
RAY HEITMANN’S LECTURES

1. The Rigidity conjecture

Let R be a Noetherian ring and x = x1, ..., xk elements of R. Let K(x) be the Koszul complex

of x and N be a finitely generated module. Then K(x) ⊗ N is the Koszul complex for N and it is

well known that Hi(x, N) =0 if and only if i > k − gradeIN where I = xR. A consequence of this

fact is that once the homology becomes 0, it stays 0. Auslander described this property by saying

K(x) is rigid.

Auslander focused on acyclic complexes, which are projective resolutions of finitely generated

modules. We may consider an acyclic complex X, which is a projective resolution of a module

M , and the rigid property with Hi(X ⊗ N) ∼= Tori(M, N). Obviously X is rigid iff every projec-

tive resolution of M is rigid. So it makes sense to speak of rigid modules as modules with rigid

resolutions.

Theorem 1.1. (Auslander,Lichtenbaum) Let R be a regular local ring. Then any finitely generated

module M is rigid.

Auslander(1960) proved this result for any equicharacteristic (regular, local) R and also for R

of mixed characteristic p provided that R is unramified and p is M-regular. Lichtenbaum(1966)

proved the general case. Below we will give Lichtenbaum’s proof in the unramified case.

Proof. Suppose there is a module M that is not rigid. Then there is a f.g module N and integer

i such that Tori(M, N) = 0 but Tori+1(M, N) 6= 0. Replacing M by its i − 1st syzygy, we may

assume i ≤ 1. On the other hand, Tori(M, N) = 0 implies M = 0 or N = 0, so we may assume

i = 1.

Next, we can also assume R is complete, since TorR̂
i (M̂, N̂) ∼= TorR

i (M, N). By Cohen’s Structure

Theorem, R ∼= A[[T1, ..., Tn]] where A is a field or a DVR with maximal ideal pA.
1
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Let S = R⊗̂AR = A[[T1, ...Tn, T ′
1, ..., T

′
n]]. Then we may view R as an S module via R ∼=

S/(T1 − T ′
1, ...Tn − T ′

n)S. Note that R is S modulo an S-sequence, so its resolution over S is a

Koszul complex. By previous discussion, R is rigid.

The key ingredient of the proof is a spectral sequence introduced by Serre:

TorS
i (R, T̂or

A

j (M, N)) =⇒ TorR
i+j(M, N)

(Here T̂or means complete Tor). Since TorA
j (M, N) = 0 for i > 1 (dimA ≤ 1 !!), this spectral

sequence degenerates to a long exact sequence, which we only need to look at the tail :

TorS
1 (R, T̂or

A

1 (M, N)) → TorR
2 (M, N) → TorS

2 (R, M⊗̂AN) → R⊗ST̂or
A

1 (M, N) → TorR
1 (M, N) →

TorS
1 (R, M⊗̂AN) → 0

Since TorR
1 (M, N) = 0 by assumption, TorS

1 (R, M⊗̂AN) = 0. But R is rigid as an S-module,

so TorS
2 (R, M⊗̂AN) = 0. This forces the next term R ⊗S T̂or

A

1 (M, N) to be 0. But R 6= 0, so

T̂or
A

1 (M, N) = 0 which implies the leftmost term is 0. But that means TorR
2 (M, N) = 0, completing

the proof.

˜

The idea is similar in the unramified case, but we need a more complicated spectral sequence.

When R is not regular, there are easy examples of non-rigid modules :

Example 1.2. Let R = k[[x, y]]/(xy), M = R/(x), N = R/(y) ∼= k[[x]]. Then M has an infinite

resolution :

x
// R

y
// R

x
// R

y
// R

x
// M // 0

Tensor with N and note that the map given by multiplication with x is injective on N , while the

one with y is 0. So TorR
1 (M, N) = 0 but TorR

2 (M, N) 6= 0.

Since regular local rings can be characterized by the property that any f.g module has finite

projective dimension, it is natural to extend Theorem 1.1 to:
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Conjecture 1.3. (Rigidity Conjecture) Let R be a local ring, M a f.g module of finite projective

dimension. Then M is rigid.

Unfortunately, there is also a counterexample to this conjecture :

Example 1.4. Let k be any field. We will construct an affine k-algebra R and R-modules M of

projective dimension 2 and N of length 3 such that Tor1(M, N) = 0 but Tor2(M, N) 6= 0. We are

going to construct N directly, M indirectly, and R last of all !!.

