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Abstract. Radial basis functions (RBFs) form a primary tool for multivariate interpolation, and
they are also receiving increased attention for solving PDEs on irregular domains. Traditionally, only
non-oscillatory radial functions have been considered. We find here that a certain class of oscillatory
radial functions (including Gaussians as a special case) leads to non-singular interpolants with in-
triguing features especially as they are scaled to become increasingly flat. This flat limit is important
in that it generalizes traditional spectral methods to completely general node layouts. Interpolants
based on the new radial functions appear immune to many or possibly all cases of divergence that in
this limit can arise with other standard types of radial functions (such as multiquadrics and inverse
multiquadratics).
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1. Introduction. A radial basis function (RBF) interpolant of multivariate data
(xk, yk), k = 1, 2, . . . , n takes the form

s(x) =

n∑

k=1

λk φ(‖x− xk‖) . (1.1)

Here ‖·‖ denotes the standard Euclidean vector norm, φ(r) is some radial function, and
an underline denotes that quantity to be a vector. The coefficients λk are determined
in such a way that s(xk) = yk, k = 1, 2, . . . , n, i.e. as the solution to the linear system



 A








λ1

...
λn



 =




y1
...
yn



 (1.2)

where the entries of the matrix A are Ai,j = φ
(∥∥xi − xj

∥∥)
, i = 1, . . . , n, , j =

1, . . . , n.
Numerous choices for φ(r) have been used in the past. Table 1 shows a few cases

for which existence and uniqueness of the interpolants s(x) have been discussed in the
literature; see for ex. [2], [3], [14], and [15]. For many of the radial functions in Table
1, existence and uniqueness are ensured for arbitrary point distributions. However,
there are some that require the form of (1.1) to be augmented by some low-order
polynomial terms.

In the infinitely smooth cases, we have included a shape parameter ε in such
a way that ε → 0 corresponds to the basis functions becoming flat (as discussed
extensively in for example [4], [7], [8], [11], [12]). The primary interest in this limit
lies in the fact that it reproduces all the classical pseudospectral (PS) methods [6],
such as Fourier, Chebyshev, and Legendre, whenever the data point locations are
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Type of basis function φ(r)

Piecewise smooth RBFs

Generalized Duchon spline (GDS) r2k log r, k ∈ N

r2ν , ν > 0 and ν 6∈ N

Wendland (1 − r)k
+p(r), p a polynomial, k ∈ N

Matérn
21−ν

Γ(ν)
rνKν(r), ν > 0

Infinitely smooth RBFs

Gaussian (GA) e−(εr)2

Generalized multiquadric (GMQ) (1 + (εr)2)ν/2, ν 6= 0 and ν 6∈ 2N

• Multiquadric (MQ) (1 + (εr)2)1/2

• Inverse multiquadric (IMQ) (1 + (εr)2)−1/2

• Inverse quadratic (IQ) (1 + (εr)2)−1

Table 1.1

Some commonly used radial basis functions. Note: in all cases, ε > 0.

distributed in a corresponding manner. The interpolant (1.1) can therefore be seen
as a major generalization of the PS approach, allowing scattered points in arbitrary
numbers of dimensions, a much wider functional choice, and a free shape parameter
ε that can be optimized.

The RBF literature has so far been strongly focused on radial functions φ(r) that
are non-oscillatory. We are not aware of any compelling reason for why this needs to
be the case. Although we will show that φ(r) oscillatory implies that the interpolation
problem can become singular in a sufficiently high dimension, we will also show that
this need not be of any concern when the dimension is fixed. The present study
focuses on the radial functions

φd(r) =
J d

2
−1(εr)

(εr)
d
2
−1

, d = 1, 2, . . . , (1.3)

where Jα(r) denotes the J Bessel function of order α. For odd values of d, φd(r) can
be alternatively expressed by means of regular trigonometric functions:

φ1(r) =

√
2

π
cos(εr)

φ3(r) =

√
2

π

sin(εr)

εr

φ5(r) =

√
2

π

sin(εr) − εr cos(εr)

(εr)3

...

