88 CHAPTER 3. SYMMETRIES
3.1 Linear Algebra

Start with a field F' (this will be the field of scalars).

Definition: A vector space over F' is a set V with a vector addition and
scalar multiplication (“scalars” in F' times “vectors” in V') so that:

(a) Vector addition is associative and commutative.

)
b) There is an additive identity vector, denoted 0, or sometimes 0.
¢) Every vector ¥ has an additive inverse vector —7.

)

(
(
(d) Scalar multiplication distributes with vector addition.

(e) If ¢,k € F are scalars and ¢ € V is a vector, then ¢(k¥) = (ck)v.
(f) If 1 € F is the multiplicative identity, then 10 = ¥/ for all ©.

Examples: (a) F™ is the standard finite-dimensional vector space of n-tuples
of elements of F'. Vectors v € F™ will be written vertically:

U1 U1 w1 V1 + wq U1 kvq

Vo Vo wWo Vo + wWo Vo kvo
V= 5 . + = 5 k’ . =

Un, U, Wh, Uy, + Wy, Vp, kv,

(b) If F C D and D is a commutative ring with 1, then D is a vector space
over F'. The scalar multiplication is ordinary multiplication in D, and property
(e) is the associative law for multiplication in D. Thus, for example, vector
spaces over Q include R, C, Q[z] and Q(z).

Definition: A basis of a vector space V is a set of vectors {;} that:

(i) Span. Every vector is a linear combination of the ¥;:
U=k101 + ... + kntp

and

(ii) Are Linearly Independent. The only way:
kitv1 + ...+ k,u, =0

is if all the scalars k1, ..., k,, are zero.

Proposition 3.1.1. If {¥y,....,U,} is a basis of V, then every vector U € V is
a unique scalar linear combination of the basis vectors:

U=Fk0 + ...+ kU,

and any other basis {W;} of V. must also consist of a set of n vectors. The
number n is called the dimension of the vector space V' over F.
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Proof: Since the {¥;} span, each vector ¢ has at least one expression as a
linear combination of the ¥;, and if there are two:

=KV +..+kyU, and ¥ =101 + ... + 1,,U,

then subtracting them gives: 0 = (ky — 1)1 + ... + (kn — 1n)¥,. But then
each k; = l; because the {0;} are linearly independent, and thus the two linear
combinations are the same. This gives uniqueness.

Now take another basis {w;} and solve: @y = b1¢) + ... + bp¥,. We can
assume (reordering the ¥; if necessary) that b; # 0. Then:

JEN ]- - b2_» bn_»
V1 = —W1 — 57—V —...— —Up

by b1 by
and then {w, ¥, ..., ¥, } is another basis of V because every

. . . 1. by, by . .
U=k +..+k,0, = kl(b—wl — ijg e b—vn) + kot + ... + ky,Un
1 1 1

so the vectors span V', and the only way:
0=k + ...+ kpU, = k1(b1th + ... + b, 0) + koo + ... + kn Uy

is if k161 = 0 (so k1 = 0) and each ki1b; + k; = 0 (so each k; = 0, too!)

Similarly we can replace each v; with a w; to get a sequence of bases:
{Wy,Wa, Vs, ..., Uy }, {W1, Wa, W3, Uy, ..., Up }, etc. If there were fewer of the w;
basis vectors than ¥; basis vectors we would finish with a basis:

{W1, ooy Wyny Uit 1y ooy Un }
which is impossible, since {w, ..., W} is already a basis! Similarly, reversing
the roles of the v;’s and w;’s, we see that there cannot be fewer ¢;’s than ;’s.
So there must be the same number of w;’s as ¥;’s!

Examples:
(a) F™ has n “standard” basis vectors:

1 0 0

0 1 0
€1 = 362: ) 5 7€7L:

0 0 1

(b) R! is the line, R? is the plane, and R3 is space.

(¢) C has basis {1,4} as a vector space over R.

(d) Q[z] has infinite basis {1, x, 22,23, ...} as a vector space over Q.
(

e) It is hard to even imagine a basis for R as a vector space over Q.
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(f) Likewise it is hard to imagine a basis for Q(z) over Q.

We can create vector spaces with polynomial clock arithmetic. Given
f(z) =2 +ag_12%7" + ...+ ap € F[z]
we first define the “mod f(x)” equivalence relation by setting

g(x) = h(z) (mod f(z))

if g(x) — h(z) is divisible by f(x), and then the “polynomial clock”:

Fla]f@) = {lg(@)]}
is the set of “mod f(x)” equivalence classes.

