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ABSTRACT. Let A be an excellent local normal domain and {fn}
∞

n=1 a
sequence of elements lying in successively higher powers of the maximal ideal,
such that each hypersurface A/fnA satisfies R1. We investigate the injectivity
of the maps Cl(A) → Cl((A/fnA)′), where (A/fnA)′ represents the integral
closure. The first result shows that no non-trivial divisor class can lie in every
kernel. Secondly, when A is, in addition, an isolated singularity containing a
field of characteristic zero, dim A ≥ 4, and A has a small Cohen-Macaulay
module, then we show that there is an integer N > 0 such that if fn ∈ mN ,
then Cl(A) → Cl((A/fnA)′) is injective. We substantiate these results with
a general construction that provides a large collection of examples.

MSC: Primary 13F40, 13B22; secondary 13C14, 14C20

1 Introduction

The development of the divisor class group of a Noetherian normal domain A
is due, in large part, to P. Samuel’s work [23], [24] with unique factorization
domains (UFD’s) in the 1960’s. Roughly speaking, the divisor class group
of A, denoted by Cl(A), is a measure of the extent to which A fails to be
a UFD. In particular, Cl(A) is trivial if and only if A is a UFD. Samuel
[24, p.171] conjectured the following: If B is a complete local UFD, then
B[[T ]] is a UFD. However, without additional restrictions, this conjecture
is false. Perhaps surprisingly, counterexamples to this conjecture, as well as
subsequent research in the subject of divisor class groups, relied heavily upon
methods from algebraic geometry. For instance, using projective schemes,
V.I. Danilov [8, Prop. 1.1] established a map j*: Cl(A[[T ]]) → Cl(A). Then
in a series of articles [6], [7], [8], he characterized the injectivity of j*. These
results in some ways parallel those of A. Grothendieck [14, Lemma 3.16], who
found conditions under which the homomorphism from the Picard group of
the punctured spectrum of A to that of a hypersurface is injective.

Let f be a prime element such that A/fA is normal. J. Lipman [17, pp.205-
206] generalized Danilov’s map by showing that there is a homomorphism
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of divisor class groups j*: Cl(A) → Cl(A/fA). Many examples exist where
j* is not injective. When A is, in addition, an excellent Q -algebra, P. Grif-
fith and D. Weston [13, Cor. 1.3] gave conditions for the kernel of j* to be
torsion-free. Then, in 1996, C. Miller [19, §4 & §5], generalized the notion of
divisor class group to rings satisfying the Serre condition S2 and proved that⋂

∞

n=1 Ker(Cl(A[[T ]]) → Cl(A[[T ]]/(T n))) is trivial. (Actually, Miller’s gener-
alization of the class group is subsumed by that of F. Call [3, Appendix].)

This motivates the investigation into whether a similar result will hold more
generally for a sequence of distinct elements. To be specific, let (A,m) be a
Noetherian local normal domain and let {fn}

∞

n=1 be a sequence of elements
such that each An = A/fnA satisfies R1 and limn→∞ fn = 0 in the m-adic
topology (i.e. fn ∈ men where en → ∞ as n → ∞). Then there is a map
Cl(A) → Cl(A′

n), where A′

n represents the integral closure of An. We consider
the following two questions:

1. Must it be the case that
⋂

∞

n=1 Ker(Cl(A) → Cl(A′

n)) is trivial?

2. Are there situations where an integer N > 0 exists such that if fn ∈ mN ,
then Cl(A) → Cl(A′

n) is monic? In other words, if the answer to (1) is
yes, must it be true that all but finitely many of the kernels are null?
And if so, are there effective methods to determine N?

We take questions (1) and (2) as “principles” which govern the behavior of
the group homomorphism Cl(A) → Cl(A′

n).

In Section 2, we begin by stating definitions and giving a review of several
concepts that will be used in proving our results. This section provides the
background information and references that the reader may find useful.

In Section 3, we answer (1) affirmatively when the ambient ring is excellent.
Although this first result shows that no divisor class can be in all of the
kernels of Cl(A) → Cl(A′

n), it does not give much of a connection between a
given divisor class of the ambient ring and its image in the divisor class group
of any specific hypersurface. However, it does suggest that the pathology of
the map Cl(A) → Cl((A/fA)′) lies near the “top” of the maximal ideal,
where f ∈ m is any element such that A/fA satisfies R1.