We will later find it useful to note that these φd(r)− functions can also be ex-
pressed in terms of the hypergeometric 0F1 function:

φd(r) = 2
2

d
−1 Γ

(
d
2

)
ψd(r)
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where

ψd(r) = 0F1(
d
2 ,− 1

4 (εr)2). (1.4)

In the d → ∞ limit, the oscillations of φd(r) vanish, and Gaussian (GA) radial
functions are recovered, as follows from the relation

lim
δ→∞

2δδ!
Jδ(2

√
δr)

(2
√
δr)δ

= e−r2

. (1.5)

Comparing the ratio above with (1.3), we have here written δ in place of d
2 − 1 and

chosen ε = 2
√
δ. Figure 1.1 illustrates (1.5), comparing the curves for d = 3, 5, and

10 with the Gaussian limit.
For these radial functions φd(r), we will prove non-singularity for arbitrarily scat-

tered data in up to d dimensions (when d > 1). However, numerous other types of
radial functions share this property. What makes the present class of Bessel-type
basis functions outstanding relates to the flat basis function limit as ε → 0. As a
consequence of the limit (when it exists) taking the form of an interpolating poly-
nomial, it connects pseudospectral (PS) methods [6] with RBF interpolants [8]. It
was conjectured in [8] and shown in [16] that GA (in contrast to, say, MQ, IMQ, and
IQ) will never diverge in this limit, no matter how the data points are located. The
results in this study raise the question whether the present class of Bessel-type radial
functions might represent the most general class possible of radial functions with this
highly desirable feature.

The radial functions φd(r) have previously been considered in [17] (where (1.5) and
the positive semi-definiteness of the φd(r)-functions were noted), and in an example
in [9] (in the different context of frequency optimization). They were also noted very
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briefly in [8] as appearing immune to a certain type of ε → 0 divergence – the main
topic of this present study.

2. Some observations regarding oscillatory radial functions. Expansions
in different types of basis functions are ubiquitous in computational mathematics.
It is often desirable that such functions are orthogonal to each other with regard
to some type of scalar product. A sequence of such basis functions then needs to
be increasingly oscillatory, as is the case for example with Fourier and Chebyshev
functions. It can be shown that no such fixed set of basis functions can feature
guaranteed non-singularity in more than 1-D when the data points are scattered
[13]. The RBF approach circumvents this problem by making the basis functions
dependent on the data point locations. It uses different translates of one single radially
symmetric function, centered at each data point in turn. Numerous generalizations
of this approach are possible (such as using different basis functions at the different
data point locations, or not requiring that the basis functions be radially symmetric).

The first question we raise here is why it has become customary to consider only
non-oscillatory radial functions (with a partial exception being GDS φ(r) = r2k log r
which changes sign at r = 1). One reason might be the requirements in the primary
theorem that guarantees non-singularity for quite a wide class of RBF interpolants
[3], [15]:

Theorem 2.1. If Φ(r) = φ(
√
r) is completely monotone but not constant on

[0,∞), then for any points xk in R
d, the matrix A in (1.2) is positive definite.

The requirement for φ(
√
r) to be completely monotone is far more restrictive than

φ(r) merely being non-oscillatory:

Definition 2.2. A function Φ(r) is completely monotone on [0,∞), if
(i) Φ(r) ∈ C[0,∞)
(ii) Φ(r) ∈ C∞(0,∞)

(iii) (−1)k dk

drk Φ(r) ≥ 0 for r > 0 and k = 0, 1, 2, . . .

An additional result that might discourage the use of oscillatory radial functions
is the following:

Theorem 2.3. If φ(r) ∈ C[0,∞) with φ(0) > 0 and φ(ρ) < 0 for some ρ > 0,
then there is an upper limit on the dimension d for which the interpolation problem
is non-singular for all point distributions.

Proof. Consider the point distributions shown in Figure 2.1. The first row in the
A−matrix will have the d+ 1 entries

[φ(0), φ(ρ), φ(ρ), φ(ρ), . . . , φ(ρ)] .