Proposition 3.1.2. The polynomial clock F[x] ) is a commutative ring with
1 and a vector space over F' with basis:

{1, [], oo [}
and if f(x) is a prime polynomial, then the polynomial clock is a field.

Proof: Division with remainders tells us that in every equivalence class
there is a “remainder” polynomial r(z) of degree < d. This tells us that the
vectors:

[1]’ [.1‘], ['%2]’ e [xd_l] € F[m]f(r)

span the polynomial clock. They are linearly independent since if:
b1z + ..+ bo[l] =0

then r(z) = bg_12% ! + ... + by is divisible by f(z), which is impossible (unless
r(z) = 0) because f(x) has larger degree than r(x).

The addition and multiplication are defined as in the ordinary clock arith-
metic (and are shown to be well-defined in the same way, see §8). As in the
ordinary (integer) clock arithmetic, if [r(z)] is a non-zero remainder polynomial
and f(z) is prime, then 1 is a ged of f(z) and r(z), and we can solve:

1= r(@)u(z) + f@)()
and then [u(z)] is the multiplicative inverse of [r(z)].

Example: We saw that 22 + 2+ 1 € Fy[] is prime. From this, we get {[1], [z]}
as the basis of the polynomial clock defined by 2+ +1, which is a vector space
over Fy of dimension 2 and a field with 4 elements (removing the cumbersome
brackets):

0,1, z,x+1

Let’s write down the multiplication and addition laws for this field. Notice that
this is not Z4 (Z4 isn’t a field!). We'll call this field Fj:
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+ 0 1 x r+1
0 0 1 T r+1
1 1 0 z+1 T
T x x+1 0 1
z+1|x+1 T 1 0

91
X 0 1 T r+1
0 0 0 0 0
1 0 1 T rz+1
T 0 T z+1 1
x + 0O|lz+1 1 T

Next recall that an algebraic number « is a complex root of a prime poly-

nomial:

fx)=2%+ag_ 129 + ...+ ag € Q[z]

We claim next that via «, the polynomial f(x)-clock can be regarded as a
subfield of the field C of complex numbers. In fact:

Proposition 3.1.3. Suppose F' C C is a subfield and o € C is a root of a prime

polynomial:

f(@) =2+ ag_12*" + ...+ ag € Fa]

Then the f(x)-clock becomes a subfield of C when we set [x] = a. This subfield
is always denoted by F(«), and it sits between F and C:

FcCF(a)cC

Proof: The f(z)-clock is set up so that:

(o) + aga[2]"7" + -

But if @« € C is a root of f(x), then it is also true that

G,O:O

ad—l—ad,lad_l +--ra9g=0

so setting [z] = « is a well-defined substitution, and because f(z) is prime, it
follows that the clock becomes a subfield of C.

Examples: We can give multiplication tables for clocks by just telling how to

multiply the basis elements of the vector spaces:

(a) F =R and f(x) = 22 + 1. The 22 + 1-clock has table:

x |1 T
1|1 T
z | x| —1

On the other hand, R(i) and R(—i) have multiplciation tables:

x |1 )

111 +

and

1|4 | —1

—1

—1

-1
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Both R(i) and R(—i) are, in fact, equal to C. The only difference is in the
basis as a vector space over R. One basis uses i and the other uses its complex
conjugate —1.

(b) If F = Q and f(x) = 23 — 2, the clock has multiplication table:

2

X 1 T | x

1 1 x | a?

T x | 22| 2
22| 22| 2 | 2z

and Q(+4/2) (necessarily) has the same multiplication table:

1 V2 V4
1

) Vi
Vi|vVi| Vi | ¥B=2
VI V| Vs=2]| Vic=23%

X
1

[\

To find, for example, the inverse of z2 + 1 in the clock, we solve:
1= (2% + Du(z) + (23 — 2)v(z)

which we do, as usual, using Fuclid’s algorithm:

-2 = (22+ 1) + (—x—-2)
2?+1 = (—2-2)(-z+2) + 5
s0, solving back up Euclid’s algorithm:
5 = (22 +1) - (—z=2)(—z+2)
= (22+1) — ((Jc3 —2)— (22 + 1)9&))(—33 +2)
= @+ 1)(-2*+22+1) + (2®-2)(z—2)

giving us the inverse in the % — 2-clock:
2 a1 2
(z=+1) :g(fz +2x+41)
which we can substitute x = ¥/2 to get the inverse in Q(3/2):
1
(Va+1)~t = g(—\3/1+ 2V2 + 1)
Definition: A linear transformation of a vector space is a function:

T:V->V

such that:
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for all vectors ¥, w and all scalars k. The linear transformation is invertible if
there is an inverse function 77! : V — V, which is then automatically also a
linear transformation!

