
Stable Computation of Multiquadric Interpolants for AllValues of the Shape ParameterBengt Fornberg �University of ColoradoDepartment of Applied MathematicsCB-526, Boulder, CO 80309, USA Grady Wright yUniversity of UtahDepartment of MathematicsSalt Lake City, UT 84112, USAAbstractSpectrally accurate interpolation and approximation of derivatives used to be prac-tical only on highly regular grids in very simple geometries. Since radial basis function(RBF) approximations permit this even for multivariate scattered data, there has beenmuch recent interest in practical algorithms to compute these approximations e�ec-tively.Several types of RBFs feature a free parameter (e.g. c in the multiquadric (MQ)case �(r) = pr2 + c2). The limit of c ! 1 (increasingly 
at basis functions) hasnot received much attention because it leads to a severely ill-conditioned problem. Wepresent here an algorithm which avoids this diÆculty, and which allows numericallystable computations of MQ RBF interpolants for all parameter values. We then �ndthat the accuracy of the resulting approximations, in some cases, becomes orders ofmagnitude higher than was the case within the previously available parameter range.Our new method provides the �rst tool for the numerical exploration of MQ RBFinterpolants in the limit of c ! 1. The method is in no way speci�c to MQ basisfunctions and can|without any change|be applied to many other cases as well.Keywords: Radial basis functions, RBF, multiquadrics, ill-conditioningAMS subject classi�cation: 41A21, 65D05, 65E05, 65F221 IntroductionLinear combinations of radial basis functions (RBFs) can provide very good interpolantsfor multivariate data. Multiquadric (MQ) basis functions, generated by �(r) = pr2 + c2(or in the notation used in this paper, �(r) = p1 + ("r)2 with " = 1=c), have proven tobe particularly successful [1]. However, there have been three main diÆculties with thisapproach: severe numerical ill-conditioning for a �xed N (the number of data points) andsmall ", similar ill-conditioning problems for a �xed " and large N , and high computationalcost. This study shows how the �rst of these three problems can be resolved.Large values of the parameter " are well known to produce very inaccurate results (ap-proaching linear interpolation in the case of 1-D). Decreasing " usually improves the accuracysigni�cantly [2]. However, the direct way of computing the RBF interpolant su�ers from�fornberg@colorado.edu. This work was supported by NSF grants DMS-9810751 (VIGRE), DMS-0073048, and a Faculty Fellowship from the University of Colorado at Boulder.ywright@math.utah.edu. This work was supported by an NSF VIGRE Graduate Traineeship under grantDMS-9810751. 1



2 B. FORNBERG AND G. WRIGHTsevere ill-conditioning as " is decreased [3]. Several numerical methods have been developedfor selecting the \optimal" value of " (e.g. [4, 5, 6]). However, because of the ill-conditioningproblem, they have all been limited in the range of values that could be considered, havingto resort to high-precision arithmetic, for which the cost of computing the interpolant in-creases to in�nity as "! 0 (timing illustrations for this will be given later). In this study,we present the �rst algorithm which not only can compute the interpolant for the full range" � 0, but it does so entirely without a progressive cost increase as "! 0.In the highly special case of MQ RBF interpolation on an in�nite equispaced Cartesiangrid, Buhmann and Dyn [7] showed that the interpolants obtain spectral convergence forsmooth functions as the grid spacing goes to zero (see, for example, Yoon [8] for the spectralconvergence properties of MQ and other RBF interpolants for scattered �nite data sets).Additionally, for an in�nite equispaced grid, but with a �xed grid spacing, Baxter [9] showedthe MQ RBF interpolant in the limit of " ! 0 to cardinal data (equal to one at one datapoint and zero at all others) exists and goes to the multi-dimensional sinc function|just asthe case would be for a Fourier spectral method. Limiting ("! 0) interpolants on scattered�nite data sets were studied by Driscoll and Fornberg [10]. They noted that, although thelimit usually exists, it can fail to do so in exceptional cases. The present numerical algorithmhandles both of these situations. It also applies|without any change|to many other typesof basis functions. The cases we will give computational examples for areName of RBF Abbreviation De�nitionMultiquadrics MQ �(r) =p1 + ("r)2Inverse Quadratics IQ �(r) = 11 + ("r)2Gaussians GA �(r) = e�("r)2Note that in all the above cases the limits of 
at basis functions correspond to "! 0.The main idea of the present method is to consider the RBF interpolant at a �xed xs(x; ") = NXj=1 �j �(