For d sufficiently large, the sum of all the elements will be negative. By replacing ρ
with some ρ̂ < ρ we can make the sum exactly zero. Then the sum of all the other
rows of A will also be zero. Hence, [1, 1, 1, . . . , 1]T is an eigenvector with eigenvalue
zero, i.e. A is singular.

However, as we will see below, the particular class of radial functions φd(r) given
by (1.3) offer non-singularity for arbitrarily scattered data in up to d dimensions.

3. Some basic features of the Bessel-based radial functions φd(r). The
functions φd(r), as given in (1.3), arise as eigenfunctions to Laplace’s operator in d
dimensions. Assuming symmetry around the origin, the Laplace eigenvalue problem

∆φ+ ε2φ = 0 (3.1)
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Fig. 2.1. Distributions of d + 1 points in d dimensions such that all points have a distance ρ

between each other.

transforms to

φ′′(r) +
d− 1

r
φ′(r) + ε2φ(r) = 0,

for which the solutions that are bounded at the origin become (1.3). An immediate
consequence of (3.1) is that the RBF interpolant s(x) based on φd(r) in d dimensions
will itself satisfy (3.1), i.e.

∆s+ ε2s = 0. (3.2)

This result puts a tremendous restraint on s(x). For example, s(x) can never feature
a local maximum (at which ∆s(x) ≤ 0) unless s(x) at that point is non-negative.
However, if φd(r) is used in less than d space dimensions, no similar problem appears
to be present.

Theorem 3.1. The radial functions given by (1.3) will give nonsingular interpo-
lation in up to d dimensions when d ≥ 2.

Proof. We first note that if the result for φd(r) holds in d dimensions, it automati-
cally holds also in less than d dimensions (since that is a sub-case of the former). Also,
we can simplify the notation by setting ε = 1. The second equality in the equation
below is a standard one, related to Hankel transforms:

φd(‖x‖) =
J d

2
−1(‖x‖)

‖x‖ d
2
−1

=
1

(2π)
d
2

∫

‖ω‖=1

ei x·ω dω (3.3)

(see for example [2, p. 53]; it also arises as a special case of a general formula for∫
‖ω‖=1 f(x · ω) dω [10, pp. 8-9]). Here x,ω ∈ R

d and
∫
‖ω‖=1 represents the surface

integral over the unit sphere in R
d. For d = 1 (x = x), the right hand side of (3.3)

should be interpreted as 1√
2π

(
eix + e−ix

)
.

To show first that A is positive semi-definite (a result that was previously noted
in [17]), we follow an argument originally given in [1] and often repeated since. Let
α = [α1, α2, . . . , αn]T be any column vector and A be the matrix in (1.2). Then

[
αT

]


 A







 α



 =

n∑

j=1

n∑

k=1

αjαk φd

(∥∥xj − xk

∥∥)
=
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1

(2π)
d
2

n∑

j=1

n∑

k=1

αjαk

∫

‖ω‖=1

ei (xj−xk)·ω dω =

1

(2π)
d
2

∫

‖ω‖=1

n∑

j=1

n∑

k=1

αjαke
i (xj−xk)·ω dω =

1

(2π)
d
2

∫

‖ω‖=1

∣∣∣∣∣∣

n∑

j=1

αj e
i xj ·ω

∣∣∣∣∣∣

2

dω ≥ 0

The finishing step is to show that A is not just positive semi-definite, but indeed
positive definite. For this, we need to show that f(ω) =

∑n
m=1 αme

i ω·xm ≡ 0 on the
surface of the unit ball ‖ω‖ = 1 implies that all αm = 0. Before showing why this
is the case when d = 2 (and higher), we first note why the result will not hold when
d = 1:

d = 1 (The theorem is not valid): ‖ω‖ = 1 includes only two values, ω = −1 and
ω = 1. The two equations

∑n
m=1 αme

−ixm = 0 and
∑n

m=1 αme
ixm = 0 clearly possess

non-trivial solutions for αm, being just two homogeneous equations in n unknowns.

d = 2 : Now there are infinitely many points ω satisfying ‖ω‖ = 1, but still
only n unknowns—so we would not expect any non-trivial solutions. More precisely:
With ω = [cos θ, sin θ], we can write f(ω) as f(θ) =

