
AUSLANDER-BUCHSBAUM FORMULA

This formula is an “effective instrument for the computation of the depth of
a module”, according to Bruns-Herzog, Cohen-Macaulay Rings.

THEOREM: (Auslander-Buchsbaum) Let (A,m) be a Noetherian local ring,
and M 6= 0 a finite A-module. If proj dim M < ∞, then

proj dimM + depthM = depthA.

Recall the following definitions:

Definition: An A-module P is called projective if given any diagram of
A-module homomorphisms:

P

f
��

N
g

// L // 0

with bottom row exact, there exists an A-module homomorphism h : P → N
such that g ◦ h = f .

NOTE: Recall that over a Noetherian local ring, flat = projective = free.

Definition: An A-module M has projective dimension ≤ n (pd(M) ≤ n)
if there is a projective resolution

0 → Pn → P1 → · · · → P0 → M → 0

.

If no such finite resolution exists, then pd(M) is defined to be ∞; otherwise,
if n is the least such integer, define pd(M) = n.

We need some preliminary definitions and results before proving the Auslander-
Buchsbaum formula.

Definition: Let (A,m, k) be a Noetherian local ring and let M be a finite

A-module. An complex L. : . . . Li
di→ Li−1

di−1

→ · · ·
d2→ L1

d1→ L0
ǫ
→ M → 0 is

called a minimal free resolution of M if it satisfies the three conditions
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(1) each Li is a finite free A-module, (2) in the complex L. ⊗ k, di = 0, or
in other words, diLi ⊂ mLi−1 for all i, and (3) ǫ : L0 ⊗ k → M ⊗ k is an
isomorphism.

REMARK: Note that a minimal free resolution of a finite A-module M can
be constructed as follows: Let x1, . . . , xβ0

be a minimal system of generators
of M . Define φ0 : Aβ0 → M by φ0(ei) = xi, where e1, . . . , eβ0

is the canonical
basis of Aβ0 . Let β1 be the number of minimal generators of Ker(φ0). In a
similar way, define an epimorphism Aβ1 → Ker(φ0). Then map φ1 : Aβ1 →
Aβ0 via the composition Aβ1 → Ker(φ0) → Aβ0 . Continue in this way.

NOTE 1: Any two minimal free resolutions of M are isomorphic as com-
plexes (which means that there is a chain map between the two complexes
which is degree-wise an isomorphism)

NOTE 2: The number βi is called the i-th Betti number.

PROPOSITION: Let (A,m, k) be a Noetherian local ring, and M a finite
A-module. Then

pd(M) = sup{i : TorA
i (k, M) 6= 0}.

REMARK: Of course, if pd(M) = n, then TorA
i (N, M) = 0 for all i > n

and for any A-module N ; i.e., TorA
i (−, M) vanishes for i > n. However, in

order to conclude that pd(M) = n, it suffices to show that these Tor’s vanish
when N = k.

PROOF

Recall that pd(M) is the minimum of lengths of projective resolutions of
M . Also, recall that TorA

i (k, M) = Hi(k ⊗ P.), where P. is a projective
resolution of M . Suppose pd(M) = n. Because the definition of Tor is
independent of the projective resolution chosen, we may assume that the
length of P. is n. Then Hi(k ⊗ P.) = 0 for i > n since the complex P.

has only zeroes after the n-th place; i.e., TorA
i (k, M) = 0 for i > n. Thus,

pd(M) ≥ sup{i : TorA
i (k, M) 6= 0}. We need to show that TorA

n (k, M) 6= 0.

Suppose that F. : 0 → Fn
dn→ Fn−1

di−1

→ · · ·
d2→ F1

d1→ F0 is a free resolution of
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M . If F. is minimal, then the maps di in the complex k ⊗ F. are all zero, by
definition. Thus,

TorA
i (k, M) = ker(di)/im(di+1) = k ⊗ Fi

since di = 0 ⇒ ker(di) = k ⊗ Fi and di+1 = 0 ⇒ im(di+1) = 0. But k and Fi

finitely-generated ⇒ k ⊗ Fi = 0 ⇔ Fi = 0. Since Fn 6= 0, k ⊗ Fn 6= 0, and
hence TorA

n (k, M) 6= 0. Thus, pd(M) = sup{i : TorA
i (k, M) 6= 0}.

PROPOSITION: Let (A,m) be a Noetherian local ring, and M a finite A-
module. If x ∈ m is A-regular and M-regular, then pdA(M) = pdA/(x)(M/xM).

PROOF

Choose an augmented minimal free resolution F. of M . Since x is A- and M-
regular, F. ⊗A/(x) is exact. Therefore, it is a free resolution of M/xM over

A/(x). Recall that Tor
A/(x)
i (k, M/xM) = TorA

i (k, M) for all i ≥ 0. (The re-
quirements for this are that x is A- and M-regular and that x kills k.) There-

fore pdA/(x)(M/xM) = sup{i : Tor
A/(x)
i (k, M/xM) = sup{i : TorA

i (k, M) 6=
0} = pdA(M).

PROOF OF AUSLANDER-BUCHSBAUM FORMULA

IDEA: Induct on depth(A).