Definition: Given a vector space V of dimension n with a basis {#;} and a
linear transformation 7' : V' — V| the associated n x n matrix

a11 a2 - Qi

az1 Q22 -t 42p
A = (aij) =

an1 an2 T Ann

is defined by:
n
T({f]) = aljﬁl + a2j172 + ...+ anjf[fn — Zaijgi
i=1

Examples: (a) Rotations in the R? plane. We start with the basis:

51:|:(1):| and€2:|:?:|

and we want the matrix for 7' : R? — R? given by counterclockwise rotation by
an angle of 6. For the matrix, use:

T(e1) = cos(6)é) + sin(0)é,

by the definition of sin and cos. Since €5 can be thought of as € already rotated
by %, we can think of T'(€2) as the rotation of & by § + 6 so:

T(er) = cos(g +0)er + sin(g + 6)ey

and then the matrix for counterclockwise rotation by 6 is:

cos(f) cos(g +0) } _ [ cos(f) —sin(0)
sin() sin(% +6) sin(f)  cos(f)

(using the identities: cos(§ + ¢) = —sin(f) and sin(F + ) = cos(#))
(b) Multiplication by a scalar. If k € F, let T'(¢) = k¥, so:
T(01) = kty,...,T(0,) = ki,

for any basis, and then:

k0 0

0 k 0
A:

0 0 k

In particular, the negation transformation is the case k = —1.
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(c) Multiplication by «a. If « has characteristic polynomial:
% fag_ 1297+ 4 ap € Q[z]
then multiplication by « on the vector space Q(«) is defined by:
T(1) =a,T(a) =a?, .., T(@™) =a = —ag — ... —ag_12%7!

giving us the matrix:

00 0 —ag
10 0 —a
A—]0 1 0 —a
00 - 1 —ag

The fact that multiplication by « is a linear transformation comes from:
Proposition 3.1.4. Multiplication by any 5 € Q(«) is linear.

Proof: We need to show that (v 4 @) = B+ S and B(kv) = k(B7). But
in this vector space, all the vectors are complex numbers! For convenience
set ¥ = s and W =t to help us remember that they are numbers. Then:

B(s+1t)=pPs+ Pt

is the distributive law! And:

B(ks) = (Bk)s = (kB)s = k(Bs)
are the associative and commutative laws for multiplication.
Matrix multiplication (of matrices A = (a;;) and B = (b;})) is given by
the prescription:
AB = C for ¢ = a;1bik + apobor + ... + ainbnr = Zaijbjk
J

Fix a basis {#;} for V. If the matrices A and B are associated to the linear
transformations S and T, respectively, and if U = S o T, then:

U(ﬁk) = S(T(’ﬁk)) = S(Z b]k’U]) = Z aijbjkﬁi = Z Clk’U,
J i,J i

is the kth column of C. So the product of two matrices is the matrix of the
composition of the linear transformations.

We see from this that matrix multiplication is associative:

(AB)C = A(BC)
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since composition of functions is associative:
(RoS)oT=RoSoT=Ro(SoT)

Composition of linear transformations often isn’t commutative, so matrix
multiplication often isn’t commutative (but sometimes it is!).

The identity transformation corresponds to the identity matrix:

0 1 0
I, =

which is a (multiplicative) identity, since I,A = A = AI, for all A. So I,
commutes with all matrices! In fact, multiplication by any scalar commutes
with all matrices, by definition of a linear transformation.

If T is an invertible linear transformation with matrix A, then the matrix
A~1 associated to T~ is the (two-sided) inverse matrix because the inverse

function is always a two-sided inverse! In other words, the inverse matrix satis-
fies:
AA T =T, =A714

(so A commutes with its inverse matrix, whenever an inverse exists!)
Examples: (a) The matrices for rotations by 6 and ¢ are:
_ | cos(f) —sin(8) | cos(¢p) —sin(v)
Ao = [ sin(0)  cos(®) | A= | gin(e)  cos(u)

The product of the two matrices is:

AgA, — { cos(f)cos(v)) — sin(f)sin(yp) —cos(0)sin(¢p) — sin(f)cos(v)) ]
v cos(f)cos(v)) — sin(f)sin(yy) —sin(@)sin(¢y) + cos(6)cos(v))

and by the angle sum formula from trig (see also §4) this is Agy, which is, as
it must be, the matrix associated to the rotation by 6 -+ 1. Notice that here,
too, the matrix multiplication is commutative, since 8 + ¢ = ¢ + 6!