∑n
m=1 αme

i‖xm‖ cos(θ−βm) where
βm is the argument of xm. This is an entire function of θ. Thus, since we have
assumed f(θ) ≡ 0 when θ is real (corresponding to ‖ω‖ = 1), the same holds also
for all complex values of θ. Let k be such that ‖xk‖ ≥ ‖xm‖, m = 1, 2, . . . , n and
choose θ = βk + π

2 + iξ, where ξ is real and ξ > 0. With the assumption that the
node points are distinct, the term multiplying the coefficient αk in the sum will then
grow faster than the term multiplying any other coefficient as ξ increases. Since ξ
can be arbitrarily large, we must have αk = 0. The argument can then repeated for
all remaining coefficients. Hence, the only way f(ω) ≡ 0 for ‖ω‖ = 1 is if αm = 0 for
m = 1, 2, . . . , n.

d = 3 (and higher): The space ‖ω‖ = 1 is even larger (a sphere, or higher). The
argument for the d = 2 case carries over virtually unchanged.

4. Properties of the φd(r) interpolants in the limit of ε→ 0.

4.1. Taylor expansion of φd(r). The Taylor expansion of φd(r) contains only
even powers of εr :

φd(r) = a0 + a1(εr)
2 + a2(εr)

4 + a3(εr)
6 + . . . (4.1)

where the coefficients are functions of d. Since an RBF interpolant is unaffected if
the radial function is multiplied by a constant factor, we instead use ψd(r) (1.4) so
that a0 = 1. The coefficients in (4.1) then become

ak =
(−1)k

(2k)!!

1
∏k−1

i=0 (d+ 2i)
, k = 1, 2, . . . , (4.2)
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i.e.

a0 = 1

a1 = − 1
2 d

a2 = 1
8 d(d+2)

a3 = − 1
48 d(d+2)(d+4)

a4 = 1
384 d(d+2)(d+4)(d+6)

...

4.2. Interpolation when the data is located in 1-D. The situation when all
the data points xj , as well as the interpolation point x, are located in 1-D was analyzed
in [4]. It was shown that the interpolant s(x) converges to Lagrange’s interpolation
polynomial when ε → 0 on condition that all of the determinants G0,k and G1,k,
k = 0, 1, 2, . . . are non-zero, where

G0,k =

∣∣∣∣∣∣∣∣∣∣∣∣

(
0
0

)
a0

(
2
2

)
a1 · · ·

(
2k
2k

)
ak

(
2
0

)
a1

(
4
2

)
a2 · · ·

(
2k+2
2k

)
ak+1

...
...

...(
2k
0

)
ak

(
2k+2

2

)
ak+1 · · ·

(
4k
2k

)
a2k

∣∣∣∣∣∣∣∣∣∣∣∣

(4.3)

and

G1,k = (−1)k+1

∣∣∣∣∣∣∣∣∣∣∣∣

(
2
1

)
a1

(
4
3

)
a2 · · ·

(
2k+2
2k+1

)
ak+1

(
4
1

)
a2

(
6
3

)
a3 · · ·

(
2k+4
2k+1

)
ak+2

...
...

...(
2k+2

1

)
ak+1

(
2k+4

3

)
ak+2 · · ·

(
4k+2
2k+1

)
a2k+1

∣∣∣∣∣∣∣∣∣∣∣∣

. (4.4)

In the present case, with Taylor coefficients given by (4.2), the determinants can be
evaluated in closed form:

G0,k =
k−1∏

j=0

(d+ 2j − 1)k−j

(2j + 2)! (d+ 2j)k+1 (d+ 2k + 2j)k−j
,

and

G1,k = G0,k

k∏

j=0

1

(2j + 1) (d+ 2k + 2j)
.

