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Abstract: We exhibit a direct correspondence between the potential defining the H 1,1

small quantum module structure on the cohomology of a Calabi-Yau manifold and the
asymptotic data of the A-model variation of Hodge structure. This is done in the abstract
context of polarized variations of Hodge structure and Frobenius modules.

1. Introduction

The even cohomology of a compact smooth manifold is a Frobenius algebra with re-
spect to the cup product and the intersection form. For a compact, Kähler manifold X,
multiplication by a Kähler class defines a representation of the Lie algebra sl(2) on the
full cohomology H ∗(X, C), whose semisimple element induces the standard Z-grading.
This is the content of the Hard Lefschetz Theorem. Beginning with the formulation of the
Mirror Symmetry phenomenon [5], there has been considerable interest in studying the
simultaneous action on cohomology of the Kähler cone K of X. Looijenga and Lunts
[22] have shown that the copies of sl(2) associated with the elements of K generate
a semisimple Lie algebra and have studied some of their properties. Another point of
view, introduced in [10], consists in studying H ∗(X, C) as a mixed Hodge structure
which splits over R and is polarized by the action of every Kähler class. Hence, the
crucial information is contained in the structure of H ∗(X, C) as a Sym H 1,1-module.
In particular, it follows from [9, Prop. 4.66] that we may define a polarized variation of
Hodge structure on H ∗(X, C) parametrized by the complexified Kähler cone of X. If
a polyhedral cone of Kähler classes is chosen, this variation becomes a nilpotent orbit
in the sense of Schmid [27]. This approach has proved fruitful in the study of mixed
Lefschetz theorems [10].

Quantum cohomology is a deformation of the cup product on H ∗(X, C) defined in
terms of the Gromov-Witten potential – a generating function for certain enumerative
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invariants. If X is a Calabi-Yau manifold, the action of H 1,1 on ⊕Hp,p(X), with re-
spect to the small quantum product, leads to a variation of Hodge structure, called the
A-model variation by Morrison [25]. A local variation of Hodge structure is described
by an algebraic component – the nilpotent orbit – and an analytic part described by a
holomorphic map with values in a graded component of a nilpotent Lie algebra. For the
A-model variation the nilpotent orbit is the one described in the previous paragraph.

Both Frobenius algebras and polarized variations of Hodge structure have been ex-
tensively studied in the recent physics literature. Variations of Hodge structure appear,
for instance, in connection with the tree level amplitudes of twisted N = 2 theories
– the B-model– and, for Calabi-Yau threefolds, as special geometry ([4, 11, 12]). On
the other hand, 2D topological field theories are equivalent to Frobenius algebras. Fam-
ilies of these algebras were also considered: the tangent bundle of the moduli space
of topological conformal field theories has, on each fiber, a Frobenius algebra struc-
ture ([17, 18]). A relation between the two objects arises in mirror symmetry via the
equivalence of the A and B model correlation functions ([5, 20, 14, 25]). What is
perhaps not so well known is a direct construction due to Morrison of a variation
of Hodge structure based on the A-model [25]. In this paper we show a correspon-
dence between any polarized variation of Hodge structure with appropriate degenerating
behavior and a certain sub-structure of a family of Frobenius algebras. Our main result is
to exhibit a simple, direct correspondence between the holomorphic data of the variation
and the (small) quantum potential in such a way that the horizontality equation of a var-
iation of Hodge structure corresponds to a graded component of the WDVV equations.

We will work throughout in the setting of abstract variations of Hodge structure.
The analogous abstract notion on the “quantum” side is that of a Frobenius module in-
troduced in Sect. 3 and their deformations defined by potentials encoding the essential
properties of a graded portion of the Gromov-Witten potential.

The paper is organized as follows. In §2 we review the asymptotic description of
variations. Theorem 2.2 contains the algebraic and analytic characterization of local
variations. We also recall the notion of maximally unipotent boundary points and of
canonical coordinates [5, 23, 16]. In Sect. 3 we define Frobenius modules and their
deformations. Sect. 4 is devoted to the proof of our main result, Theorem 4.1, which
establishes an equivalence between local variations with appropriate behavior at the
boundary and quantum potentials. Finally, in §5 we review the construction of the A-
model variation and show that it coincides with the one constructed in Theorem 4.1. As
a byproduct, we obtain a direct proof that the A-model variation is indeed a polarized
variation of Hodge structure.

We note that the A-model variation involves only the small quantum module struc-
ture. In the case of Hodge structures of weights 3, 4 and 5, corresponding to threefolds,
fourfolds and fivefolds, the module structure suffices to recover the full quantum algebra,
so that our results extend the previously known correspondences ([26, 6]) in weights 3
and 4. Also, the full quantum algebra can be recovered if it is assumed to be generated,
in the geometric context, by H 1,1. In this last case, the family of Frobenius algebras ob-
tained from a variation of Hodge structure can be seen as a Frobenius manifold. These
matters will be analyzed elsewhere [19]. S. Barannikov [1–3] has introduced the notion
of semi-infinite variations of Hodge structure to deal with the full quantum algebra. He
has also shown that, for projective complete intersections, the A-model variation is of
geometric origin and coincides with the polarized variation of Hodge structure of the
mirror family.

Finally, we wish to thank Gregory Pearlstein for his very helpful comments.
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2. Hodge Theory Preliminaries

In this section we briefly review the asymptotic description of variations of Hodge
structure. We refer to [21, 27, 8, 6] for details and proofs.

