% — iz
%x +1
iTt s
7
8
to get the quotient ¢(z) = 32 — Jz + & and remainder r(z) = I.

Definitions: (a) f(z) divides g(z) if g(x) = f(z)g(x) (with zero remainder).
In this case, f(x) is said to be a factor of g(x).

(b) f(z) is a prime polynomial of degree d > 0 if the only factors of f(x) have
either degree d, or else degree 0 (in this case, the constants are all considered
to be uninteresting, and in particular are not primes!).

Examples: (a) All linear polynomials are prime.

(b) Whether a polynomial is a prime or not may depend upon the coefficients.
For example, 2+ 1 is prime in R[z], but not in C[z], where 2% +1 = (z—i)(x+1).

The Fundamental Theorem for Polynomials: Each non-constant polyno-
mial in F[z] factors as a product of finitely many prime polynomials.

Proof: Let S C N be the set of degrees of all the polynomials that do not
factor as a product of finitely many prime polynomials. Then S = () or else S
has a smallest element d, by the well-ordered axiom. If f(z) is any polynomial
of degree d, then either f(z) is prime or else f(z) = g(z)h(x) so that g(x) and
h(z) have smaller degree. But then g(z) and h(x) must both be products of
finitely many primes because their degrees are not elements of S, and so f(x)
itself factors as a product of finitely many primes. But this tells us that every
polynomial of degree d must factor as a product of primes, so there can be no
such d, and therefore S = (), meaning that all polynomials factor.
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Euclid’s Theorem: There are infinitely many primes in each F[z].

Proof: Same as the proof for N. Given a finite number of prime polynomials:

P1(2); p2(2), s pn ()

the fundamental theorem tells us we can factor the polynomial:

9(z) = p1(z)p2(2)...pn(x) + 1

and each of the prime factors of g(z) is “new” (not one of the p;(x)) because
none of the p;(x) divide g(x). So however many primes we start with, we know
there are more, and this can only be true if there are infinitely many.

Remark: Every field F' we have seen so far is already infinite, so in this case
there are already infinitely many linear polynomials:

f@) =z +a

and Euclid’s theorem isn’t really telling us much. We will, however, soon see
fields with only a finite number of elements, where Euclid’s theorem is definitely
telling us something interesting!

Euclid’s Algorithm: Start with f(z) and g(x) of degrees d < e, and apply
division with remainders according to the following prescription:

g(x) = f@)qa(x) + ri(z)
f(x)

r1(x)

—~
|
<
-
—
8
~
()
\V]
—~
8
~
+
3
Do
—~
8
~

\
<
[\¥]
—
8
~—
[~
w
—
8
~
+
=3
w
—
8
~

until we reach a remainder of zero. Then the last non-zero remainder ryq(x)
is a common divisor of f(x) and g(x) of greatest degree.

Remark: If d(x) is a common divisor of f(z) and g(z), then so is any constant
multiple of d(z). So there is no single ged of two polynomials.

Example: If f(z) = 2° + 1 and g(x) = 21 + 1 then:

r0+1 = (284 1)(z%) + (—2*+1)
4+1 = (=2 +1)(-2%) + (22+1)
—zt+1 = (@®+1)(—2?+1)

so 22 +1 is a common divisor of largest degree. But so are 222 +2 and %xQ + %
Rational Functions: The set of rational functions with coefficients in F' is

F(z) = {equivalenee classes of fractions %}

where f(z) and g(x) are elements of F[x], and g(x) # 0.
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This time, we define the equivalence relation on fractions by the:

Cross Multiplication Rule:

f@) alz)
Lo~ o i f@ble) = g(wale)

Unlike the rational numbers, there is no nice geometric way of picturing the
equivalence classes as lines through the origin. But this doesn’t matter! The
“algebraic” cross multiplication rule is all that we need to create the field of
rational functions. Recall that we have to verify three properties before we are
technically allowed to talk about equivalence classes. Namely:

(i) Reflexivity:

f() ~ f@) because f(z)g(r) = g(x)f(z) Check.

glz)  g(x)

(i) Symmetry:

(@ e e@) @)

g(x)  b(x) blx)  g(x)

because f(x)b(x) = g(x)a(zr) rearranges as a(x)g(x) = b(z) f(x). Check.

(iii) Transitivity:
f@) alw) ale) ew) o f@) elx)
P "o e T aw M g T dw)
because, from f(z)b(z) = g(z)a(z) and a(z)d(z) = b(x)c(x) we conclude:
g(x)b(x)c(x) = g(z)a(z)d(x) = f(x)b(x)d(x)

and then we can cancel b(x) from both sides using Corollary 5.4 to finally get:
f(z)d(z) = g(x)c(x). Check.

Now we can finish as with rational numbers.