These determinants are all zero when d = 1 and k > 0 , but never zero for
d = 2, 3, . . .. The singular behavior for d = 1 should be expected, since φ1(r) = cos(r)
(when normalized so that a0 = 1). In 1-D, any three translates of this function
are linearly dependent, and these functions can therefore not serve as a basis for
interpolation. However, the result shows that, when using φd(r) with d ≥ 2, the
ε → 0 limit will always become the Lagrange interpolation polynomial (i.e. the
interpolation polynomial of lowest possible degree).
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4.3. Interpolation when the data is located in m-D. In m dimensions,
there are similar conditions for the RBF interpolant to converge to a unique lowest-
degree interpolating polynomial as ε → 0. The following two conditions need to be
fulfilled:

(i) The point set is unisolvent, i.e. there is a unique polynomial of lowest possible
degree that interpolates the given data.

(ii) The determinants Gi,k are non-zero for i = 0, . . . ,m and k = 0, 1, . . ..

A thorough discussion of the condition (i) and what it means when it fails, to-
gether with the general definitions of Gi,k, are given in [12]. For the oscillatory RBFs
considered here, we can again give the determinants in closed form as

G0,k =
k−1∏

j=0

(d−m+ 2j)pm(k−j−1)

[(2j + 1)(2j + 2)]
mpm(k−j−1)

(d+ 2j)pm(k) (d+ 2k + 2j)pm(k)−pm(j)
,

and

Gi+1,k = Gi,k

k∏

j=0

1

(2j + 1)pm−1(k−j) (d+ 2k + 2j + 2i)pm−1(j)
,

where

pm(k) =

(
m+ k

k

)
.

Note that the expressions given for interpolation in 1-D are just special cases of the
general expressions above. The determinants are all zero for k > 0 when d = m.
They are also zero for k > j, when d = m − 2j, j = 0, . . . , ⌊m−1

2 ⌋. However, the
determinants are never zero for d > m. Accordingly, when φd(r) with d > m are used
as basis functions, the RBF interpolant s(x) always converges to the lowest degree
interpolating polynomial as ε→ 0, provided this is uniquely determined by the data.

4.4. Convergence/divergence when points are located along a straight
line, but evaluated off the line. There are several reasons for being interested in
this case. It was first noted in [8] that

• The cases of points along a straight line provides the simplest known examples
of divergence in the ε→ 0 limit,

• Divergence can arise for some radial functions in cases where polynomial
unisolvency fails. The most extreme such case is the one with all points
along a line (a 1-D subset of a higher-dimensional space). Divergence has
never been observed for any point distributions, unless also this special case
produces divergence,

• The straight line situation permits some exact analysis.

We proved in [8] that GA will never diverge when all points lie along a line and
the interpolant is evaluated off the line. The proof that the same holds for all the
φd(r) functions for d ≥ 2 is easiest in the case of d = 2, and we consider that case
first:

Lemma 4.1. If the polynomial q(x, y) is not identically zero, and p(x, y) =
ynq(x, y) satisfies Laplace’s equation ∆p = 0, then n = 0 or n = 1.
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Proof. Assume that n is the highest power of y that can be factored out of p(x, y).
Substituting p = ynq into ∆p = 0 and dividing by yn−2 gives

y2qxx + n(n− 1) q + 2n y qy + y2qyy = 0. (4.5)

Unless n = 0 or n = 1, this shows that q(x, 0) ≡ 0, contradicting the initial assumption
in this proof.

Theorem 4.2. When all the data is located along a straight line, interpolants
based on the φd(r) radial functions (for d ≥ 2) will not diverge at any location off that
line when ε→ 0.

Proof. We again assume first that d = 2 and that the data is located along the
x-axis. Knowing from [8] that the RBF interpolant is expandable in powers of ε2 with
coefficients that are polynomials in x = (x, y), we have

s(x, ε) =
1

ε2m
p−2m(x, y)+

1

ε2m−2
p−2m+2(x, y)+ . . .+p0(x, y)+ε2p2(x, y)+ . . . (4.6)

We assume that p−2m(x, y), with m > 0, is not identically zero, and we will show
that this leads to a contradiction. Substituting (4.6) into (3.2) and equating powers
of ε2 gives rise to a sequence of equations

∆p−2m(x, y) = 0

∆p−2m+2(x, y) = −p−2m(x, y)

. . .