x� xj

) (1)(where k�k is the 2-norm) not only for real values of ", but as an analytic function of acomplex variable ". Although not explicitly marked, �j and � are now functions of ". Inthe sections that follow, we demonstrate that in a relatively large area around " = 0, s(x; ")will at worst have some isolated poles. It can therefore be written ass(x; ") = (rational function in ") + (power series in ") (2)The present algorithm numerically determines (in a stable way) the coeÆcients to the ra-tional function and the power series. This allows us to use (2) for computing the RBFinterpolant e�ectively numerically right down to " = 0. The importance of this entirely newcapability is expected to be as a tool to investigate properties of RBF approximations andnot, at the present time, to interpolate any large experimental data sets.Although not pursued here, there are a number of important and unresolved issues relat-ing to the limit of the RBF interpolant as "! 0, for which the present algorithm will nowallow numerical explorations. For example, it was shown by Driscoll and Fornberg [10] thatthe limiting interpolant in 1-D is simply the Lagrange interpolating polynomial. This, ofcourse, forms the foundation for �nite di�erence and pseudospectral methods. The equiv-alent limit (" ! 0) can now be studied for scattered data in higher dimensions. This is
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Figure 1: Distribution of 41 data points for use in the �rst test problem.a situation where, in general, there does not exist any unique lowest-degree interpolatingpolynomial and, consequently, spectral limits have not received much attention.The rest of this paper is organized as follows: Section 2 introduces a test example whichwe will use to describe the new method. In Section 3, we illustrate the structure of s(x; ")in the complex "-plane (the distribution of poles etc.). Section 4 describes the steps inthe numerical method, which then are applied to our test problem in Section 5. Section 6contains additional numerical examples and comments. We vary the number of data pointsand also give numerical results for some other choices of RBFs. One of the examples wepresent there features a situation where " ! 0 leads to divergence. We �nish by giving afew concluding remarks in Section 7.2 First test problemFigure 1 shows 41 data points xj randomly scattered over the unit disk (in the x�planewhere x is a two-vector with components x1; x2). We let our data at these points be de�nedby the function f(x) = f(x1; x2) = 5967 + (x1 + 17 )2 + (x2 � 111 )2 (3)The task is to compute the MQ RBF interpolant (i.e. (1) with �(r) = p1 + ("r)2) atsome location x inside the unit disk. We denote the data by yj = f(xj); j = 1; 2; : : : ; 41:The immediate way to perform the RBF interpolation would be to �rst obtain the expansioncoeÆcients �j by solving 264 A(") 375264 �1...�41375 = 264 y1...y41375 (4)where the elements of A(") are aj;k = �(

xj � xk

). The RBF interpolant, evaluated at x,
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Figure 2: The error (in magnitude) as a function of " in the interpolant s(x; ") of (3) whens(x; ") is computed directly using (6). We have chosen x = (0:3;�0:2).is then written as s(x; ") = 41Xj=1 �j�(

x� xj

); (5)or equivalently s(x; ") = � B(") � 264 A(") 375�1 264 y1...y41375 (6)where the elements of B(") are bj = �(