The formulas for addition and multiplication are the same:

[f(fv)} n {G(I)] _ {f(x)b(x)Jra(x)g(rC)}

a() | Lb(x) 9(x)b(x)
ol i) - i)

Using the cross multiplication rule, these formulas are seen to be well-defined
in precisely the same way as the formulas for addition and multiplication were
seen to be well-defined in §1.2. The rules of arithmetic are also verified in the
same way, showing that F(z) (like Q) is a field.
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Next we turn our attention in a completely different direction, to:

The Simplest Field. This has just the two elements 0 and 1:
F,={0,1}

and the only unusual thing about the field F; is the definition:
1+41=0

(the other additions and multiplications are the familiar ones) For polynomials
with coefficients in F5, you are allowed to make the “Freshman’s mistake:”

(z+1)2=2’4z+a+1=2+(1+Dz+1=2>+1

Let’s think about how some of the results we’ve been discussing play out for
this field. First, we can list all the polynomials in low degrees!

Constants in Fy[z]: There is only 1 (0 isn’t a constant)
Linear Polynomials in F5[z]: There are two: x and x + 1
Quadratic Polynomials: There are four: 22,22 + 1,2 + z and 22 + 2 + 1

Cubic Polynomials: There are 8 of them: z3, 23 + 1,
B4z, B 4r+1, 2B+ B2+t +1, B4, B2 r+1

and there are exactly 2¢ polynomials of each degree d. (Can you see why?)
Now for the prime polynomials:
Linear Primes: Linear polynomials are always prime.

Quadratic Primes: If a quadratic polynomial is not prime, then it must
factor as a product of two linear polynomials. That means that if we form all
the products of linear polynomials, then whatever is left over is prime!! There
are three products we can take:

r-x=2% 2z -(z+1) =2 +zand (z+ 1) =22 +1

and this leaves 22 4+ x + 1 as the only quadratic prime.

Cubic Primes: Again, we notice that if a cubic polynomial is not prime, then
it must factor as a product of a linear polynomial and a quadratic polynomial.
If we look at our list, there are 2 linears and 4 quadratics, so it looks like we
aren’t going to have any cubic polynomials left over! But we do, because some
of these products turn out to be the same. Let’s see:

r-2t=23 1),z - (2®+1) =2 +2 (2),z (2* +2) = 2%+ 27 (3)

v +ar+1) =+ +2 @4),(x+1) 2% =2+ 22 (5)
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(z+1)(@*+1) =2 +22+2+1(6)
(x+ 1)@ +2)=2+2 (7)), e+ D@ +z+1) =23 +1(8)
Indeed, (3)=(5) and (2)=(7) and there are two polynomials left out:

3+ x4+ 1 and 2® + 2% + 1 are the cubic primes!

One could go on. A quartic (degree four) polynomial that is not prime must
either factor as a linear times a cubic or as a quadratic times a quadratic. Again,
it looks like there are plenty of products to use up all 16 quartic polynomials,
but in fact many of the products are the same, and several are once again left
over. Thus in this setting, Fuclid’s theorem is very powerful indeed, since it
tells us that there are infinitely many primes, and in particular there are primes
of larger and larger degrees in Fy[x].

A Last Remark about this field F;. The negation transformation here is a
bit of a surprise, because —0 = 0 (as always) but also —1 = 1 since 1 +1 = 0.
That is, the negation transformation on F; does nothing!. The smallest field
where the negation transformation does something interesting will be:

F;={-1,0,1}

but that is a story for the exercises.

2.1.1 Polynomial Exercises

5-1 Prove by induction that:
(x+c)" =

n! n! n—2 + + n! n—1 4
X L C te - - &cC C
(n— 1! (n —2)!12! 1(n —1)!

(Hint: Where have we seen something like this before?)

J}n-i- n—lc+

5-2 Factor each of the following polynomials as a product of primes in four
ways, regarding them first as elements of Q[z], then R[z], C[z] and finally Fs[x].
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5-3 Find a common divisor of largest degree of each of the following pairs of
polynomials. Does it matter whether we regard them as polynomials in Q[z] or
as polynomials in Clz] or Fy[z]? If so, what’s the difference?

(a) 2° — 1 and 25 — 1
(b) 2% + 1 and 2% + 1
(c) 21 —1 and 2% — 1
(d) 219+ 1 and 2% +1

5-4 Find all the prime quartic polynomials in F[z].

5-5 (a) Find the only possible definitions of addition and multiplication that
will make:
F;={-1,0,1}

into a field (this is the second simplest field).
(b) Find all the prime quadratic polynomials in Fjx].
5-6 Explain why:
(a) There are no prime quadratic polynomials in C[z].

(b) The prime quadratic polynomials ax? + bx + ¢ in R[z] all satisfy:
b? — 4dac < 0

5-7 Let p(x) = Y0, aix?, q(x) = > j—obja’ and r(z) = S cxa® be three
polynomials (written in summation notation). Then:

d e
p(x)q(x) = Z Z a;bjz"7 and
i=0 j=0
e d o
q(z)p(x) = bja;xt?
§=0 i=0

It is a fact of the summation notation that (finite) sums can be reversed:

e d d d
DO bjaat =Y "bjaalt

§=0i=0 i=0 i=0
and then a;b; = bja; and i + j = j+1 (for all ¢ and j) explain the commutative
law of multiplication for polynomials.
Using the above discussion as a model, use facts about summation notation to:
(a) State and explain the distributive law for polynomials.

(b) State and explain the associative law of multiplication for polynomials.