. (4.7)

Knowing from Section 4.2 that we get convergence along the line y = 0 (to Lagrange’s
interpolating polynomial), p−2m(x, y) must be identically zero when y = 0. Since
s(x, ε) and therefore also p−2m(x, y) are even functions of y, it holds that

p−2m(x, y) = y2q(x, y) (4.8)

where q(x, y) is a polynomial in x and y. From the Lemma above follows now that
p−2m(x, y) ≡ 0, and the proof for the d = 2-case is finished.

The argument above generalizes to d > 2. With x = (x, x2, x3, . . . , xd), radial
symmetry assumed in all but the first variable, and with r2 = x2

2 + . . .+ x2
d, equation

(4.5) generalizes to

r2qxx + n(n+ d− 3)q + (2n+ d− 2) r qr + r2qrr = 0 ,

and only n = 0 becomes permissible. The rest follows as above.

One key tool for analytically exploring this ε→ 0 limit is the following theorem,
previously given in [8]:
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Theorem 4.3. For cardinal data yk =

{
1 if k = 1

0 otherwise
, the RBF interpolant

of the form (1.1) becomes

s(x) =

det





φ (‖x− x1‖) φ (‖x− x2‖) · · · φ (‖x− xn‖)
φ (‖x2 − x1‖) φ (‖x2 − x2‖) · · · φ (‖x2 − xk‖)

...
...

. . .
...

φ (‖xn − x1‖) φ (‖xn − x2‖) · · · φ (‖xn − xn‖)





det





φ (‖x1 − x1‖) φ (‖x1 − x2‖) · · · φ (‖x1 − xn‖)
φ (‖x2 − x1‖) φ (‖x2 − x2‖) · · · φ (‖x2 − xk‖)
...

...
. . .

...

φ (‖xn − x1‖) φ (‖xn − x2‖) · · · φ (‖xn − xn‖)





(4.9)

Proof. By expanding the determinant in the numerator along its top row, we see
that (4.3) is of the form (1.1). It is also obvious that s(x1) = 1 (the two determinants
are then equal), and s(xk) = 0 when k 6= 1 (the top determinant has then two rows
equal).

It turns out that placing up to four points along a line (say, the x-axis) will
not cause divergence at any evaluation point off the line. For five points, evaluating
at a location (x, y) off the x-axis (for example by means of substituting the Taylor
expansions (4.1) for a general radial function φ(r) into (4.3)) gives

s(x, y) =
4 y2

(x1 − x2)(x1 − x3)(x1 − x4)(x1 − x5)
· (4.10)

· (a1a
2
2 − 3a2

1a3 + 3a0a2a3)

(6a3
2 + 225a0a2

3 + 70a2
1a4 − 30a1a2a3 − 420a0a2a4)

1

ε2
+ O(1)

Assuming we are dealing with a radial function φ(r) such that the determinants in
(4.3) and (4.4) are non-zero, the requirements 2a2

2 − 5a1a3 6= 0 (needed for a cancel-
lation while deriving (4.10)) and 6a3

2 + 225a0a
2
3 + 70a2

1a4 − 30a1a2a3 − 420a0a2a4 6= 0
(to avoid a divide by zero in (4.10)) follow from G1,1 6= 0 and G0,2 6= 0, respectively.
We can conclude that divergence will occur for s(x, y) unless

a1a
2
2 − 3a2

1a3 + 3a0a2a3 = 0. (4.11)

With Mathematica, we have been able to push the same analysis up to 8 points along
a line. For each case, we need the previously obtained conditions, and again that
certain additional Gi,k–determinants (4.3) and (4.4) are non-zero. The requirements
that enter for different numbers of points turn out to be

5 points a1a
2
2 − 2 · 3

2a
2
1a3 + 3

1a0a2a3 = 0

6 points a2a
2
3 − 2 · 4

3a
2
2a4 + 4

2a1a3a4 = 0

7 points a3a
2
4 − 2 · 5

4a
2
3a5 + 5

3a2a4a5 = 0

8 points a4a
2
5 − 2 · 6

5a
2
4a6 + 6

4a3a5a6 = 0

Unfortunately, at present, the algebra becomes too extensive for us to generate addi-
tional conditions, corresponding to still higher numbers of data points. However, it
does not seem far-fetched to hypothesize that the pattern above will continue indefi-
nitely, i.e.
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• precisely one additional condition (beyond the previous ones) will enter each
time we include an additional point, and