The idea is to build N through exact sequences :

0 → N1 = k → N2 → k → 0

0 → N2 → N3 = N → k → 0

For a module M such that pdRM = 2, these give long exact sequences :

0 → Tor2(M, Ni) → Tor2(M, Ni+1) → Tor2(M, k) → Tor1(M, Ni) → Tor1(M, Ni+1) → Tor1(M, k) →
M ⊗ Ni

When i = 1 this shows Tor2(M, N2) 6= 0. That couples with the exact sequence for i = 2 to give

Tor2(M, N3) 6= 0. All we need is to make sure Tor1(M, N3) = 0.

Let S = k[s, t]/(s2, st, t2) and N = S ⊕ S/((t, 0), (0, s), (s, t)). The homomorphism:

N
(s t)

// N2

maps N onto the socle of N2, and the sequence :

N
(s t)

// N2
α

// N4

is exact, where α is the map given by :





s 0 t 0

0 s 0 t




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We would be done if Tor(M, N) is the homology of :

0 // N
(s t)

// N2
α

// N4 // 0

For this idea (which doesn’t quite work!) to succeed we need M to have the projective resolution:

0 // R
X

// R2
Y

// R4 // M // 0

and N must have the module structure given by a homomorphism ϕ : R → S such that :

ϕ(X) = (s t) and ϕ(Y ) =





s 0 t 0

0 s 0 t





For that purpose, the maximal ideal m of R must contain all the entries of X and Y . It would

be sufficient if the entries are linearly independent in R/m2.

What actually works is the set of Betti numbers 2,4,8 instead of 1,2,4:

0 // R2
X

// R4
Y

// R8 // M // 0

By Buchsbaum-Eisenbud criterion, this sequence is exact if :

1. XY = 0

2. rankX = 2

3. rankY = 2

4. The grade of ideal of 2-minors of X is at least 2 ( Or the ideal is R).

5. The grade of ideal of 2-minors of Y is at least 1 ( Or the ideal is R).

To do this, we build X and Y as generic matrices (entries are indeterminates). Then we kill

the ideal generated by the entries of XY and the 3-minors of Y . Finally we have to adjoin the

multipliers needed for the grade condition on X. For more details, see [Heitmann] .
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2. Closure operations

In this lecture we want to discuss the search for a ”good” closure operation on ideals. Let cl

denotes that operation. A dream closure would satisfy the following properties :

1. Icl is an ideal.

2. I ⊆ Icl ⊆ (Icl)cl.

3. I ⊆ J ⇒ Icl ⊆ Jcl

4. (Persistence) If ϕ : R → S is a ring homomorphism and x ∈ Icl then ϕ(x) ∈ (ϕ(I)S)cl.

5. (Localization) (IRp)
cl = IclRp for p ∈ Spec(R).

6. I+ ⊆ Icl ⊆ Ī.

7. (Colon-capturing) If x1, ..., xn are part of a system of parameters, then: ((x1, ..., xn−1) : xn) ⊆
((x1, ..., xn−1)R)cl.

8. (Tightness) If R is a regular local ring then Icl = I

9. If dimR = d, then Id ⊆ Icl.

10. We can figure out what Icl is !!

We would like such a closure to exist for all Noetherian (or at least excellent) local rings, but we

get most of what we wish for if we have a closure for complete local domains. To some extent, we

can live without persistence and localization. The others are more critical. For example, 8 and 9

combine to generalize Briançon-Skoda Theorem while 6 and 8 give the Direct Summand Conjecture.

In equicharacteristic p, tight closure satisfies 9 out of 10 properties (localization is still open).

Tight closure in equicharacteristic 0 works nearly as well though it is probably fair to say it doesn’t

really meet 10. Alas, it cannot be readily adapted to mixed characteristic.

Property 6 suggest 2 obvious choices : plus and integral closure. It is quite easy to show that

integral closure satisfy all properties except 8. However, it fails badly here, even in dimension 2,

and 8 is essential. So let’s take a look at the plus closure.
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Definition 2.1. Let R be an integral domain with quotient field E. Let F be an algebraic closure of

E and R+ be the integral closure of R in F .For an ideal I of R, the plus closure of I is I+ = IR+∩R.

Equivalently, x ∈ I+ iff there is a finite integral extension S of R such that x ∈ IS.

Whether or not it works, plus closure is important. To see that, we want to discuss the following

conjectures:

Conjecture 2.2. (Direct Summand) Let R be a regular local ring and S a module-finite R-algebra

containing R. Then R is a direct summand of S as R-modules.