A (real) variation of Hodge structure V over a connected complex manifold M con-
sists of a holomorphic vector bundle V → M , a flat connection ∇ on V with quasi-
unipotent monodromy, a flat real form VR ⊂ V , and a finite decreasing filtration F of
V by holomorphic subbundles – the Hodge filtration – satisfying

∇Fp ⊂ �1
M ⊗ Fp−1 (Griffiths’ Transversality) and (2.1)

V = Fp ⊕ Fk−p+1
(2.2)

for some integer k – the weight of the variation – and where barring denotes conjugation
relative to VR. As a C∞-bundle, V may then be written as a direct sum

V =
⊕

p+q=k

Vp,q , Vp,q := Fp ∩ Fq ; (2.3)

the integers hp,q := dim Vp,q are the Hodge numbers. A polarization of the variation
is a flat non-degenerate bilinear form Q on V , defined over R, of parity (−1)k , whose
associated flat Hermitian form Qh( · , · ) := i−k Q( · , ·̄ ) makes the decomposition (2.3)
orthogonal and such that (−1)pQh is positive definite on Vp,k−p.

Via parallel translation to a fixed fiber V we may describe a polarized variation of
Hodge structure by a holomorphic period map � : M → D/�, where D is the classify-
ing space of polarized Hodge structures on V and � is the monodromy group. We recall
that D is Zariski open in the smooth projective variety Ď consisting of all filtrations F

in V , with dim Fp = ∑
r≥p hr,k−r , satisfying Q(Fp, F k−p+1) = 0 , where Q denotes

the restriction of Q to V . The complex Lie group GC := Aut(V , Q) acts transitively on
Ď, and D is an open orbit of GR := Aut(VR, Q).

Let g and gR denote the Lie algebras of GC and GR, respectively. The choice of a
base point F ∈ Ď defines a filtration

Fag := { T ∈ g : T Fp ⊂ Fp+a }

compatible with the Lie bracket. In particular, F 0g is the isotropy subalgebra at F and
since [F 0g, F−1g] ⊂ F−1g, the quotient F−1g/F 0g defines a GC-invariant subbundle
of the holomorphic tangent bundle of Ď – the horizontal tangent bundle. Because of
(2.1), the differential of � or, more precisely, of any local lifting of � takes values on
the horizontal bundle. Such maps are called horizontal.

Suppose now that M has a smooth compactification M such that X := M \ M is a
normal crossings divisor. Around a point of X, the local variation may be described by
a horizontal map

� : (�∗)r × �m → D/�, (2.4)

where � is the unit disk in C and �∗ the punctured disk. We shall also denote by �

its lifting to the universal covering Ur × �m, where U is the upper-half plane. We let
z = (zj ), t = (tl) and s = (sj ) be the coordinates on Ur , �m and (�∗)r respectively.
By definition, we have sj = e2πizj .
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Asymptotically, a period map has an algebraic component – the nilpotent orbit –
encoding the singularities of the connection ∇, and an analytic part described by a ho-
lomorphic map with values in a nilpotent Lie algebra. Assuming, for simplicity, that the
local monodromy of the variation is unipotent, let N1, . . . , Nr denote the monodromy
logarithms. Our convention is such that �(z+ei, t) = exp(Ni)�(z, t), where ei denotes
the ith standard vector. It follows from Schmid’s Nilpotent Orbit Theorem [27] that the
Ď-valued map

�(s, t) := exp



−
r∑

j=1

log sj

2πi
Nj



 · �(s, t)

extends holomorphically to the origin. The limiting Hodge filtration is F0 := �(0, 0) ∈
Ď. The map

θ(z) := exp




r∑

j=1

zj Nj



 · F0 ∈ Ď (2.5)

is holomorphic, horizontal, and D-valued for Im(zj ) � 0; i.e., is the period map of a
local variation.

A nilpotent linear transformation N ∈ gl(VR) defines an increasing filtration, the
weight filtration, W(N) of V , defined over R and uniquely characterized by requiring
that N(Wl(N)) ⊂ Wl−2(N) and that Nl : GrW(N)

l → GrW(N)
−l be an isomorphism. It

follows from [7, Theorem 3.3] that if N1, . . . , Nr are the monodromy logarithms of a
local variation, then the weight filtration W(

∑
λjNj ), λj ∈ R>0, is independent of the

choice of λ1, . . . , λr and, therefore, is associated with the positive real cone C ⊂ gR

spanned by N1, . . . , Nr .
The shifted weight filtration W = W(C)[−k] and the limiting Hodge filtration F0 ∈

Ď define a mixed Hodge Structure on V ; i.e. F0 induces a Hodge structure of weight 
 on
GrW
 for each 
. Recall ([9, Theorem 2.13]) that mixed Hodge structures are equivalent to
(canonical) bigradings of V , I ∗,∗, satisfying Ip,q ≡ I q,p mod (⊕a<p,b<qIa,b). Thus,
Wl = ⊕p+q≤lI

p,q and Fa
0 = ⊕p≥aI

p,q .
A mixed Hodge structure (W, F ) is said to split over R if Ip,q = I q,p; in that case

the subspaces Vl = ⊕p+q=lI
p,q define a real grading of W . A structure for which

Ip,q = {0} if p �= q is said to be of Hodge-Tate type. A map T ∈ gl(VR) such that
T (Ip,q) ⊂ Ip+a,q+b is called a morphism of bidegree (a, b).