x� xj

).Figure 2 shows the magnitude of the error s(x; ") � f(x) where x = (0:3;�0:2) as afunction of " when computed directly via (4) and (5). This computation clearly loses itsaccuracy (in 64-bit 
oating point precision) when " falls below approximately 0:2. The dropin error as " approaches 0:2 (from above) suggests that computations for lower values of "could be very accurate if the numerical instability could be overcome. The reason the onsetof ill-conditioning occurs so far from " = 0 is that the matrix A(") approaches singularityvery rapidly as " decreases. Using Rouch�e's theorem, we can �nd that in this test casedet(A(")) = � � "416+O("418) (where the coeÆcient � is non-zero). Regardless of this rapidapproach to singularity, we usually �nd that s(x; ") exists and is bounded as " ! 0. Thismeans an extreme amount of numerical cancellation occurs for small " when evaluatings(x; ").In the notation of (6), our task is to then determine the row vector� C(") � = � B(") �24 A(") 35�1 (7)for all " � 0. To do this, we need an algorithm which bypasses the extremely ill-conditioneddirect formation of A(")�1 and computation of the product B(") �A(")�1 for any values of" less than approximately 0:3. The algorithm we present in Section 4 does this by directlycomputing C(") around some circle in the complex "-plane where A(") is well-conditioned.This will allow us to determine the coeÆcients in (2) and therefore determine s(x; ") forsmall "-values.
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Figure 3: Logarithm (base 10) of the condition number for A(") as a function of the complexvariable ". The domain of the plot is a square with sides of length 2 � 0:75 centered at theorigin and the range of the plot varies from 0 to 1020. Note near " = 0 the log10 of thecondition number of A(") goes to in�nity. However, due to numerical rounding, no valuesgreater than 1020 were recorded.Note that in practice, we often want to evaluate the interpolant at several points. Thisis most easily done by letting B(") (and thus C(")) in (7) contain several rows|one for eachof the points.3 Test problem viewed in a complex "�planeFigure 3 shows the log10 of the condition number of A(") when " is no longer con�nedto the real axis. We see that the ill-conditioning is equally severe in all directions as "approaches zero in the complex plane. Furthermore, we note a number of sharp spikes.These correspond to complex "-values for which A(") is singular (apart from " = 0, none ofthese can occur on the real axis according to the non-singularity result by Micchelli [11]).As stated in the introduction, in a large area around " = 0, s(x; ") is a meromorphicfunction of ". This can be shown by �rst noting that (7) can be re-written asC(") = 1det(A(")) � B(") �264 adj(A(")) 375where adj(A(")) is the adjoint of the A(") matrix. Now, letting �j;k(") be the cofactorsof A("), we have that �j;k(") = �k;j(") for j; k = 1; : : : ; N since A(") is symmetric. Thus,expanding det(A(")) also in cofactors, gives the following result for the jth entry of C(")Cj(") = PNk=1 �(kx� xkk)�k;j(")PNk=1 �(

xj � xk

)�k;j(") (8)The numerator and denominator of (8) are analytic everywhere apart from the trivial branchpoint singularites of �(r) on the imaginary axis. Thus, at every point apart from these trivial
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Figure 4: Structure of s(x; ") in the complex "-plane. The approximate area with ill-conditioning is marked with a line pattern; poles are marked with solid circles and branchpoints with �'s.singularities, the numerator and denominator have a convergent Taylor expansion in someregion. None of the trivial singularities can occur at " = 0 since this would require r =1.Hence, there can only be a pole at " = 0 if the leading power of " in the denominatoris greater than the leading power in the numerator. Remarkably, the leading powers areusually equal, making " = 0 a removable singularity (in Section 6 we explore an examplewhere this is not the case; a more extensive study on this phenomenon can be found in [12]).Apart from " = 0 and the trivial singularities, the only singularity that can arise in Cj(")is when A(") is singular. Due to the analytic character of the numerator and denominator,this type of singularity can only be a pole (thus justifying the analytic form stated (2)).The structure of s(x; ") in the complex "-plane is shown in Figure 4. The lined areamarks where the ill-conditioning is too severe for direct computation of s(x; ") in 64-bit
oating-point. The solid circles mark simple poles and the �'s mark the trivial branchpoint singularities. The dashed line in Figure 4 indicates a possible contour (a circle) wecan use in our method. Everywhere along such a circle, s(x; ") can be evaluated directlywith no particular ill-conditioning problems. Had there been no poles inside the circle, plainaveraging of the s(x; ")-values around the circle would have given us s(x; 0).It should be pointed out that if we increase the number of data points N too much (e.g.N > 100 in this example) the ill-conditioning region in Figure 4 will grow so that it containssome of the branch point singularities (starting at " = 0:5i), forcing us to choose a circlethat falls within this ill-conditioned region. However, we can still �nd s(x; ") everywhereinside our circle for no worse conditioning than at " just below 0:5.To complete the description of our algorithm, we next discuss how to