Conjecture 2.3. Let R be a regular local ring and let x1, ..., xn be a s.o.p.If S is a module-finite

R-algebra containing R, then (x1x2...xn)k /∈ (xk+1
1 , ..., xk+1

n )S

Conjecture 2.4. Plus closure satisfies 8 (the tightness property).

Hochster (1973) showed that these 3 conjectures are equivalent. The implication 2.4 → 2.3 is

obvious. The hardest part is 2.3 → 2.2 and we will skip that. Here is a proof of the implication

(2.2 → 2.4):

Let R be a regular local ring, I an ideal of R, and x ∈ I+. Then x = y1z1 + ... + ynzn with

z1, ..., zn ∈ R+. Let S = R[z1, ..., zn], a module- finite extension of R. Then x ∈ IS. By 2.2 we have

an R-linear map f : S → R whose composition with the inclusion R →֒ S is the identity map. So:

x = f(x) = f(z1y1 + ... + znyn) = f(z1)y1 + ... + f(zn)yn ∈ I

Hence, to prove the Direct Summand Conjecture, it suffices to show that plus closure, or a closure

that contains it, has the tightness property.

Plus closure itself trivially satisfies properties 1-6. Moreover, we can use persistence to extend

the definition to all Noetherian rings (For non-domains, we just let I+ be the largest ideal allowed

by the persistence property : x ∈ I ⇔ ϕ(x) ∈ (ϕ(I))(R/p)+ for every surjection ϕ : R → R/p, p ∈
Spec(R)).

However,in equicharacteristic 0, plus closure is too small to be of value:
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Theorem 2.5. Let R be an integrally closed domain of equicharacteristic 0 and I ⊆ R is an ideal.

Then I+ = I.

Proof. As in the preceeding proof, it is enough to show that IS ∩ R = I for any module-finite

extension S of R. We have a diagram :

E
ffl � // K

R
?ffl

OO

ffl � // S
?ffl

OO

with E, K the respective quotient fields. The trace map Tr : S → R which takes each element

to its sum of images under Galois group action (allowing repetition) is a module homomorphism.

Note that Tr(r) = nr for n = [K : E] and all r ∈ R. So 1
n
Tr is a splitting map and, as in the

earlier proof, IS ∩ R = I.

˜

In equicharacteristic p plus closure satisfies properties 1-9. (The problem is 10!. It is much easier

to decide if x ∈ I∗ than if x ∈ I+). We will discuss the proof of the very important property 7,

colon-capturing :

Theorem 2.6. Let R be an excellent local domain of characteristic p. Then R+ is a big Cohen-

Macaulay algebra for R, i.e, every system of parameters for R is a regular sequence on R+.

As a consequence :

((x1, ..., xn−1)R :R xn) ⊆ ((x1, ..., xn−1)R
+ :R+ xn) ∩ R = (x1, ...xn−1)R

+ ∩ R = (x1, ...xn−1)
+

So Theorem 2.6 implies colon-capturing (Actually, it can be shown that they are equivalent).

The following lemma is very useful:

Lemma 2.7. Let R be a domain of characteristic p and x1, ..., xn a system of parameters. Suppose

that:

((xk
1, ..., x

k
n−1) :R xk

n) = (xk
1, ..., x

k
n−1)R + (x1...xn−1)

k−1((x1, ..., xn−1) :R xn)
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for every integer k. Then there exist a module finite extension S of R such that:

((x1, ..., xn−1) :R xn) ⊆ (x1, ..., xn−1)S

In other words: ((x1, ..., xn−1) :R xn) ⊆ (x1, ..., xn−1)
+

Proof. Suppose z ∈ ((x1, ..., xn−1) :R xn). So xnz = x1a1 + ... + xn−1an−1 Then xp
nz

p = xp
1a

p
1 +

... + xp
n−1a

p
n−1 ∈ (xp

1, ..., x
p
n−1)R. Thus zp ∈ (xp

1, ..., x
p
n−1)R + (x1...xn−1)

p−1((x1, ..., xn−1) :R xn). Let

z1, ..., zt be generators of (x1, ..., xn−1) :R xn and x = x1...xn−1. We get a system of equations:

zp
i =

n−1
∑

j=1

aijx
p
j + xp−1

t
∑

k=1

bikzk (∗)