In Section 4, our second theorem seeks to make a connection between di-
visor classes on the ambient ring and a hypersurface - at least concerning
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injectivity. We show the existence of an integer N > 0, such that if f is
an element in mN with A/fA satisfying R1, then the group homomorphism
Cl(A) → Cl((A/fA)′) is injective. In this case, we add the assumptions that
A is an isolated singularity of dimension greater than three which contains
the rationals. We also assume that A has a small Cohen-Macaulay module
M . This result supplies evidence for an affirmative answer to the following
question: For an excellent, normal, local isolated singularity A containing the
rationals and f ∈ m such that (A/fA)′ satisfies R1, is Cl(A) → Cl((A/fA)′)
injective? We end with several examples that elucidate our results.

2 Preliminaries

There are several basic references for the material appearing in this section.
The standard results of commutative and homological algebra appear in the
ubiquitous H. Matsumura [18] and J. Rotman [22], respectively. For material
on the divisor class group, one should refer to N. Bourbaki [2, Ch. 7] and R.
Fossum [10].

Let A be a Noetherian normal domain. The dual of an A-module a is
HomA(a, A), denoted a?. Note that a?? := (a?)?. There is a map σ : a→ a??,
where σ(x) is defined by σ(x)(g) = g(x), for x ∈ a and g ∈ a?. We say thata is reflexive if σ is an isomorphism.

One formulation of the divisor class group of A is the group of isomor-
phism classes of reflexive ideals of A, or equivalently, reflexive A-modules of
rank one. An element [a] ∈ Cl(A) is called a divisor class. Multiplication is
defined by [a] · [b] = [(a⊗b)??], the identity element is [A], and the inverse of
[a] is [a?]. This definition is equivalent to the classical additive definition of
the divisor class group appearing in [2, p.489] and [10, p.29]. In particular, a
reflexive height one ideal a can be written uniquely as the primary decompo-

sition
⋂s

j=1 p(ej)
j , where the pj are height one prime ideals containing a. The

notation a(d) means
⋂s

j=1 p(ejd)
j .

There is also a notion of divisor for modules which are not necessarily of rank
one. In particular, for a finitely-generated A-module M , there exists a free
submodule L of M such that M/L is a torsion module. Set χ(M/L) = Σp
lp(M/L) · p, where the sum is taken over all height one primes, and where
lp denotes the length of (M/L)p as an Ap-module. This is a finite sum. The
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the class of χ(M/L) in Cl(A) is called the divisor class attached to M
and is denoted by [M ]. In [2, §4.7 Prop. 16], it is demonstrated that [M ] is
independent of the choice of L. For an ideal a of A, the two definitions of
divisor coincide, so there is no confusion in notation.

The following fact concerning attached divisors, taken from [19, Lemma 6.3],
can be a useful tool for comparing divisor classes:

(2.1) If I is an ideal of a normal domain A and M is a finitely-generated
torsion-free A-module of rank r, then [HomA(I, M)] = −r[I] + [M ].

Another important subject for our purposes is the S2-ification of a ring. A
ring S is an S2-ification of A if, (i) it is module-finite over A, (ii) it satisfies
the Serre condition S2 over A, and (iii) Coker(A → S) has no support in
codimension one in A. If A has a canonical module, for example, if A is
the homomorphic image of a Gorenstein ring, then A has an S2-ification.
Furthermore, when A satisfies R1, the S2-ification is the integral closure.
This fact is instrumental in obtaining the maps Cl(A) → Cl((An)′). (See M.
Hochster-C. Huneke [16] for more details on S2-ifications.) We collect a few
facts concerning S2-ifications, the third of which has a proof similar to the
one given for [1, Prop. 4.1].

(2.2) Let (A,m) be an excellent local domain and f an element of m such that
A/fA satisifes R1. Then the integral closure of A/fA is local; in particular,
f is a prime element. (See A. Grothendieck [15, §XIII], or [16, Prop. 3.9].)

(2.3) Let A be a local ring satisfying R1 such that A has an S2-ification
A′. Let M be a finitely-generated torsion-free A-module. If M satisfies the
condition S2, then M is an A′-module.