Stable Computation of Multiquadric Interpolants 7� detect and compensate for the poles located inside our circle (if any), and� compute s(x; ") at any "-point inside the circle (and not just at its center)based only on "-values around the circle.4 Numerical methodWe �rst evaluate s(x; ") at equidistant locations around the circle of radius � that was shownin Figure 4, and then take the (inverse) fast Fourier transform (FFT) of these values. Thisproduces the vectord0 �d1 �2d2 �3d3 . . . . . . ��3d�3 ��2d�2 ��1d�1(here ordered as is conventional for the output of an FFT routine). From this (with " = �ei�)we have essentially obtained the Laurent expansion coeÆcients for s(x; "). We can thus writes(x; ") = : : :+ d�3"�3 + d�2"�2 + d�1"�1 + d0 + d1"1 + d2"2 + d3"3 + : : : : (9)This expansion is convergent within some strip around the periphery of the circle. If thereare no poles inside the circle all the coeÆcients in (9) with negative indices vanish, givingus the Taylor part of the expansions(x; ") = d0 + d1"1 + d2"2 + d3"3 + : : : : (10)We can then use this to evaluate s(x; ") numerically for any value of " inside the circle.The presence of any negative powers in (9) indicates that s(x; ") has poles inside thecircle. To account for the poles so that we can evaluate s(x; ") for any value of " insidethe circle, we re-cast the terms with negative indices into Pad�e rational form. This isaccomplished by �rst using the FFT data to formq(�) = d�1� + d�2�2 + d�3�3 + : : : : (11)Next, we expand q(�) in Pad�e rational form (see for example [13]), and then setr(") = q(1="):Since s(x; ") can only possess a �nite number of poles inside the circle, the function r(")together with (10) will entirely describe s(x; ") in the form previously stated in (2):s(x; ") = fr(")g+ fd0 + d1"+ d2"2 + : : :g:This expression can be numerically evaluated to give us s(x; ") for any value of " inside thecircle.An automated computer code needs to monitor several consequences of the fact that weare working with �nite and not in�nite expansions. These are:� s(x; ") must be sampled densely enough so that the coeÆcients for the high negativeand positive powers of " returned from the FFT are small.� When turning (11) into Pad�e rational form, we must choose the degrees of the nu-merator and denominator (which can be chosen to be equal) so that they match orexceed the total number of poles within our circle. (Converting the Pad�e expansionback to Laurent form and comparing coeÆcients o�ers an easy and accurate test thatthe degrees were chosen suÆciently high).