A polarized mixed Hodge structure [7, (2.4)] of weight k on VR consists of a mixed
Hodge structure (W, F ) on V , a (−1, −1) morphism N ∈ gR, and a nondegenerate,
(−1)k-symmetric, bilinear form Q such that

1. Nk+1 = 0,
2. W = W(N)[−k], where W [−k]j = Wj−k ,
3. Q(Fa, F k−a+1) = 0 and,
4. the Hodge structure of weight k + l induced by F on ker(Nl+1 : GrWk+l → GrWk−l−2)

is polarized by Q(·, Nl ·).
It follows from Schmid’s SL2-orbit theorem [27] that the mixed Hodge structure

(W(C)[−k], F0) associated with a local variation is polarized by every N∈C. Conversely,
given commuting nilpotent elements N1, . . . , Nr ∈ gR so that the weight filtration
W(

∑
λjNj ), λj ∈ R>0, is independent of the choice of λ1, . . . , λr , and F0 ∈ Ď such
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that (W(C), F0) is polarized by every element N ∈ C, the map (2.5) is a period mapping
for Im(zj ) sufficiently large [9, Prop. 4.66]. Moreover, if (W(C), F0) splits over R, then
θ(z) ∈ D for Im(zj ) > 0. We refer to the map θ , or equivalently, to {N1, . . . , Nr ; F0}
as a nilpotent orbit.

The following example shows the relationship between nilpotent orbits (equivalently,
polarized mixed Hodge structures) and the Lefschetz structure on the cohomology of a
compact Kähler manifold. This point of view was introduced in [10] where it was used
to obtain relations between the Lefschetz decompositions corresponding to different
Kähler classes.

Example 2.1. If X is a compact Kähler manifold of dimension k, the bigrading Ip,q :=
Hk−q,k−p(X) defines a mixed Hodge structure (W, F ) on H ∗(X, C) that splits over R.
The interest of this construction lies in the fact that this mixed Hodge structure is polarized
by the Kähler cone. Indeed, the Hard Lefschetz Theorem is equivalent to the statement
that if ω is a Kähler class and Lω denotes multiplication by ω, then W = W(Lω)[−k];
while the Hodge-Riemann bilinear relations imply that Lω polarizes (W, F ) relative to
the intersection form. The restriction of (W, F ) to V := ⊕k

p=0H
p,p defines a mixed

Hodge structure of Hodge-Tate type.

We now describe the analytic component of a local variation. The bigrading
associated with the limiting mixed Hodge structure (W, F0) defines a bigrading I ∗,∗g
of the Lie algebra g by I a,bg := {X ∈ g : X(Ip,q) ⊂ Ip+a,q+b}. Set

pa :=
⊕

q

I a,qg and g− :=
⊕

a≤−1

pa. (2.6)

The nilpotent subalgebra g− is a complement of the stabilizer subalgebra at F0. Hence
(g−, X �→ exp(X) · F0) provides a local model for the GC-homogeneous space Ď near
F0. Thus, locally around the origin, we may write �(s, t) = exp(�(s, t)) · F0, where
�(s, t) is a holomorphic g−-valued map with �(0, 0) = 0. We also write

�(s, t) = exp



 1

2πi

r∑

j=1

log(sj )Nj



 · exp(�(s, t)) · F0 = exp
(
X(s, t)

) · F0,

where X(s, t) ∈ g−. The horizontality of � now translates, in terms of the gradings (2.6),
into:

exp
(−X(s, t)

)
d exp

(
X(s, t)

) = dX−1 ∈ p−1 ⊗ T ∗((�∗)r × �m), (2.7)

where X−1 denotes the p−1-graded part of X. In particular,

dX−1 ∧ dX−1 = 0, (2.8)

where X−1 = 1
2πi

∑r
j=1 log(sj )Nj + �−1.

The following result, which follows from [8, Thm. 2.8] and [6, Thm. 2.7], shows that
the nilpotent orbit together with the p−1-valued holomorphic function �−1 completely
determine the local variation:
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Theorem 2.2. Let {N1, . . . , Nr ; F0} be a nilpotent orbit and R : �r × �m → p−1
be a holomorphic map with R(0, 0) = 0. Define X−1(z, t) := ∑r

j=1 zjNj + R(s, t),

sj = e2πizj , and suppose that the differential equation (2.8) holds. Then, there exists a
unique period mapping

�(s, t) = exp



 1

2πi

r∑

j=1

log(sj )Nj



 · exp(�(s, t)) · F0,

defined in a neighborhood of the origin in �r+m such that �−1 = R.

In the ensuing sections we will be concerned with a special type of maximally de-
generating variation. These are relevant to the study of mirror symmetry and, from a
Hodge theoretic perspective they have the advantage of allowing us to use a canonical
system of coordinates on the parameter space of the variation. Following Morrison
[24, Def. 3], we consider

Definition 2.3. Given a polarized variation of Hodge structure of weight k over (�∗)r
whose monodromy is unipotent, we say that 0 ∈ �r is a maximally unipotent boundary
point if

1. dim I k,k = 1, dim I k−1,k−1 = r and dim I k,k−1 = dim I k−2,k = 0, where I ∗,∗ is
the bigrading associated to the limiting mixed Hodge structure and,

2. SpanC{N1(I
k,k), . . . , Nr(I

k,k)} = I k−1,k−1, where Nj are the monodromy loga-
rithms of the variation.

The limiting Hodge filtration F0 and the holomorphic function � of a local variation
depend on the choice of coordinates on (�∗)r . However, in the maximally unipotent
case we may normalize our choices as follows.