(2.4) Let A be a normal ring. If L and N are finitely-generated A-modules
such that N satisfies S2, then the module HomA(L, N) satisfies S2, and there

is an isomorphism HomA(L**,N)
∼=
→ HomA(L, N).

We end this section with some additional definitions and two lemmas which
will be useful in the proof of our first theorem. The proofs of the lemmas
rely on the concepts introduced here.

Recall that a submodule N of M is pure if the sequence 0 → N⊗L → M⊗L
is exact for every A-module L. A module N is called pure injective if,
whenever the injection N → M is pure, then it splits. R. Warfield [27] and
P. Griffith [11, §3] are good references for the preceding definitions. Next,
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an A-module M is said to be m-divisible if m · M = M . Note that if an A-
submodule N of M is pure, then the unique maximal m-divisible submodule
of M/N is N/N , where N represents the m-adic closure of N in M . As a
result, M/N has no m-divisible submodule.

Lemma 2.5 Let (A,m) be a local ring, M =
∏

A the countable direct product
of copies of A, and N =

∐
A the direct sum. Then M/N is faithfully flat.

(Note that N = {< an >∈ M |an → 0 in the m-adic topology }.)

Proof. By Griffith [12, Lemma 1.7], N is a pure submodule of the flat module
M . Therefore, it is flat, and M/N is flat. Since N/N is the maximal m-
divisible submodule in M/N , m · M/N 6= M/N .

Lemma 2.6 Let f1, f2, f3, . . . be a sequence of prime elements in a complete
local ring (A,m) such that limn→∞ fn = 0 in the m-adic topology. Set P =∏

An. Then the map A ↪→ P splits.

Proof. Let M be a finitely-generated A-module of finite length; say mrM = 0
for r >> 0. Choose n >> 0 such that en ≥ r. Consider the map M →∏

M/fnM , where for x ∈ M, x 7→ (x + f1M, x + f2M, . . . ). The nth compo-
nent x + fnM equals x, which shows that the map is an injection. Conse-
quently, by [11, Cor. 3.2], A is a pure submodule of P . Let E = EA(k). By
[11, Prop.3.6], HomA(E, E) = A is pure injective, which gives the result.

3 First Theorem

We begin with a statement of our first theorem, motivated by the first prin-
ciple in the introduction.

Theorem 3.1. Let (A,m, k) be an excellent, normal, local domain and let
f1, f2, f3, . . . be a sequence of elements in A such that:

(a) limn→∞ fn = 0 in the m-adic topology, and

(b) An = A/fnA satisfies R1, for each n.

Then
⋂

∞

n=1 Ker(Cl(A) → Cl(A′

n)) is trivial, where A′

n represents the integral
closure of A.
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Before beginning the proof, we provide some necessary discussion. Because
of the assumption of excellence on A, we can assume that A is complete. The
only detail in passing to the completion that is a possible cause for concern
is that Ân remains a domain. But this follows from (2.2).

There exists a regular local ring R ⊂ A such that A is a finite R-module.
Set A∗ = HomR(A, R). Since A satisfies S2 as an R-module, for each p ∈
Spec(R) of codimension less than or equal to two, Ap is a maximal Cohen-
Macaulay module over the regular local ring Rp. As a result, the height of
annAExt1

R(A∗, R) is greater than or equal to three.

For each n, there is a short exact sequence 0 → A
·fn
→ A → An → 0, and

thus an exact sequence 0 → HomR(A, R)
·fn
→ HomR(A, R) → Ext1

R(An, R).

Likewise, the short exact sequence 0 → A∗
·fn
→ A∗ → A∗ → 0, where A∗ =

A∗/fnA
∗, yields the long exact sequence:

0 → HomR(A∗, R) → HomR(A∗, R)
·fn
→ HomR(A∗, R) → Ext1

R(A∗, R) → . . . .