8 B. FORNBERG AND G. WRIGHT� The circular path must be chosen so that it is inside the closest branch point on theimaginary axis (equal to i=D where D is the maximum distance between points), butstill outside the area where direct evaluation of s(x; ") via (6) is ill-conditioned.� The circular path must not run very close to any of the poles.The computations required of the method may appear to be speci�c to each evaluationpoint x that is used. However, it is possible to recycle some of the computational work neededfor evaluating s(x; ") at one x into evaluating s(x; ") at new values of x. For example, from(8) we know that the non-trivial pole locations of s(x; ") are entirely determined by the datapoints xj . Thus, once r(") has been determined for a given x, we can reuse its denominatorfor evaluating s(x; ") at other values of x. This allows the interpolant to be evaluated muchmore cheaply at new values of x.It could conceivably happen that a zero in the denominator of (8) gets canceled by asimultaneous zero in the numerator for one evaluation point but not another. We have,however, only observed this phenomenon in very rare situations (apart from the trivialcase when the evaluation point coalesces with one of the data points). Nevertheless, anautomated code needs to handle this situation appropriately.5 Numerical method applied to the test problemWe choose for example M = 128 points around a circle of radius � = 0:42 (as shown inFigure 4). This requires just M=4 + 1 = 33 evaluations of s(x; ") due to the symmetrybetween the four quadrants. We again take x = (0:3;�0:2). Following the inverse FFT(and after \scaling away" �), we cast the terms with negative indices to Pad�e rational formto obtain: r(") = �3:3297 � 10�11 � 5:9685 � 10�10"2 � 1:8415 � 10�9"4 + 0 � "61:0541 � 10�3 + 2:4440 � 10�2"2 + 2:2506 � 10�1"4 + "6 : (12)(The highest degree term in the numerator is zero because the expansion (11) contains noconstant term). Combining (12) with the Taylor series approximation, we compute, forexample, s(x; ") at " = 0:1:s(x; 0:1) � f r(0:1)g +( 32Xk=0 d2k(0:1)2k) � 0:87692244095761:Note that the only terms present in the Taylor and Pad�e approximations are even, due tothe four-fold symmetry of s(x; ") in the complex "-plane.Table 1 compares the error in s(x; ") when computed in standard 64-bit 
oating pointwith the direct method (6) and when computed with the present algorithm. The comparisonswere made with s(x; ") computed via (6) with high-precision arithmetic, using 60 digits ofaccuracy. The last part of the table compares the error in the approximation of (3), whens(x; ") is computed using the present algorithm.Figure 5 graphically compares the results of the Contour-Pad�e algorithm usingM=4+1 =33 to those using the direct method (6). Like Table 1, the �gure clearly shows that theContour-Pad�e algorithm allows the RBF interpolant to be computed in a stable manner forthe full range of ". (The increased error in the results of the Contour-Pad�e algorithm as "falls below 0.12 is not due to any loss in computational accuracy; it is a genuine feature ofthe RBF interpolant, and will be discussed in a separate study).We next compare the computational e�ort required to compute s(x; ") using the directmethod (6) and the Contour-Pad�e algorithm. To obtain the same level of accuracy (around