Proposition 2.4. Let � = exp(
∑r

j=1
1

2πi
log(sj )Nj )·exp(�(s))·F0 be a polarized vari-

ation of Hodge structure that has a maximally unipotent boundary point at 0 ∈ �r . Then,
there is a coordinate system on �r , unique up to scaling, where � satisfies �(I 1,1) = 0.

For a proof of Proposition 2.4, see [6, §3]. We will refer to these as canonical coordi-
nates. They are standard in the physics literature and their Hodge-theoretic interpretation
is due to D. Morrison [23] and P. Deligne [16].

3. Frobenius Modules

The cohomology of even degree of a compact manifold is a graded Frobenius algebra
relative to cup product and the intersection form. When X is Kähler, the Hard Lefschetz
Theorem and the Hodge-Riemann bilinear relations describe the action of H 1,1(X) on
the full cohomology. We abstract these properties in the notion of a (framed) Frobenius
module.

Let V = ⊕k
p=0V2p be a graded C-vector space and B a symmetric nondegenerate

bilinear form on V pairing V2p with V2(k−p). Let {Ta}0≤a≤m be a B-self dual, graded
basis of V . We will refer to {Ta} as an adapted basis. For 0 ≤ a ≤ m define δ(a) by
B(Tδ(a), Tb) = δab for all b = 0, . . . , m. We also set ã := p if and only if Ta ∈ Vp and
assume that the map ∼ : {0, . . . , m} → {0, . . . , 2k} is increasing.
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Definition 3.1. (V , B, e, ∗) is a graded V2-Frobenius module of weight k if

1. e �= 0 and V0 = 〈e〉.
2. V is a graded Sym V2-module under ∗.
3. For all v1, v2 ∈ V and w ∈ V2,

B(w ∗ v1, v2) = B(v1, w ∗ v2). (3.1)

4. w ∗ e = w for all w ∈ V2.

Since T0 ∈ V0, it must be a non-zero multiple of e and we assume that an adapted
basis satisfies T0 = e. Clearly, the fact that V is a Sym V2-module is equivalent to

Tj ∗ (Tl ∗ T ) = Tl ∗ (Tj ∗ T ) for all Tj , Tl ∈ V2 and T ∈ V. (3.2)

We say that V is real if V has a real structure, VR, compatible with its grading, ∗ is
real, e ∈ VR, and B is defined over R.

Example 3.2. If X is a compact Kähler manifold of dimension k, let V2p := Hp,p(X),
Bint the intersection pairing on V := ⊕k

p=0V2p, and � the restriction of the cup product
to V . Then, (V , Bint , 1, �) defines a real Frobenius module. The real structure is induced
by H ∗(X, R).

As in the case of the cohomology of a compact Kähler manifold, to any real Frobenius
module we can associate a Hodge-Tate mixed Hodge structure:

Ip,p := V2(k−p). (3.3)

The multiplication operator Lw ∈ End(V ), w ∈ V2, is an infinitesimal automorphism
of the bilinear form

Q(va, vb) := (−1)k+ã/2B(va, vb), (3.4)

as well as a (−1, −1)-morphism of the associated mixed Hodge structure. We will say
that w ∈ V2 ∩ VR polarizes V if the mixed Hodge structure (I ∗,∗, Q, Lw) is polarized.
A real Frobenius module V is said to be polarizable if it contains a polarizing element.
Given a polarizing element w, the set of polarizing elements is an open cone in V2 ∩VR.
We can then choose a basis T1, . . . , Tr of V2∩VR spanning a simplicial cone C contained
in the closure of the polarizing cone and with w ∈ C. Such a choice of a basis of V2 will
be called a framing of the polarized Frobenius module.

Given an adapted basis {T0, . . . , Tm} of V , let z0, . . . , zm be the corresponding
linear coordinates on V and set qj := exp(2πizj ) for j = 1, . . . , r := dim V2 . We
may identify Ur ∼= (V2 ∩ VR) ⊕ i C and view the correspondence

r∑

j=1

zjTj ∈ (V2 ∩ VR) ⊕ i C �→ (q1, . . . , qr ) ∈ (�∗)r

as the natural covering map.

Proposition 3.3. Framed, real Frobenius modules of weight k are equivalent to nilpo-
tent orbits of weight k whose limiting mixed Hodge structure is of Hodge-Tate type, split
over R, have a marked real element in Fk , and have the origin as a maximally unipotent
boundary point.
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Proof. Let (V , B, e, ∗) be a real Frobenius module with framing T1, . . . , Tr . Set Nj :=
LTj

and Fp := ⊕a≥pIa,a . Then {N1, . . . , Nr ; F } is a nilpotent orbit. The element
e ∈ I k,k = Fk is a distinguished real element and the conditions of Definition 2.3 are
clearly satisfied.