Now HomR(A∗, R) = A∗∗ ∼= A since R is normal and A satisfies S2 as an R-
module. These results are summarized in the commutative diagram below,
where the rows are exact:

0 // A∗∗
·fn //

∼=

��

A∗∗ //

∼=

��

%% %%JJJJJJJJJJ Ext1
R(A∗, R) // Ext1

R(A∗, R)

Coker(·fn)
*




77oooooooooooo

0 // A
·fn // A // An

// 0

The sequence 0 → An → Ext1
R(A∗, R) → Ext1

R(A∗, R) is exact. Set R =
R/(fnA ∩ R). We claim that Ext1

R(A∗, R), or equivalently HomR(A∗, R), is
an S2-ification of An. Since it is straightforward to show that HomR(A∗, R)
satisfies S2 and is finitely-generated over An, we need only establish that
Coker(An → HomR(A∗, R)) has no support in codimension one in An. But
this follows from the fact that htAannA Ext1

R(A∗, R) ≥ 3.

Lemma 3.2. There is a finitely-generated A-module W , independent of n,
with htAann W ≥ 3, such that for every n, A′

n/An is isomorphic to a sub-
module of W .
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Proof. Since HomR(A∗, R)) = A′

n, take W to be Ext1
A(A∗, R).

From (2.6), recall that P :=
∏

An and that A → P splits. Set P ′ =∏
A′

n, S =
∐

An, and S ′ =
∐

A′

n.

Lemma 3.3. There is a commutative diagram:

P
�

�

//

�� ��?
??

??
??