Stable Computation of Multiquadric Interpolants 9Magnitude of the error in s(x; ")when computed using the direct method" = 0 " = 0:01 " = 0:05 " = 0:1 " = 0:12 " = 0:251 3:9 � 10�3 1:0 � 10�6 4:9 � 10�10 1:4 � 10�9 4:6 � 10�11Magnitude of the error in s(x; ")when computed using the Contour-Pad�e algorithmM4 +1 " = 0 " = 0:01 " = 0:05 " = 0:1 " = 0:12 " = 0:2533 ... 1:1 � 10�13 1:0 � 10�13 8:4 � 10�14 7:1 � 10�14 1:1 � 10�1365 ... 1:3 � 10�13 1:4 � 10�13 1:4 � 10�13 1:4 � 10�13 1:2 � 10�13129 ... 2:1 � 10�13 2:0 � 10�13 1:8 � 10�13 1:6 � 10�13 5:6 � 10�14Magnitude of the error s(x; ")� f(x)when s(x; ") is computed using the Contour-Pad�e algorithmM4 +1 " = 0 " = 0:01 " = 0:05 " = 0:1 " = 0:12 " = 0:2533 5:3 � 10�11 5:2 � 10�11 2:5 � 10�11 2:3 � 10�12 2:5 � 10�13 5:5 � 10�9Table 1: Comparison of the error in s(x; ") when computed using the direct method andthe Contour-Pad�e algorithm. For these comparisions, we have chosen x = (0:3;�0:2)12 digits) with the direct method as the present algorithm provides requires the use ofhigh-precision arithmetic. The table below summarizes the time required for computing theinterpolant via the direct method using MATLAB's variable-precision arithmetic (VPA)package. All computations were done on a 500 MHz Pentium III processor.Digits Time for Time for evaluating" Needed �nding �j s(x; ") at each x10�2 42 172.5 sec. 1.92 sec.10�4 74 336.3 sec. 2.09 sec.10�6 106 574.6 sec. 2.31 sec.10�8 138 877.1 sec. 2.47 sec.Note that in this approach, changing " will necessitate an entirely new calculation.With the Contour-Pad�e algorithm, the problem can be done entirely in standard 64-bit
oating point. A summary of the time required to compute the various portions of thealgorithm using MATLAB's standard 
oating point follows:Portion of the Algorithm TimeFinding the expansion coeÆcientsaround the " circle and the polesfor the Pad�e rational form 0.397 sec.Evaluating s(x; ") at a newx value. 0.0412 sec.Evaluating s(x; ") at a new" value. 0.0022 sec.
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Figure 5: The error (in magnitude) as a function of " in the interpolant s(x; ") of (3). Thesolid line shows the error when s(x; ") is computed using (6) and the dashed line shows theerror when s(x; ") is computed using the Contour-Pad�e algorithm presented in Section 4.Again, we have chosen x = (0:3;�0:2).Note that these times hold true regardless of the value of ".6 Some additional examples and commentsLooking back at the description of the Contour-Pad�e algorithm, we see that it only reliedon computing s(x; ") around a contour and was in no way speci�c to the MQ RBF. In the�rst part of this section we present some additional results of the algorithm and make somecomments not only for the MQ RBF, but also for the IQ and GA RBFs.We consider RBF approximations of (3) sampled at the 62 data points xj shown inFigure 6. To get a better idea of how the error behaves over the whole region (i.e. the unitdisk), we compute the root-mean-square (RMS) error of the approximations over a dense setof points covering the region. In all cases, we use the Contour-Pad�e algorithm withM = 512points around the contour.Figure 7 (a) shows the structure in the complex "-plane for s(x; ") based on the MQRBF (we recall that the pole locations are entirely independent of x). Unlike the examplefrom Section 2 which resulted in 6 poles for s(x; "), we see from the �gure that the presentexample only results in 2 poles within the contour (indicated by the dashed line). Figure 8(a) compares the resulting RMS error as a function of " when the MQ RBF approximationis computed directly via (6) and computed using the Contour-Pad�e algorithm. The �gureshows that the direct computation becomes unstable when " falls below approximately 0.28.Most algorithms for selecting the optimal value of " (based on RMS errors) would thusbe limited from below by this value. However, the Contour-Pad�e