• when including point n+ 2, n = 3, 4, 5, . . . , the new requirement will be

an−2a
2
n−1 − 2 · n

n− 1
a2

n−2an +
n

n− 2
an−3an−1an = 0 (4.12)

Of the smooth radial functions in Table 1, MQ, IMQ, and IQ violate already the
condition for 5 points. Hence, interpolants based on these will diverge in the ε → 0
limit. In contrast, GA and the φd(r) functions (for all ε and d) satisfy (4.12) for all
values of n = 3, 4, 5, . . .. This is in complete agreement with our result just above that
the φd(r) functions will not cause divergence for any number of points along a line.

It is of interest to ask which is the most general class of radial functions for which
the Taylor coefficients obey (4.12) - i.e. the interpolants do not diverge in the ε → 0
limit.

Theorem 4.4. On assumption that (4.12) holds, the corresponding radial func-
tion φ(r) can only differ from the class φd(r) by some trivial scaling.

Proof. Equation (4.12) can be written as

an =
an−2a

2
n−1

n
(

2
n−1a

2
n−2 − 1

n−2an−3an−1

) , n = 3, 4, 5, . . . . (4.13)

This is a non-linear recursion relation that determines an, n = 3, 4, 5, . . . from a0, a1,
and a2. Since any solution sequence can be multiplied by an arbitrary constant, we
can set a0 = 1. Then choosing a1 = β and a2 = γβ2 lead to the closed form solution

an =
2n−1 βn γn−1

n
∏n−1

k=1 (k − 2(k − 1)γ)
(n ≥ 1),

as is easily verified by induction. Thus

φ(r) =

∞∑

n=0

anr
2n = 0F1

[
2γ

1 − 2γ
,

2γ β

1 − 2γ
r2

]
.

Apart from a trivial change of variables, this agrees with (1.4), and thus also with

(1.3). With β = −ε2 and taking the limit γ → 1
2 , this evaluates to e−(εr)2 , again

recovering the GA radial function as a special case

Some of the results above are illustrated in the following example:

Example 4.5. Let the data be cardinal (first value one and the remaining values
zero), and the point locations be xk = k−1, k = 1, . . . , n. Evaluate the RBF interpolant
off the x-axis at (0, 1). This produces the values (to leading order) as shown in
Table 4.1. The computation was carried up to n = 10, with the same general pattern
continuing, i.e.

• For the ‘general case’, represented here by MQ, IMQ, and IQ, the divergence

rate increases with n; as O
(
1/ε2[

n−3

2
]
)

where [·] denotes the integer part,

• For GA, the limit is in all cases = 1 (as follows from results in [8] and [16]),
• For all the φd(r) functions, there is always convergence to some constant.
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n 1 2 3 4 5 6 7 8

MQ 1 1 5
4

5
4

1
168ε2

3
616ε2

1
13770ε4

1337
24180120ε4

IMQ 1 1 9
8

37
32

1
168ε2

333
176648ε2

5
304296ε4

208631
12790879496ε4

IQ 1 1 11
10

17
15

1
894ε2

43
32482ε2

11
1207125ε4

73298
7256028375ε4

GA 1 1 1 1 1 1 1 1

φ2(r) 1 1 1
2 0 − 5

12 − 3
4 − 73

72 − 11
9

φ3(r) 1 1 3
4

1
2

55
192

7
64 − 427

11520 − 457
2880

φ4(r) 1 1 5
6

2
3

47
90

2
5

1121
3780

197
945

Table 4.1

Values of RBF interpolants at location (0,1) in Example 4.5, to leading order.