P ′

~~~~~~
~~

~~
~~

A

Proof. Ann W contains an A-sequence of length two, which by (3.2), is in
Ann(P ′

P
) as well. Thus, Exti

A(P ′

P
, A) = 0 for i = 0, 1. The claim follows by

applying HomA(−, A) to the exact sequence 0 → P → P ′ → P ′

P
→ 0.

Remark 3.4. A is also a direct summand of P
S

since the image of A → P
has a trivial intersection with S and η sends S to 0 in A. Consequently, the
argument of (3.3) can be applied to P

S
↪→ P ′

S′
in order to conclude that A is

also a direct summand of P ′

S′
.

Proof of Theorem 3.1

Let [a] ∈
⋂

∞

n=1 Ker(Cl(A) → Cl(A′

n)). The maps Cl(A) → Cl(A′

n) are
defined by [a] 7→ [(a ⊗A A′

n)∗∗], where the duals are taken with respect to
A′

n. It suffices to show that [a?] is trivial, where a? = HomA(a, A). Note
that for each n, HomA(a, A′

n) ∼= A′

n. Thus, HomA(a, P ′) ∼= P ′, and since a
is finitely-generated, HomA(a, S ′) ∼= S ′. As a result, HomA(a, P ′

S′
) ∼= P ′

S′
, since

the sequence 0 → S ′ → P ′ → P ′

S′
→ 0 is pure exact.

Because the fn’s go to zero in the m-adic topology, the m-adic closure of S
in P , denoted by S, is {< an >∈ P | an → 0 in the m-adic topology on A}.

Thus, the map
∏

A/
∐

A → P/S, defined by < an > +
∐

A 7→< an > +S,
is an isomorphism. By (2.5), P/S is faithfully flat over A. Consequently,
one can see that sequence 0 → P/S → P ′/S → P ′

P
→ 0 is split by applying

HomA(−, P/S) and using the methods of (3.3).

Lemma 3.5. Any finitely-generated torsion-free direct summand N of P ′

S′
is

a direct summand of P/S.
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Proof. Let P ′

S′
= N ⊕ K. Making use of the fact that S = S ′ ∩ S, the

short exact sequence 0 → S′+S
S′

→ P ′

S′
→ P ′

S′+S
→ 0 can be rewritten as

0 → S′+S
S′

→ N ⊕ K → P/S ⊕ T → 0, where T is a torsion A-module. Note

that S′+S
S′

is m-divisible since it is isomorphic to S
S
. Consequently, it must

map into K. Thus, N is a direct summand of P/S.

Conclusion: As per (3.4), because A is a direct summand of P ′

S′
, a? is a direct

summand of HomA(a, P ′

S′
) ∼= P ′

S′
. By the previous claim, a? is a direct sum-

mand of P/S, which is faithfully flat. Consequently, a? is flat, or equivalently,
A-free. In other words, [a?] is trivial.

4 Second Theorem

As we stated in the introduction, our second theorem will provide a con-
nection between a divisor class on the ambient ring and its image in the
divisor class group of a specific hypersurface - a connection that Theorem
3.1 does not address. However, 3.1 does suggest that the pathology of the
map Cl(A) → Cl((A/fA)′) lies near the “top” of the maximal ideal. In fact,
we put forth the following question: Let A be an excellent, normal, local Q -
algebra such that A is an isolated singularity of dimension at least four. For
any f ∈ m such that (A/fA)′ satisfies R1, is the map Cl(A) → Cl((A/fA)′)
injective? We supply evidence for an affirmative answer to this query in the
case where A has a small Cohen-Macaulay module. Such a module is
finitely-generated and has depth equal to the dimension of A. For such a
ring A, we can identify an integer N > 0 having the distinction that, when
f ∈ mN is such that A/fA satisfies R1, then the map Cl(A) → Cl((A/fA)′)
is injective. This is our next result.

Theorem 4.1. Let (A,m, k) be an excellent, normal, local Q -algebra such
that A is an isolated singularity of dimension at least four. In addition,
suppose that A has a small Cohen-Macaulay module M . Then there is an
N > 0, depending only on the ring A, such that the following holds: If f ∈ mN

is such that A/fA satisfies R1, then Cl(A) → Cl((A/fA)′) is injective.

As in Section 3, we give some discussion before proceeding with the proof.
Again, we can assume that A is complete. Set dim A = d. For every system
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of parameters of A, there is a regular local ring R which is a subring of A
and over which A is module-finite. Let Λ be the enveloping algebra. In this
case, Λ = A⊗R A. Let µ : Λ → A be the surjection defined by µ(a⊗ b) = ab.
Set J = Ker(µ) and η = annΛJ. Then the Noetherian different of the
R-algebra A, as defined by the eponymous E. Noether [20], is the ideal µ(η),
denoted by NA/R. Let R be the set of all regular local rings R obtained as