Conversely, suppose {N1, . . . , Nr ; F } is a nilpotent orbit whose limiting mixed
Hodge structure is of Hodge-Tate type, split over R and satisfies both conditions of Def-
inition 2.3. Set V2p := I k−p,k−p; in particular, the marked element e ∈ Fk = I k,k = V0
and it follows from (2) in Definition 2.3 that the map

N ∈ SpanC{N1, . . . , Nr} �→ N(e)

identifies the polynomial algebra C[N1, . . . , Nr ] with Sym V2 and defines a Sym V2-
action on V . Let B be defined from the polarization Q as in (3.4), then since the mo-
nodromy transformations Nj are infinitesimal automorphisms of Q, (3.1) is satisfied.
Thus, (V , B, e, ∗) is a Frobenius module. The equivalence between nilpotent orbits and
polarized mixed Hodge structures implies that Tj = Nj(e), j = 1, . . . , r , are a framing
of V and the fact that N1, . . . , Nr are real implies that the Frobenius structure is real.
��

A Frobenius module structure may also be encoded in a polynomial of degree 3 in
the variables z0, . . . , zm. Indeed, if we let

φ0(z0, . . . , zm) :=
∑

j̃=2, 0≤ã,b̃≤2k

zj zazb C(ã) B(Tj ∗ Ta, Tb) ,

with

C(ã) :=






1
6 if k = 3 and ã = 2,
1
4 if k �= 3 and ã = 2 or ã = 2k − 4,
1
2 otherwise,

then we recover the Sym V2-action by:

Tj ∗ Ta :=
∑

c̃=ã+2

∂3φ0

∂zj ∂za∂zδ(c)

Tc ; j = 1, . . . , r .

The polynomial φ0 is called a (classical) potential for the Frobenius module.
We may generalize this construction by considering deformations of the classical

potential. This is motivated by the construction of the quantum product as a deforma-
tion of the cup product on the cohomology. We assume, for simplicity, that k > 3.
Let R := C{q1, . . . , qr}0 denote the ring of convergent power series vanishing for
q1 = · · · = qr = 0 and R′ be its image under the map induced by qj �→ e2πizj for
1 ≤ j ≤ r .

Definition 3.4. Let (V , B, e, ∗) be a Frobenius module of weight k > 3 with classical
potential φ0. A quantum potential on V is a function φ : V → C of the form φ = φ0+φ�,
where

φ�(z) :=
∑

ã=2k−4

zaφ
a
h(z1, . . . , zr ) +

∑

2<ã<2k−4
ã+b̃=2k−2

zazbφ
ab
h (z1, . . . , zr ), (3.5)
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with φa
h, φab

h ∈ R′ and such that

∑

c̃=ã+2

∂3φ

∂zl∂za∂zδ(c)

∂3φ

∂zj ∂zc∂zδ(d)

=
∑

c̃=ã+2

∂3φ

∂zj ∂za∂zδ(c)

∂3φ

∂zl∂zc∂zδ(d)

(3.6)

holds for all a, j̃ = l̃ = 2 and d̃ = ã + 4.

Given a quantum potential φ on (V , B, e, ∗), we can define a deformation of the
module structure by

Tj ·q Ta :=
∑

c̃=ã+2

∂3φ

∂zj ∂za∂zδ(c)

Tc , with q = (q1, . . . , qr ) ∈ �r . (3.7)

We should stress that, even though the right side of (3.7) depends explicitly on the vari-
ables z0, . . . , zm, (3.5) implies that it is actually a function of q1, . . . , qr . Condition (3.6)
guarantees that (3.7) defines an action of Sym V2 for all q. Moreover, (V , B, T0, ·q) is
a Frobenius module of weight k for all q, and ·0 = ∗. We will say that a deformation of
the Frobenius module V is framed if V is framed.

Remark 3.5. Definition 3.4 abstracts the properties of the graded portion of the Gro-
mov-Witten potential needed to describe the action of H 1,1(X, C) in the small quantum
cohomology ring of a Calabi-Yau manifold X. In particular, (3.6) is a graded component
of the WDVV equations. We refer to [14, §8.2, §8.3] and [6, §5] for details.

We can extend the definition of quantum potential to the weight 3 case by taking
φ = φ0 + φ� for φ� ∈ R′. With this notion, all the results from Sects. 4 and 5 extend
to this weight. For V of weight 1 or 2, the Frobenius module is determined by B and e;
hence no deformations are possible.

4. Correspondence

In this section we will prove the main result of this paper, namely the correspondence
between deformations of framed Frobenius modules and degenerating polarized varia-
tions of Hodge structures. In §5 we will show that when the deformation arises from the
quantum product of a Calabi-Yau manifold, the associated variation of Hodge structure
is the so-called A-model variation.

Theorem 4.1. There is a one to one correspondence between

– Quantum potentials φ on a framed Frobenius module (V , B, e, ∗) of weight k, and
– Germs of polarized variations of Hodge structure of weight k on V degenerating at a

maximally unipotent boundary point to a limiting mixed Hodge structure of Hodge-
Tate type, split over R, and together with a marked real point e ∈ Fk .

Under this correspondence, classical potentials – equivalently, framed Frobenius
modules – correspond to nilpotent orbits as in Proposition 3.3.

Proof. Let (V , B, e, ∗) be a framed Frobenius module of weight k, {T0, . . . , Tm} an
adapted basis, and let {N1, . . . , Nr ; F } be the nilpotent orbit associated by Proposi-
tion 3.3. Given a quantum potential φ = φ0 + φ� on V define

�−1(q)(Ta) :=
∑

c̃=ã+2

∂2φ�(q)

∂za∂zδ(c)

Tc. (4.1)
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Notice that because of (3.5), �−1 is holomorphic on some open neighborhood of
q = 0 ∈ �r , �−1(0) = 0, and it takes values on p−1 relative to the grading (2.6)
defined by the limiting mixed Hodge structure of {N1, . . . , Nr ; F }.