algorithm allows us tocompute the approximation accurately for every value of ". As the �gure shows, the trueoptimal value of " is approximately 0.119. The RMS error in the approximation at thisvalue is approximately 2:5 � 10�12, whereas the RMS error in the approximation at " = 0:28is approximately 6:0 � 10�9.Figure 7 (b) shows the structure in the complex "-plane for s(x; ") based on the IQ RBF.We notice a couple of general di�erences between the structures based on the IQ RBF andMQ RBF. First, the IQ RBF leads to a slightly better conditioned linear system to solve.Thus, the approximate area of ill-conditioning is smaller. Second, the IQ basis function
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Figure 6: Distribution of 62 data points for use in the example from Section 6.contains a pole, rather than a branch point, when " = �i=r. Thus, for evaluation on theunit disk, there will be trivial poles (of unknown strengths) on the imaginary "-axis that cannever get closer to the origin than � i2 . For our 62 point distribution and for an evaluationpoint x that does not correspond to any of the data points, there could be up to 2 �62 = 124trivial poles on the imaginary axis. If we combine these with the non-trivial poles that arisefrom singularities in the A(") matrix, this will be too many for the Contour-Pad�e algorithmto \pick up". So, as in the MQ case, the choice of our contour is limited by 1=D, whereD is the maximum distance between the points (e.g. 1=D = 1=2 for evaluation on the unitdisk). One common feature we have observed in the structures of s(x; ") for the IQ and MQcases is that the location of the poles due to singularities of the A(") matrix are usually insimilar locations (cf. the solid circles in Figure 7 (a) and (b)).Figure 8 (b) compares the resulting RMS error as a function of " when the IQ RBF ap-proximation is computed directly via (6) and computed using the Contour-Pad�e algorithm.Again, we see that the direct computation becomes unstable when " falls below approx-imately 0.21. This is well above the optimal value of approximately 0.122. Using theContour-Pad�e algorithm, we �nd that the RMS error in the approximation at this value of "is approximately 2:5 � 10�12, whereas the RMS error at " = 0:21 is approximately 2:5 � 10�9.Figure 7 (c) shows the structure in the complex "-plane for s(x; ") based on the GARBF. It di�ers signi�cantly from the structures based on the IQ and MQ RBFs. The �rstmajor di�erence is that the GA RBF possesses no singularities in the �nite complex "-plane(it has an essential singular point at " = 1). Thus, the contour we choose is not limitedby the maximum distance between the points. However, the GA RBF grows as " movesfarther away from the real axis. Thus, the contour we choose for evaluating s(x; ") is limitedby the ill-conditioning that arises for large imaginary values of ". This limiting factor hassigni�cantly less impact than the \maximum distance" limiting factor for the MQ and IQRBFs, and makes the Contour-Pad�e algorithm based on GA RBF able to handle larger datasets (for example, it can easily handle approximations based on 100 data points in the unitdisk when the computations are done in standard 64-bit 
oating point). Indeed, Figure 7(c) shows that the contour we used for the GA RBF approximation is much farther away
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GA (c)Figure 7: The structures of s(x; ") in complex "-plane for the 62 data points shown in Figure6 in the case of (a) MQ RBF (b) IQ RBF and (c) GA RBF (note the di�erent scale). Theapproximate region of ill-conditioning is marked with a line pattern, the poles are markedwith solid circles, and singularites due to the basis functions themselves (i.e. branch pointsfor the MQ RBF and poles for the IQ RBF) are marked with �'s. The dashed lines indicatethe contours that were used for computing s(x; ") for each of the three cases.