above. Set NA = ΣRNA/R, where the sum is taken over all R ∈ R. This
ideal will play a central role in the proof of Theorem 4.1, as evidenced by the
following fact:

(4.2) The ideal NA defines the singular locus of Spec(A); i.e., for P ∈
Spec(A), AP is regular if and only if P does not contain NA. (The proof
of this uses the fact that A is an isolated singularity and is similar to the one
that appears in Y. Yoshino [28, Lemma 6.12].)

As a result of (4.2), NA is an m-primary ideal; say mN ⊂ NA, for some N > 0.
This is the integer in Theorem 4.1 that we wanted to identify. Let 0 6= f ∈ mN

be an element such that A/fA satisfies R1, and set M = M/fM , where M
is the small Cohen-Macaulay module in the statement of the theorem.

It happens that f , by virtue of belonging to NA, annihilates Ext1
A(L,−), for

any lift L of M . A finitely-generated A-module L is a lift of M if there is

a short exact sequence 0 → L
·f
→ L → M → 0. The fact that f annihilates

Ext1
A(L,−) is important because it will allow us to establish the existence of

only finitely many lifts of M , which is a key part of our proof.

Before demonstrating all of this, we need a few facts about Hochschild co-
homology, since it plays a crucial role in the annihilation of Ext1

A(L,−). For
any A-bimodule W , the nth Hochschild cohomology module, HHn

R(A, W ),
is obtained by taking the homology of the complex:

W
d0

→ HomR(A, W )
d1

→ HomR(A ⊗R A, W )
d2

→ . . .

In particular, HH0
R(A, W ) = ker(d0) = W (A) = {w ∈ W |aw = wa, ∀a ∈ A}.

For details, refer to R. Pierce [21, Ch. 11]. We are now equipped to prove
the following preliminary lemma.

Claim 4.3 For each R ∈ R, the Noetherian different NA/R annihilates
HH1

R(A,−).

Proof. For any A-module W , by applying HomΛ(−, W ) to the short exact
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sequence 0 → J→ Λ
µ
→ A → 0, one obtains a long exact sequence:

0 → HomΛ(A, W ) → W → HomΛ(J, W )
δ
→ Ext1

Λ(A, W ) → 0

By the surjectivity of δ and the definition of η, it is easy to see that η ·
Ext1

Λ(A, W ) = 0. Thus, NA/R annihilates Ext1
Λ(A, W ), which is isomorphic

to HH1
R(A, W ). (See H. Cartan and S. Eilenberg [7, p.169] for details.)

Claim 4.4 For any lift L of M , NA annihilates Ext1A(L,−).

Proof. Let R ∈ R. Then any lift L is R-free. Let 0 → K → F → L → 0
be a short exact sequence of A-modules, where F is A-free. For any A-
module W , 0 → HomR(L, W ) → HomR(F, W ) → HomR(K, W ) → 0 is a
short exact sequence. Using the notation HomR(L, W ) = [L, W ]R, there is
a long exact sequence of Hochschild cohomology: 0 → HH0

R(A, [L, W ]R) →
HH0

R(A, [F, W ]R) → HH0
R(A, [K, W ]R) → HH1

R(A, [L, W ]R) → . . .

By definition, HH0
R(A, [L, W ]R) = ([L, W ]R)(A) = [L, W ]A. Therefore, the

claim follows from (4.3) and the commutative diagram below, where the
rows are exact:

([F, W ]R)(A) // ([K, W ]R)(A) //

(( ((QQQQQQQQQQQQ
HH1

R(A, [L, W ]R)

Coker
(

�

55llllllllllllll

[F, W ]A // [K, W ]A // Ext1
A(L, W ) // 0

Claim 4.5 There are only finitely many lifts of M .

Proof. Let L be a lift of M and let F be a free A-module with rank equal to
the number of minimal generators of L. There is a pullback diagram for the
homomorphisms ·f and π as seen below:
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0

��

0

��
εf : 0 // K // K ⊕ L //

��

L //

·f

��

0

ε : 0 // K // F

��

π // L

��

// 0

M

��

M

��
0 0

Note that the top row is split exact, since it is obtained by multiplying the
extension ε by f . Therefore, K ⊕L ∼= Z1(M), the first syzygy of M . Z1(M)
is unique up to isomorphism of complexes since F maps onto M minimally.
Likewise, K ∼= Z1(L). As a result, Z1(L) ⊕ L ∼= Z1(M) for any lift L of
M . Since A satisfies the Krull-Schmidt Theorem, as per R. Swan [26, p.566],
Z1(M) = N1 ⊕ · · · ⊕ Nt, where each Ni is indecomposable and unique up to
isomorphism. Consequently, up to isomorphism, there can be only finitely
many L.

Proof of Theorem 4.1

The idea of the proof is to contradict the finite number of lifts of M just
established. For simplicity, set B = (A/fA)′. Let [a] be a non-trivial element
in Ker(Cl(A) → Cl(B)). From the short exact sequence:

0 // M
·f

// M // M // 0,

there is a long exact sequence:

0 // HomA(a, M)
·f

// HomA(a, M) // HomA(a, M)
δ // Ext1

A(a, M)

Claim 4.6 HomA(a, M) ∼= M .