As before, we set X−1(q) := 1
2πi

∑r
j=1 log(qj )Nj + �−1(q) ∈ p−1 and note that

the deformed Frobenius structure may be recovered from X−1(q) by

Tj ·q Ta = ∂X−1

∂zj

(Ta) ; j̃ = 2 , 0 ≤ a ≤ m . (4.2)

Equations (3.6) imply that X−1 satisfies the integrability condition (2.8). Indeed,

dX−1 ∧ dX−1 = 0 ⇐⇒ ∂X−1

∂zj

∂X−1

∂zl

= ∂X−1

∂zl

∂X−1

∂zj

⇐⇒ Tj ·q (Tl ·q Ta) = Tl ·q (Tj ·q Ta) , (4.3)

which, by (3.6), holds whenever j̃ = l̃ = 2 and all a. Theorem 2.2 now implies that X−1
defines a unique polarized variation of Hodge structure on a neighborhood of 0 ∈ �r

whose nilpotent orbit is {N1, . . . , Nr ; F }. Hence the origin is a maximally unipotent
boundary point and the limiting mixed Hodge structure is of Hodge-Tate type.

Conversely, let � be the period map of a local variation having a maximally unipotent
boundary point at the origin. Let {N1, . . . , Nr ; F } be the corresponding nilpotent orbit
and I ∗,∗ the limiting mixed Hodge structure, which we assume to be of Hodge-Tate type.
Let (V , B, e, ∗) be the real, framed Frobenius module given by Proposition 3.3 and φ0
the corresponding classical potential. Let {T0, . . . , Tm} be an adapted basis such that
Tj = Nj(e), j = 1, . . . , r . Using canonical coordinates q on �r , we define a quantum
potential from the holomorphic function � : �r → g− associated with � by:

φab
h (q) := 1

2
B(�−1(Ta), Tb) for 2 < ã < 2k − 4 and ã + b̃ = 2k − 2,

φa
h(q) := B(−�−2(Ta), T0) for ã = 2k − 4,

φ� :=
∑

ã = 2k−4

zaφ
a
h +

∑

2 < ã < 2k−4
ã+b̃ = 2k−2

zazbφ
ab
h ,

φ := φ0 + φ�.

Clearly, φ� is as in (3.5). In order to verify that (3.6) is satisfied we consider the associated
deformation (3.7) of the Frobenius module structure

Tj ·q Ta :=
∑

c̃=ã+2

∂3φ

∂zj ∂za∂zδ(c)

Tc

and show that it may also be given as

Tj ·q Ta = ∂X−1

∂zj

(Ta). (4.4)
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Indeed, for 2 < ã < 2k − 4 we have �−1(Ta) = ∑
c̃=ã+2 φ

aδ(c)
h Tc, so that

∂�−1

∂zj

(Ta) =
∑

c̃=ã+2

∂

∂zj

φ
aδ(c)
h Tc =

∑

c̃=ã+2

∂3

∂zj ∂za∂zδ(c)

∑

ũ+ṽ=2k−2

1

2
zuzv φuv

h

=
∑

c̃=ã+2

∂3φ�

∂zj ∂za∂zδ(c)

Tc,

where we have used that φab
h = φba

h . Then

∂X−1

∂zj

(Ta) = Nj(Ta) + ∂�−1

∂zj

(Ta)

=
∑

c̃=ã+2

∂3φ0

∂zj ∂za∂zδ(c)

Tc +
∑

c̃=ã+2

∂3φ�

∂zj ∂za∂zδ(c)

Tc

=
∑

c̃=ã+2

∂3φ

∂zj ∂za∂zδ(c)

Tc = Tj ·q Ta.

In order to verify (4.4) when ã = 2k − 4 we first prove the identity

�−1(Ta) =
∑

c̃=2k−2

∂

∂zδ(c)

B(−�−2(Ta), T0) Tc , ã = 2k − 4 (4.5)

as a consequence of the horizontality condition (2.7). If this condition is rewritten in
terms of G(q) := exp �(q) and � = ∑

Nj dzj we get

dG = [G, �] + G d�−1.

This equation is graded by (2.6) and its homogeneous pieces are

dG−
 = [G−
+1, �] + G−
+1 d�−1, 
 ≥ 2. (4.6)

In particular, for 
 = 2 we obtain

d�−2 = [�−1, � + 1

2
d�−1].

Evaluating at Ta and given that the canonical coordinates (q1, . . . , qr ) are characterized
by �−1(Tb) = 0 for all b̃ = 2k − 2, we obtain

d�−2(Ta) = −�
(
�−1(Ta)

)
. (4.7)

By the B-self-duality of the basis {T0, . . . , Tm}, we can write

�−1(Ta) =
∑

c̃=2k−2

B(�−1(Ta), Tδ(c))Tc. (4.8)

Now, if c̃ = 2k − 2 and j = 1, . . . , r , then Nj(Tc) = δjcTm and, therefore, �(Tc) =
Tm dzδ(c) and (4.7), (4.8) imply

d�−2(Ta) = −
∑

c̃=2k−2

dzδ(c)B(�−1(Ta), Tδ(c))Tm,
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so that,

∂

∂zδ(c)

�−2(Ta) = −B(�−1(Ta), Tδ(c))Tm

implying that

B
(

∂

∂zδ(c)

�−2(Ta), T0

)
= −B(�−1(Ta), Tδ(c)). (4.9)

Finally, (4.5) follows from applying (4.9) to (4.8).
Thus, if ã = 2k − 4,

∂�−1

∂zj

(Ta) =
∑

c̃=2k−2

∂

∂zj

∂

∂zδ(c)

B(−�−2(Ta), T0) Tc

=
∑

c̃=ã+2

∂

∂zj

∂

∂zδ(c)