Stable Computation of Multiquadric Interpolants 13from the ill-conditioned region around " = 0 than the corresponding contours for the MQand IQ approximations. The second di�erence for the GA RBF is that it leads to a linearsystem that approaches ill-conditioning faster as " approaches zero [3]. The �nal di�erencewe note (from also looking at additional examples) is that the pole structure of s(x; ") basedon the GA RBF often di�ers quite signi�cantly from those based on the MQ and IQ RBFs.Figure 8 (c) compares the resulting RMS error as a function of " when the GA RBF ap-proximation is computed directly via (6) and computed using the Contour-Pad�e algorithm.The �gure shows that instability in the direct method arises when " falls below 0.48. Again,this is well above the optimal value of " = 0:253. The Contour-Pad�e algorithm produces anRMS error of approximately 1:4 � 10�10 at this value, whereas the RMS error at " = 0:48 isapproximately 2:0 � 10�8.We next explore a case where the limit of s(x; ") as "! 0 fails to exist. As was reportedin [10], the 5�5 equispaced Cartesian grid over [0; 1]� [0; 1] leads to divergence in s(x; ") ofthe type O("�2). To see how the Contour-Pad�e algorithm handles this situation, we considerthe 5�5 grid as our data points xj and compute the MQ RBF approximation to (3) (althoughthe choice of data values is irrelevant to the issue of convergence or divergence; as we knowfrom (6) this depends only on the properties of the matrix C(") = B(") �A(")�1). Figure 9shows a log� log plot of RMS error where the MQ RBF approximation has been evaluatedon a much denser grid over [0; 1]� [0; 1]. In agreement with the high-precision calculationsreported in [10], we again see a slow growth towards in�nity for the interpolant. The reasonis that this time there is a double pole right at the origin of the "�plane (i.e. " = 0 is not,in this case, a removable singularity). The Contour-Pad�e algorithm automatically handlesthis situation correctly, as Figure 9 shows.To get a better understanding of how the interpolant behaves for this example, we usethe algorithm to compute all the functions dk(x) in the small "-expansions(x; ") = d�2(x)"�2 + d0(x) + d2(x)"2 + d4(x)"4 + : : : (13)Figure 10 displays the �rst 6 dk(x)-functions over the unit square. Note the small verticalscale on the �gure for the d�2(x) function. This is consistent with the fact that divergenceoccurs only for small values of " (cf. Figure 9). Each surface in Figure 10 shows markers(solid circles) at the 25 data points. The function d0(x) exactly matches the input functionvalues at those points (and the other functions are exactly zero there). It also gives veryaccurate approximation to the actual function; the RMS error is 1:27 � 10�8.We omit the results for the IQ and GA RBF interpolants for this example, but note thatthe IQ also leads to divergence in s(x; ") of the type O("�2) (as reported in [10]), whereasthe GA RBF actually leads to convergence.We conclude this section with some additional comments about other techniques we triedrelated to computing the interpolant for small values of ".It is often useful (and sometimes necessary) to augment the RBF interpolant (1) withlow order polynomial terms (see for example [14]). The addition of these polynomial termsgives the RBF interpolation matrix (a slightly modi�ed version of the A(") matrix foundin (4)) certain desirable properties, e.g. (conditional) positive or negative de�niteness [11].The Contour-Pad�e algorithm can|without any change|be used to compute the RBF inter-polant also with the inclusion of these polynomial terms. We have found, however, that thebehavior of the interpolant is not signi�cantly a�ected by such variations. For example, wefound that the pole structure of s(x; ") is not noticeably a�ected, and there is no signi�cantgain in accuracy at the \optimal" " value (however, for larger values of ", there can be somegains).Since the RBF interpolant can usually be described for small values of " by (13) butwithout the "�2 term, one might consider using Richardson/Romberg extrapolation at largervalues of " to obtain the interpolant for " = 0. However, this idea is not practical. Such
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(a) MQ RBF
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(b) IQ RBF
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(c) GA RBFFigure 8: The RMS error in the (a) MQ, (b) IQ, and (c) GA RBF approximations s(x; ")of (3). The solid line shows the error when s(x; ") is computed using (6) and the dashedline shows the error when s(x; ") is computed using the Contour-Pad�e algorithm. Note thedi�erent scale for the GA RBF results.
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Figure 9: The RMS error in the MQ RBF approximation s(x; ") of (3) for the case of a 5�5equispaced Cartesian grid over [0; 1]� [0; 1].extrapolation is only e�ective if the �rst few expansion terms strongly dominate the laterones. This would only be true if we are well inside the expansion's radius of convergence.As Figures 4 and 8 indicate, this would typically require computations at " values that aretoo small for acceptable conditioning.7 Concluding remarksThe shape parameter " in RBF interpolation plays a signi�cant role in the accuracy of theinterpolant. The highest accuracy is often found for values of " that make the direct methodof computing the interpolant su�er from severe ill-conditioning. In this paper we havepresented an algorithm that allows stable computation of RBF interpolants for all values of", including the limiting case (if it exists) when the basis functions become perfectly 
at.This algorithm has also been successfully used in [15] for computing RBF based solutionsto elliptic PDEs for the full range of "-values.The key to the algorithm lies in removing the restriction that " be a real parameter.By allowing " to be complex, we not only obtain a numerically stable algorithm, but wealso gain a wealth of understanding about the interpolant, and we can use powerful toolsto analyze it, such as Cauchy integral formula, contour integration, Laurent series, andPad�e approximations.References[1] R. Franke. Scattered data interpolation: tests of some methods. Math. Comput.,38:181{200, 1982.[2] W.R. Madych. Miscellaneous error bounds for multiquadric and related interpolants.Comput. Math. Appl., 24:121{138, 1992.[3] R. Schaback. Error estimates and condition numbers for radial basis function inter-polants. Adv. Comput. Math., 3:251{264, 1995.
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Figure 10: The �rst 6 terms from the expansion (13) of s(x; "). The solid circles representthe 5� 5 equispaced Cartesian grid that served as the input data points for the interpolant.