Proof. By (2.3), M is a B-module. Therefore:

HomA(a, M) ∼= HomA(a, HomB(B, M)) ∼= HomB(a⊗A B, M).

Since M satisfies S2 over B, by (2.4):

HomB(a⊗A B, M) ∼= HomB((a⊗A B)∗∗, M),
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where the dual is taken with respect to B. Since [a] ∈ Ker(Cl(A) → Cl(B)),
(a⊗A B)∗∗ ∼= B. Thus, HomB((a⊗A B)∗∗, M) ∼= HomB(B, M) ∼= M .

Claim 4.7 Ext1A(a, M) = 0.

Proof. Assume Ext1
A(a, M) 6= 0. Then it has finite length as an A-module,

since ap ∼= Ap for every prime p 6= m. In the long exact sequence preceding
(4.6), set C = Coker(HomA(a, M) → M). Then we have the following exact
sequence:

0 // HomA(a, M)
·f

// HomA(a, M) //

&& &&LLLLLLLLLLL M // C // 0

K
/

�

>>~~~~~~~~

Depth HomA(a, M) ≥ 2 since M , and hence HomA(a, M), satisfies S2 as
an A-module. Since depthA(M) ≥ 3 and depthA(C) = 0, it follows that
depthA(K) = 1. We will make use of these calculations shortly.

Let R ∈ R, with maximal ideal n. Then Ext1
A(a, M) has finite length over

R and H1n(C) = 0. From 0 → K → M → C → 0, we obtain the exact
sequence H1n(C) → H2n(K) → H2n(M), where H2n(M) = 0 as well. As a result,
H2n(K) = 0. Similarly, we obtain the exact sequence:

H2n(HomA(a, M))
·f

// H2n(HomA(a, M)) // H2n(K) = 0.

Since the map ·f is surjective, if H2n(HomA(a, M)) is finitely-generated, then
it equals zero. We claim that this is the case. Since HomA(a, M) is finitely-
generated over R, H2n(HomA(a, M)) satisfies the descending chain condition.
By Matlis and local duality:

H2n(HomA(a, M)) ∼= H2n(HomA(a, M))∨∨ ∼= Extd−2
R (HomA(a, M), R)∨,

where (−)∨ = HomR(−, ER(k)). Extd−2
R (HomA(a, M), R) has finite length

as an R-module. Consequently, Extd−2
R (HomA(a, M), R)∨ satisfies the as-

cending chain condition, as desired. Thus, since H2m(HomA(a, M)) = 0,
depthA(HomA(a, M)) must be strictly greater than two, recalling our pre-
vious calculations. But this contradicts the depths as computed from the

short exact sequence 0 → HomA(a, M)
·f
→ HomA(a, M) → K → 0, which

proves the claim.

This means that HomA(a, M) is a lift of M . In other words, we have the
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short exact sequence:

0 // HomA(a, M)
·f

// HomA(a, M) // M // 0.

Thus, if Ker(Cl(A) → Cl(B)) is non-trivial, there are infinitely many lifts
of M . More specifically, by [13, Cor. 1.3], the kernel is torsion-free; so
[a(m)] 6= [a(n)] for all m, n > 0. By (2.1), [HomA(a(m), M)] 6= [HomA(a(n), M)].
Thus HomA(a(m), M) and HomA(a(n), M) are non-isomorphic lifts of M for
all m, n > 0, which provides the contradiction, and thus proves the theorem.

Remark 4.2. It should be noted that the above proof requires f to be inNA, rather than in mN . However, the integer N obtained gives a lower bound
for injectivity of the map on divisor class groups.

Remark 4.3. This result gives rise to a couple of questions. Is Theorem 4.1
true without a small Cohen-Macaulay module? In other words, is a small
Cohen-Macaulay module really necessary? Note that the assumption of a
big Cohen-Macaulay module M will not suffice since one can not argue that
[HomA(a, M)] is non-trivial. This is just one of many places in the proof
where finite generation is needed. Secondly, is the theorem true in charac-
teristic p > 0 or mixed characteristic? In either case, there might be some
p-torsion elements in the kernel of Cl(A) → Cl(B). Finally, is there a hyper-
surface A/fA satisfying R1, with f ∈ NA, such that Cl(A) → Cl((A/fA)′) is
not injective? Such an A could not possess a small Cohen-Macaulay module,
which would disprove the small Cohen-Macaulay conjecture. This remains
an open question.

Example 4.1. Danilov [6, p.128] Let A = Q [[X, Y, Z]]/(pX3 + p2Y 3 − aZ3),
where a ∈ {3, 4, 5, 10, 11, 14, 18, 21, . . .} is obtained from the study of Dio-
phantine equations in E.S. Selmer [25, Table 4g] and p is a prime that does
not divide a. Then j*: Cl(A[[T ]]) → Cl(A) is not injective. Note that A
represents an isolated singularity, but dim A = 2.

Example 4.2. Let A = C [X, Y, Z, W ]/(XY −ZW ). Then the domain B =C [X, Y, Z]/(XY − Z2) is a hypersurface of A since B = A/(w − z)A, where
the lower case letters represent the images in the ring A. Hence, we obtain
a map Cl(A) → Cl(B). (Again, A represents an isolated singularity, but its