4.5. Two additional examples regarding more general point distribu-
tions.

Example 4.6. Place n points along a parabola instead of along a straight line.
It transpires that for this example we won’t get divergence (for any smooth radial
function) when n ≤ 7. For n = 8, divergence (when evaluating off the parabola) will
occur unless (4.11) holds.

This raises the question if possibly different non-unisolvent point distributions
might impose the same conditions as (4.12) for non-divergence—just that more points
are needed before the conditions come into play. If this were the case, non-divergence
in the special case of all points along a line would suffice to establish the same for
general point distributions.

Another point distribution case which gives general insight is the following:

Example 4.7. Instead of scattering the points in 1-D and evaluating the in-
terpolant in 2-D, scatter the points randomly in d dimensions, and then evaluate the
interpolant in the d+1 dimension (i.e. scatter the points randomly on a d-dimensional
hyperplane, and evaluate the interpolant at a point off the hyperplane). In the d = 1
case, divergence for any radial function can arise first with n1 = 5 points. This diver-
gence comes from the fact that the Taylor expansions of the numerator and denomina-
tor in (4.3) then become O(ε18) and O(ε20) respectively, i.e. a difference in exponents
by two. Computations (using the Contour-Padé algorithm [7]) for d ≤ 8 suggest that

this O( 1
ε2 ) divergence generalizes to nd = 1+

(
d+3
3

)
= 1+ 1

6 (d+1)(d+2)(d+3) points.

The GA and φk(r) functions were exceptional in this example. Divergence was never
observed for GA or for φk(r) as long as the dimension d < k. When d = k, we were
able to computationally find (for k ≤ 8) a point distribution that led to O( 1

ε2 ) diver-
gence when the interpolant was evaluated at a point in the d+1 dimension. Table 4.2
lists the minimum number of points nd that produced this type of divergence, as well
as the leading power of ε in the numerator and denominator in (4.3). Interestingly, we
found that no divergence resulted when d > k. The computations suggest that φk(r)
will lead O( 1

ε2 ) divergence when d = k, the evaluation point is in d + 1 dimensions,
and nd = d(d+1)/2. This is consistent with the GA radial function being the limiting
case of φk(r) as k → ∞ and GA function never leading to divergence as shown in [16].

5. Conclusions. Many types of radial functions have been considered in the
literature. Almost all attention has been given to non-oscillatory ones, in spite of
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Radial Min. number Leading power ε Leading power ε
function φd(r) of points nd in numerator in denominator

d = 2 6 16 18
d = 3 10 30 32
d = 4 15 48 50
d = 5 21 70 72
d = 6 28 96 98
d = 7 36 126 128
d = 8 45 160 162

Table 4.2

Minimum number of points to produce O( 1
ε2

) divergence in φd(r) radial functions when the
points are distributed on a d-dimensional hyperplane and the corresponding interpolant is evalu-
ated at a point off the hyperlane. Also displayed are the corresponding leading powers of ε in the
numerator and denominator of (4.3)

the fact that basis functions in other contexts typically are highly oscillatory (such
as Fourier and Chebyshev functions). We show here that one particular class of
oscillatory radial functions, given by (1.3), not only possesses unconditional non-
singularity (with respect to point distributions) for ε > 0, but also appears immune
to divergence in the flat basis function limit ε → 0. Among the standard choices
of radial functions, such as MQ or IQ, only GA was previously known to have this
property. When this ε → 0 limit exists, pseudospectral (PS) approximations can be
seen as the flat basis function limit of RBF approximations. The present class of
Bessel function based radial functions (including GA as a special case) thus appears
to offer a particularly suitable starting point for exploring this relationship between
PS and RBF methods (with the latter approach greatly generalizing the former to
irregular point distributions in an arbitrary number of dimensions).

An important issue that warrants further investigation is how this new class of
radial functions fits in with the standard analysis on RBF error bounds. In contrast
to most radial functions, the present class is band limited. This feature in itself need
not detract from its approximation qualities, as is evidenced by polynomials. For
these, the (generalized) Fourier transform is merely a combination (at the origin) of
a delta function and its derivatives. Indeed, the present class of RBFs support a rich
set of exact polynomial reproductions on infinite lattices, as is shown in [5].
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