By hypothesis, pd(M) is finite; say pd(M) = n. Thus, M has a minimal free
resolution:

F. : 0 → Fi
dn→ Fn−1

dn−1

→ · · ·
d2→ F1

d1→ F0
ǫ
→ M → 0

Suppose depth A = 0. Then m ∈ Ass(A) ⇒ there exists a short exact
sequence 0 → A/m→ A → C → 0. From this we get a long exact sequence:

3



Now TorA
i (k, M) = 0, ∀i ≥ n, so in particular, TorA

n+1(C, M) ∼= TorA
n (k, M) 6=

0. This is a contradiction unless n = 0, since TorA
n+1(−, M) vanishes beyond

n. Thus, TorA
1 (k, M) = 0 ⇒ M is projective, which means that M is free

over A, since projective = free over a Noetherian local ring. Thus,

0 + depth(M) = depth(A),

showing the formula holds in this case.

Next, let depth A > 0. If depth M > 0, then m /∈ Ass(A) and m /∈ Ass(M).
Therefore, we can find an x ∈ m such that x is non-zero divisor on both A
and M . Then depthA/(x)(A/(x)) = depth A − 1, depthA/(x)(M/xM) =

depth M − 1, and pdA/(x)(M/xM) = pdA(M). Therefore, by induction

on depth A, pdA/(x)(M/xM)+ depthA/(x)(M/xM) = depthA/(x)(A/(x)), and

consequently, pdA(M)+ depthA(M) = depthA(A). Therefore, we need only

consider the case depth M = 0. Take the short exact sequence

0 → K → At → M → 0.

Then pdA(K) = pdA(M) − 1 and depth (K) = 1. (This follows from the

fact that depth K ≥ min{depth At, depth M + 1} = 1 and 0 = depth M ≥

min{depth K − 1, depth At } = depth K − 1 ⇒ depth K ≤ 1; thus,

depth K = 1.) We have proven above the case where depth K > 0. Thus,

pdA(K)+ depthA(K) = depth A ⇒ pdA(M) − 1+ depthA(M) + 1 = depth
A.

Example: A free module F is projective, so pd(F ) = 0. By the Auslander-
Buchsbaum formula, depth F = depth A.

Example: Consider a Noetherian local ring (A,m, k). Let x be an A-regular
element. The short exact sequence

0 → A
·x
→ A → A/(x) → 0

shows that pd(A/(x)) = 1. Thus, depth A/(x) = depth A − 1.
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Example: Consider the ring A = k[[X1, . . . , Xn]]. Then A/(X1, . . . , Xi) has
depth n − i; therefore, pd(A/(X1, . . . , Xi)) = i. (This is a way to construct
rings with projective dimension n, for any n ∈ N .

Example: Let A = k[[X, Y ]]/(X2, XY ). Then m = (x, y) is annihilator of x,
so m ∈ Ass(A). Consequently, A/m →֒ A, which implies that HomA(k, A) 6=
0, or inf{i: Exti

A(k, A) 6= 0} = 0; i.e., depth A = 0. Set M = A/(x) ∼= k[[Y ]].
Then M is a regular local ring of dimension one. Thus, depth M = 1. By
the formula, we see that M can not have finite projective dimension.

Next is an interlude on regular local rings. Let (A,m, k) be a Noetherian
local ring.

Definition: Recall that a system of parameters of A is a sequence of el-
ements a1, . . . , ar ∈ m which generate an m-primary ideal. If the elements
generate m itself, then a1, . . . , ar are called a regular system of parame-
ters.

Definition: A regular local ring is one in which the maximal ideal is gen-
erated by a regular system of parameters.

REMARK 1: Recall that a regular local ring is always a domain.

REAMRK 2: As with CM and Gorenstein rings, if a ring is not local, then
to say it is regular means that the localization at every prime is a regular
local ring.

THEOREM: (Auslander-Buchsbaum-Serr) The following conditions are equiv-
alent for a Noetherian local ring A:

(a) A is regular

(b) all f.g. A-modules have finite projective dimension

(c) the residue field, k, of A has finite projective dimension

As with Cohen-Macaulay and Gorenstein rings, the class of regular rings is
closed under the usual operations:
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THEOREM: (Serre) Let A be a regular local ring and P a prime ideal.
Then AP is again regular.

THEOREM: Let A be a Noetherian local ring. Then

(a) A if regular ⇔ Â is regular

(b) If A is regular, then R/I is regular LeftrightarrowI is an ideal
generated by a subset of a regular system of parameters.

(c) A regular implies that A[X1, . . . , Xn] and A[[X1, . . . , Xn]] are reg-
ular.

Definition: A Noetherian local ring A is a complete intersection (or c.i.)
if the completion Â is a quotient of a complete regular local ring R by an
ideal generated by an R-sequence.

REMARK: regular ⊂ c.i. ⊂ Gorenstein ⊂ CM

Example: (Matsumura Exercise 21.3) If k is field, then A = k[[X, Y, Z]]/(x2−
Y 2, Y 2 − Z2, XY, Y Z, XZ) is Gorenstein but not a complete intersection.

Exercise: (Suggested by Jan) Let R = C [[X, Y, Z]]/(X2 , Y 2, Z2). Find all
ideals I such that R/I is Gorenstein, but not a complete intersection.

Exercise: (Suggested by Paul) Show how to compute depth using the Auslander-
Buchsbaum formula.
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