dimension is three.) It can be shown that Cl(A) ∼= Z and Cl(B) ∼= Z2 by
using the fact that both groups are generated by the ideal (x, z). The kernel
of the map Cl(A) → Cl(B) is necessarily non-trivial. In fact, for any integer
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n > 2, if Bn = C [X, Y, Z]/(XY − Zn), then Cl(Bn) is isomorphic to Zn.
Therefore, the maps Cl(A) → Cl(Bn) all fail to be injective. However, these
maps do not satisfy the hyptheses of Theorems 3.1 and 4.1 since the elements
fn = XY − Zn do not lie in higher and higher powers of the maximal ideal.

Remark 4.4. Non-trivial examples of the ring A described in Theorem 4.1
can be obtained by appealing to algebraic geometry. Let V be a nonsingular
variety over an algebraically closed field k of characteristic zero such that
its homogeneous coordinate ring S(V ) has a small Cohen-Macaulay module
M . It suffices to let V be any nonsingular irreducible hypersurface in P3

k , like
V = Z(X4

0 +X4
1 +X4

2 +X4
3 ), which does not satisfy W.-L. Chow’s condition of

proper [5, pp.816-818]. “Enlarge” V by taking its product with P1
k. Call this

product W . There is a commutative diagram, where the rows and columns
are exact:

0

��

0

��Z ∼= //

��

Z
��

0 // Z // Cl(W ) //

��

Cl(S(W )) //

��

0

0 // Z // Cl(V ) //

��

Cl(S(V )) //

��

0

0 0

One can see that the torsion-free rank of Cl(S(W )), as an abelian group,
grows from that of Cl(S(V )) by a factor of Z. This process can be iterated,
so that at each step we obtain a non-Cohen-Macaulay ring whose dimension
has grown by one and whose divisor class group has grown by Z.

Finally, note that irreducible hypersurface sections satisfying R1 are guar-
anteed by Bertini’s Theorem [9, p.10]. One can also generate irreducible
hypersurface sections in the generic way described below.

Example 4.3. Let (A,m) be an excellent local normal domain that is an
isolated singularity of dimension d ≥ 4. Set B = A[X1, X2, . . . , Xd]. Then
Bm[X] retains the relevant properties of A, with Cl(Bm[X ]) ∼= Cl(A). The
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elements fn =
∑d

i=1 an
i Xi, where {a1, . . . , ad} is a system of parameters for

A, represent a sequence of elements f1, f2, . . . of Bm[X] as in Theorems 3.1
and 4.1.

Acknowledgments

I would like to extend a special thanks to my advisor, Dr. Phillip Griffith,
for all his help with this manuscript. Secondly, I would like to acknowledge
Sean Sather-Wagstaff and the referee for their suggestions on earlier versions
of this paper. In addition, I would like to thank N. Mohan Kumar, and more
generally, the Department of Mathematics at Washington University in St.
Louis, where this paper was written in part. Finally, I express my gratitude
to Melvin Hochster and Doug Hanes for their assistance with some material
in my dissertation since this paper is based on that thesis.

References

[1] Auslander, M. and Goldman, O., Maximal orders, Trans. Amer.
Math. Soc. 97 (1960), 1-24.

[2] N. Bourbaki, Commutative Algebra, Hermann, Paris, 1972.

[3] F. Call, A theorem of Grothendieck using Picard groups for the
algebraist, Math. Scand. 74 (1994) 161-183.

[4] H. Cartan and S. Eilenberg, Homological Algebra, Chapter IX,
Princeton University Press, Princeton, 1956.

[5] W-L. Chow, On unmixedness theorems, Amer. J. Math 86 (1964)
799-822.

[6] V.I. Danilov, On a conjecture of Samuel, Math. USSR Sb. 10 (1970)
127-137.

[7] V.I. Danilov, The group of ideal classes of a completed ring, Math.
USSR.Sb. 6 (1968) 493-500.

[8] V.I. Danilov, Rings with a discrete group of divisor classes, Math.
USSR Sb. 12, no. 3, (1970) 368-386.

15



[9] E.G. Evans and P. Griffith, Syzygies, Cambridge University Press,
New York, 1985.

[10] R. Fossum, The Divisor Class Group of a Krull Domain, Springer-
Verlag, Berlin, 1973.

[11] P. Griffith, On the splitting of big Cohen-Macaulay modules, J.
Pure Appl. Algebra, 128 (1998) 251-279.

[12] P. Griffith, A representation theorem for complete local rings, J.
Pure Appl. Algebra, 7 (1976) 303-315.

[13] P. Griffith and D. Weston, Restrictions of torsion divisor classes to
hypersurfaces, J. Algebra, 167, no. 2, (1994) 473-487.

[14] A. Grothendieck, Cohomologie locale des faisceaux cohérents et
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