∂

∂za




∑

b̃=2k−4

zbφ
b
h(q)



 Tc

=
∑

c̃=ã+2

∂3φ�

∂zj ∂za∂zδ(c)

Tc ,

and (4.4) follows as before.
Given (4.4), the equivalences in (4.3) show that the integrability condition (2.8)

implies that the quantum potential φ satisfies (3.6).
Finally, we note that (4.4) and (4.2) imply that these correspondences are inverses of

each other. ��

5. A-Model Variation

Here we will show that the polarized variation of Hodge structure associated to a quan-
tum potential by Theorem 4.1 agrees with the A-model variation defined, in the case of
the cohomology on a Calabi-Yau manifold, by the Gromov-Witten potential, as in, for
example, [14, Chapter 8]. As a byproduct we give a different proof of the fact that the
A-model variation associated with a general potential, in the sense of Definition 3.4, is
a polarized variation of Hodge structure.

We begin by recalling the definition of the A-model variation. Let φ = φ0 + φ� be
a quantum potential on the framed Frobenius module (V , B, e, ∗). Let {T0, . . . , Tm} be
an adapted basis of V and (z0, . . . , zm) the corresponding linear coordinates on V ; set
qj = exp(2πizj ) for j = 1, . . . , r . We view (q1, . . . , qr ) as coordinates on (�∗)r . Let
∇ be the connection on the vector bundle V := (�∗)r ×V defined on a constant section
T by

∇ ∂
∂qj

T := 1

2πiqj

Tj ·q T . (5.1)

Proposition 5.1. The connection ∇ is flat. It has a simple pole at qj = 0 and its residue
is the nilpotent operator

Resqj =0(∇)(Ta) = 1

2πi




∑

c̃=ã+2

∂3φ0

∂zj ∂za∂zδ(c)

Tc



 . (5.2)
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Proof. Given the definition of the quantum product (3.7) and (5.1), if Ta denotes a
constant section,

∇ ∂
∂qj

Ta = 1

2πiqj




∑

c̃=ã+2

∂3φ0

∂zj ∂za∂zδ(c)

Tc



 + Hja(q)

for some function H , which extends holomorphically to 0 ∈ �r . This implies the residue
assertion.

The curvature of ∇ reduces to

R∇
(

∂

∂qj

,
∂

∂ql

)
(Ta) = 1

2πi

(
1

ql

∇ ∂
∂qj

(Tl · Ta) − 1

qj

∇ ∂
∂ql

(Tj · Ta)

)
.

A straightforward computation shows that this last expression vanishes since φ satis-
fies (3.6). ��
Remark 5.2. It follows from (5.2) that the operators Resqj =0(∇) agree, up to a constant,
with the morphisms LTj

of left multiplication by Tj in the Frobenius module (V , B, e, ∗).

Consider the flags of subbundles of V:

Fp := (�∗)r × (⊕a≥pV2(k−a)) and U
 := (�∗)r × (⊕b≥
V2b).

Proposition 5.3. The subbundles Fp satisfy Griffiths’horizontality (2.1). Moreover, for
any given q̂ ∈ (�∗)r , there is a (multivalued) flat frame of V , {T �

a }, such that T �
a (q) ≡ Ta

mod Uã+1 and T
�
a (q̂) = Ta .

Proof. Since the maps T �→ Tj ·q T are homogeneous of degree 2, the horizontality
follows directly from (5.1).

Since ∇ defines a connection on the bundle U
 inducing a trivial connection on
U
/U
+1, the second statement follows. ��

Next, we want to compute the monodromy of ∇. We fix all the coordinates qi for
i �= j and consider the one-dimensional problem around qj = 0. The flat sections T

�
a

can be written in terms of the constant sections as T
�
a = ∑

b fbaTb, and the flatness
condition leads to the ODE with a regular singularity at the origin

∂fba

∂qj

= −
∑

c

(
1

qj

(Resqj =0(∇))bc + Hjcδ(b)

)
fca, (5.3)

where Hjcd are holomorphic at qj = 0. Therefore, classical results for such an equation
(see [13, Ch. 4, Thm. 4.1]) imply that the coefficients fba are of the form

fba(q) = (
G(qj ) exp(− log(qj ) Resqj =0(∇))

)
ba

(5.4)

for some function G, holomorphic at qj = 0, with G(0) = Idn .
Parallel transport around qj = 0, in the anti-clockwise direction, gives that the mo-

nodromy of ∇, written relative to the frame {T �
a }, is

Mj := exp
(−2πi Resqj =0(∇)

)
.

We let Nj := − log(Mj ) = 2πi Resqj =0(∇). Notice that, in view of (5.2), the mo-
nodromy in a flat frame can be computed purely in terms of the classical potential. All
together we conclude:
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Proposition 5.4. The matrix of the local monodromy logarithm operator Nj with re-

spect to the frame {T �
a } coincides with the matrix of left ∗-multiplication by Tj , LTj

, with
respect to the basis {Ta}.

The fact that ∇ has a simple pole at qj = 0 with nilpotent residue LTj
allows us to

construct Deligne’s canonical extension (Vc, ∇c) [15] which is characterized by the fact
that

T̃a := exp




r∑

j=1

log(qj )

2πi
Nj



 T �
a , a = 0, . . . , m, (5.5)

are a flat frame of (Vc, ∇c).