(b) We saw in an earlier example that in Q(+/2), there is an equality:
(VA+1)(-VAa+2V2+1)=5

Let’s check this out with matrix multiplication. Start with:

0 0
A= 0 L A2=10
1 1

o = O
O O N
O O N
SN O

(the matrices for multiplication by /2 and /4, respectively)
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The matrices for multiplication by Y4 +1 and —/4 + 292 + 1 are:

1 20 1 -2 4
A2+ I3=10 1 2|, —A2424+1I;= 2 1 -2
1 01 -1 2 1

and then the matrix version of the equality above is:
(A% + I3) (=A% + 2A + I3) = 513
as you may directly check with matrix multiplication!
Recall some more basic concepts from linear algebra:
Similarity: Two n x n matrices A and A’ are similar if
B'AB=A'
for some invertible matrix B. This is an equivalence relation:
(i) Reflexive: I 1AL, = A
(ii) Symmetric: If B~1AB = A’, then (B~})"1A’'B~1 = A.
(iii) Transitive: If B~!AB = A’ and C~1A'C = A", then:
A" =CY(B7'AB)C = (BO) ' A(BC)

Note: Similarity occurs when we change basis. If A is the matrix for a trans-
formation T" with basis {;} and if {w;} is another basis with:

Wy = by + bova + ... 4 by Uy
then A’ = B~'AB is the matrix for T with the basis {u;}.
Determinant: The determinant is the unique function:
det : square matrices — F

that satisfies the following properties:
(i) det(AB) = det(A)det(B) for square n X n matrices A and B.
(ii) det(A) = 0 if and only if A is not invertible.
(iii) The determinants of the “basic” matrices satisfy:
(a) det(A) = —1 when A transposes two basis vectors ¥; and ¥;:
T(0;) = 7;,T(V;) = ¥;, otherwise T(0}) =
(b) det(A) = 1 when A adds a multiple of one basis vector to another:

T(0;) = ¥; + k¥, otherwise T(;) = 7,
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(c) det(A) = k when A multiplies one basis vector by k:
T(v;) = k¥; and otherwise T'(7}) = ¥

Example: The basic 2 x 2 matrices are:

0 1
det{l 0}——1

10 1 k
det{k 1]—1, det[0 1}_1
k0 10
det{0 1]—k, det[0 k}_k
Since each matrix is a product of basic matrices (Gaussian elimination!) the

determinant is completely determined by property (iii).
Note: det(B~!)det(B) = det(I,,) = 1 when B is invertible, and
det(A’) = det(B~1)det(A)det(B) = det(B) 'det(A)det(B) = det(A)

when A’ = B7'AB, so the determinants of similar matrices are equal. Thus
the determinant doesn’t care about the choice of basis.

Characteristic Polynomial: This is the function:
ch : square matrices — F'[z]

defined by: ch(A) = det(xl, — A) (assuming A is an n X n matrix). And the
characteristic polynomial is the same for similar matrices, too:

ch(A') = det(z1,, — B"'AB) = det(B~!(xI, — A)B) = det(zI,, — A) = ch(A)
Examples: (a) The characteristic polynomial of rotation by 6:

— cos(0) sin(6)

T
det —sin(f)  x — cos(h)

= 2% — 2cos()x + 1
and the roots of this polynomial are the two complex numbers:
e = cos(0) +sin(f)i and e~ = cos(#) — sin()i

(b) The characteristic polynomial of multiplication by a € Q(«) is:

T 0 0 ag
-1 T 0 aq

det 0 -1 ... 0 as :xd+ad_1$d71+-~-+a0
0 0 -+ =1 z4+ag_1

which is exactly the same as the characteristic polynomial of « thought of as
an algebraic number! This apparent coincidence is explained by the following;:
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Proposition 3.1.5. Fach n xn matriz A is a “root” of its characteristic poly-
nomial. That is, if

ch(A) = 2" + ap_12" ' + ... + ag
then
A"+ a1 A"+t agl, =0
(this isn’t a root in our usual sense, because A is a matriz, not a scalar!)

Proof: The sum:
B=A"+a, 1 A" '+ .. +aol,

is a matrix, so to see that it is zero, we need to see that it is the zero linear
transformation, which is to say that Bt = 0 for all vectors ¢ € V. In fact, it is
enough to see that B¢; = 0 for all basis vectors, but in this case it isn’t helpful
to restrict our attention to basis vectors.