Proposition 5.5. For a = 0, . . . , m, T̃a is the unique ∇c-flat section of Vc such that
T̃a ≡ Ta mod Uã+1, and T̃a(q̂) = Ta . The matrix of Nj acting on the frame {T̃a} equals
the matrix of the classical product ∗ acting on {Ta}.
Proof. The first statement follows from Proposition 5.3 and (5.5). Since [Nj , Nl] = 0
for all 1 ≤ j, l ≤ r , we have

Nl(T̃a) = Nl



exp




r∑

j=1

log(qj )

2πi
Nj



 T �
a



 = exp




r∑

j=1

log qj

2πi
Nj



 Nl(T
�
a )

=
∑

b

(LTl
)baT̃b,

and the second statement follows. ��
Remark 5.6. In the context of the Gromov-Witten potential, the previous result reduces
to [14, Prop. 8.5.4] whose proof involves the formalism of gravitational correlators.
The elementary proof given above shows that it is a direct consequence of the definition
of the connection and, in particular, of the homogeneity of the the operators LTj

.

Because of Propositions 5.3 and 5.5, we know the first (graded) component of the sec-
tions T

�
a and T̃a .A lengthy but straightforward computation yields the second component

of both T
�
a and T̃a .

Lemma 5.7. The ∇-flat sections T
�
a satisfy

T �
a (q) ≡ Ta −

∑

c̃=ã+2

∂2φ

∂za∂zδ(c)

Tc mod Uã+2.

Lemma 5.8. The ∇c-flat sections T̃a satisfy the following formulas, for k > 3.
For ã ≥ 2k − 2, T̃a = Ta .
For ã = 2k − 4, T̃a = Ta − ∑

c̃=ã+2 2πiqδ(c)
∂

∂qδ(c)
φa

h Tc + φa
h Tm.

For 2 < ã < 2k − 4, T̃a ≡ Ta − ∑
c̃=ã+2 φ

aδ(c)
h Tc mod Uã+2.

For ã = 2, T̃a ≡ Ta − ∑
c̃=ã+2 2πiqa

∂
∂qa

φ
δ(c)
h Tc mod Uã+2.

For ã = 0, T̃0 ≡ T0 mod Uã+2.
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We can now extend trivially the form Q, defined by (3.4), to a form Q on V . Q is flat
because of (3.2).

To define a flat real structure VR on V we proceed as follows. Let

Ṽ := �r × V and ∇̃ := ∇ − 1

2πi

r∑

j=1

Nj

dqj

qj

.

Then ∇̃ is a flat connection on the bundle Ṽ; for v ∈ V we define σ̃v to be the ∇̃-flat
section of Ṽ such that σ̃v(0) = v. Then VR is the local system generated by the sections
exp(− 1

2πi

∑r
j=1 log(qj )Nj ) σ̃v(q), for all v ∈ VR.

Definition 5.9. Let φ = φ0 + φ� be a quantum potential on the framed, real Frobenius
module (V , B, e, ∗). Then (V, ∇, F, VR, Q) is the A-model variation of the potential.

Theorem 5.10. The A-model variation is a polarized variation of Hodge structure.
Moreover, it is the variation associated to the potential φ by Theorem 4.1.

Proof. Let � be the “period map” of (V, ∇, F, VR, Q) defined by parallel transport to
the fiber Vq̂ , q̂ ∈ (�∗)r . By Proposition 5.4 the local monodromy logarithms Nj are the
left multiplication operators LTj

and, by Proposition 5.5, the limiting Hodge filtration
becomes Fp := ⊕a≥pV2(k−a). Thus, Proposition 3.3 implies that {N1, . . . , Nr ; F } is a
nilpotent orbit.

Let now exp(− ∑
j zj Nj ) ·�(q) = exp �(q) ·F , where � is a holomorphic, g−-val-

ued map defined locally around 0 ∈ �r . Since the map � is horizontal, the p−1-valued
map X−1 = ∑

j zj Nj + �−1 satisfies the integrability condition (2.8) and it follows
from Theorem 2.2 that (V, ∇, F, VR, Q) is a polarized variation of Hodge structure.

In order to prove that this variation agrees with the one defined in Theorem 4.1 we
appeal to the uniqueness statement in Theorem 2.2. Hence, it suffices to show that �−1
is related to the potential φ by (4.1). But, the matrix presentation of exp(−�(q)) in the
basis {Ta} is the matrix expressing the ∇c-flat frame {T̃a} in terms of the constant frame
{Ta}. Thus, it follows from Lemma 5.8, that

�−1(Ta) =
∑

c̃=ã+2

∂2φ�

∂za∂zδ(c)

Tc,

as desired. ��
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(1989)

9. Cattani, E., Kaplan, A., Schmid, W.: Degeneration of Hodge structures. Ann. Math. 123, 457–535
(1986)

10. Cattani, E., Kaplan, A., Schmid, W.: L2 and intersection cohomologies for a polarizable variation
of Hodge structure. Invent. Math. 87(2), 217–252 (1987)

11. Cecotti, S.: N = 2 supergravity, type IIB superstrings, and algebraic geometry. Commun. Math.
Phys. 131(3), 517–536 (1990)

12. Cecotti, S., Vafa, C.: Topological–anti-topological fusion. Nucl. Phys. B 367(2), 359–461 (1991)
13. Coddington, E., Levinson, N.: Theory of ordinary differential equations. International Series in Pure

and Applied Mathematics, New York: Mc Graw-Hill, 1955
14. Cox, D., Katz, S.: Mirror Symmetry and Algebraic Geometry. Providence, RI: American Mathemat-

ical Society, 1999
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