So given an arbitrary vector ¢, we know that eventually the vectors:
7, Av, A%5, ..., AT

are linearly dependent (though we may have to wait until m = n). For the first
such m, the vector A™% is a linear combination of the others (which are linearly
independent):

boU + b1 AT+ ... + by 1 AT LG+ AT =0

Now I claim that the polynomial 2™ + b, 1™~ ! + ... + by divides ch(A). To
see this, we extend ¥, ..., A™~1¥ to a basis of the vector space V:

- 4o m—1- = -
v, Av, ..., A U, Wynt-15 -+-y Wn

with some extra vectors Wy, 41, ..., Wy, that I don’t care about. The characteristic

polynomial doesn’t care what basis we use, so let’s use this one. The point is

that some of this matrix we know:

0 0 0  —by = 1

10 0 —b

0 1 0  —by
A=10 0 ... 1 by, *

00 -~ 0 0 ¥

00 -~ 0 0 koo ok

where the “x” denote entries that we do not know, since they involve the wj;
basis vectors. But this is enough. It follows as in Example (b) above that
™ 4 by_12™ 1 + ... + by divides the determinant of zI, — Al
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But now that ch(A) factors, we can write
ch(A) = (2" ™+ Cnm1 T co)(x™ + by 1™V + L+ bo)
for some other polynomial with ¢ coefficients, and then:
Bi= (A" 4 cpm 1 A" ol ) (A A by AT A b)) T =0
because A™T = —bg¥ — - - - — b1 AT 0. That’s the proof!
Final Remarks: Given an n x n matrix A, then any vector satsifying:
AT =\

is an eigenvector of the linear transformation and \ is its eigenvalue. If ¥/ is
a nonzero eigenvector, then

(M, —A)UT=0
so in particular, A\I,, — A is not an invertible matrix, and so:
det(A\, — A) =0

In other words, an eigenvalue is a root of the characteristic polynomial, and
conversely, each root is an eigenvalue for some eigenvector. Notice that if the
vector space happens to have a basis {#;} of eigenvectors with eigenvalues {\;},
then by changing to this basis, we get a matrix A’ similar to A with:

A 0 -0

0 X -+ 0
A =

0 0 - A\

In this case A is said to be diagonalizable.

Example: Rotation by 6 is not diagonalizable if R is our scalar field, since the
eigenvalues for rotation are the complex numbers e? and e~*’. However, if we
broaden our horizons and allow C to be the scalar field, then:

(2 =2 ][t ] =] 1]

and

[t [ 3] =] e = [ 1]

so we have our basis of eigenvectors and in that basis, rotation is given by the

matrix:
et? 0
0 e—i@
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3.1.1 Linear Algebra Exercises

10-1 Recall that the polynomial f(z) = 23 +x+1 € Fy[x] is prime. This means
that the f(x)-clock is a field with 8 elements. Complete the following addition
and multiplication tables for this field:

+ 0 1 T z4+1| 22 2241 2?2 +x | 22 +x+1

0 1 x x+1 x2 224+1 224z | 22 +x+1

10-2 Repeat 10-1 for the prime polynomial f(z) = 22 + 1 € F3[z]. Hint: This
time you’ll get a field with 9 elements!

10-3 In the field Q(v/2) do the following:
(a) Find the multiplicative inverse of 1+ v/2 in Q(v/2).
(b) Write the 2 x 2 matrix for multiplication by 1 + v/2 in Q(v/2).
(¢) Find the characteristic polynomial for the matrix in (b).
(d) Find the (complex!) eigenvalues of the matrix in (b).
(e) Find the 2 x 2 matrix for multiplication by (1 4+ v/2)7! in Q(+/2).

)
f) Multiply the matrices (for 1 + /2 and for (1 4 v/2)™') to see that they
are really inverses of each other.

10-4 Let o = cos(%) + isin(2F). In the field Q(a) do the following:

(a) Find the characteristic polynomial of the algebraic number «. (Hint: It
is a polynomial of degree 4).
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(b) Fill out the following multiplication table for Q(«):

1 « a? a?

Q|| X

W N

Q1L

(c) Find the multiplicative inverse of o in Q().
(d) Write the 4 x 4 matrix for multiplication by o?.

10-5 Find the characteristic polynomials and eigenvalues of the following:

(a)
cos(f)  sin(6)
sin(f) —cos(6)
(b)
0 0 1
1 00
010
()
00 0 -1
1 0 0 -1
01 0 -1
001 -1