Our plan is to first find integral elements uij|1 ≤ i ≤ t, 1 ≤ j ≤ n − 1 such that z̄i =
∑n−1

j=1 uijxj is

a ”solution” to (*). Since z̄i
p =

∑n−1
j=1 up

ijx
p
j , (*) becomes :

n−1
∑

j=1

up
ijx

p
j =

n−1
∑

j=1

[aij + (
x

xj

)p−1
t

∑

k=1

bikukj]x
p
j

and we can solve this by equating the coefficients of xp
j . That leads to a new system:

up
ij = aij + (

x

xj
)p−1

t
∑

k=1

bikukj (∗∗)

This shows that R[uij] can be generated as an R module by elements of the forms
∏

u
nij

ij ,

0 ≤ nij < p . Therefore, it is an integral extension of R. Now, in this extension, we get :

zp
i − z̄i

p = (
x

xj

)p−1
t

∑

k=1

bik(zk − z̄k)

If we let wi = zi − z̄i, this becomes:

wp
i = xp−1

t
∑

k=1

bikwk

or:

(
wi

x
)p =

t
∑

k=1

bik(
wk

x
)

Hence the wi

x
are integral. It follows that zi =

∑n−1
j=1 uijxj + (wi

x
)x is in (x1, ..., xn−1)

+
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˜

The lemma is a great tool but in order to use it to show colon-capturing, we need to satisfy the

hypothesis :

((xk
1, ..., x

k
n−1) :R xk

n) = (xk
1, ..., x

k
n−1)R + (x1...xn−1)

k−1((x1, ..., xn−1) :R xn)

First,let us make the harmless assumption that R is integrally closed and for simplicity, that

n = 3 (if n = 2 R would be Cohen-Macaulay when we normalize).

((y1, y2) : y3) ∼= H2(y1, y2, y3, R)

the Koszul cohomology. If w ∈ ((yk
1 , y

k
2) : yk

3) and m > k, then (y1y2)
m−kw ∈ ((ym

1 , ym
2 ) : ym

3 ) We

get a system :

(y1, y2) : y3 →֒ (y2
1, y

2
2) : y2

3 →֒ ...

whose limit is the local cohomology module H2
m(R). This is a finite module, due to the fact that if R

is an excellent domain such that Rp is Cohen-Macaulay for all p 6= m, then H i
m(R) has finite length

for i < dimR. Here Rp is an normal domain of dimension at most 2, so Rp is Cohen-Macaulay.

Since the limit of the system is a finite module, it stabilizes at (yl
1, y

l
2) : yl

3 for some l. Letting

xi = yl
i, it follows that the map ((x1, x2) : x3 → ((xk

1, x
k
2) : xk

3) is surjective But it is the same as :

((xk
1, x

k
2) : xk

3) = (xk
1, x

k
2)R + (x1x2)

k−1((x1, x2) : x3) So by the lemma, ((x1, x2) : x3) ⊆ (x1, x2)
+.

Now, suppose w ∈ ((y1, y2) : y3). So y3w ∈ (y1, y2)R, which implies yl
3(y1y2)

l−1w ∈ (yl
1, y

l
2)R, or

x3(y1y2)
l−1 ∈ (x1, x2)R. So (y1y2)

l−1w ∈ (x1, x2)
+. Thus we can find integral element α, β such

that :

(y1y2)
l−1w = yl

1α + yl
2β

Which we can rewrite as w = y1α
∗ + y2β

∗, where α∗ = α

yl−1

1

and β∗ = β

yl−1

2

. But α∗, β∗ are both

integral, and we are done.
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For n = 4, this argument breaks down. The cohomology module H3
m(R) won’t be finite. However,

there has to be an overwhelming feeling that we can kill the homology if we can make the obstruction

to killing that homology go away. The rest of the proof is clever but too intricate to present here.

3. Plus closure in mixed characteristic

Suppose that R is an integrally closed domain of mixed characteristic p.Then R[p−1] is equichar-

acteristic 0 and the plus closure there is trivial. It follows that for any ideal I of R and any x ∈ I+,

pnx ∈ I for some n. Hence neither colon-capturing nor property 9 is satisfied. On the other hand,

plus closure is clearly not trivial:

Example 3.1. Let R = Z[x,
√

4 − x2]. Clearly
√

4 − x2 /∈ (2, x)R. Let i2 = −1 and α =
√

4−x2−ix
2

Then i is integral over R, and so is α since α2 + 2ixα − 1 = 0. So
√

4 − x2 = ix + 2α ∈ (2, x)+.

The idea to deal with the mixed characteristic case is to create a closure operation with plus

closure at its core. It is not clear what the right definition is but I have been working with 2

candidates. In the definitions below let (R, m) be a local ring of mixed characteristic and I an ideal

of R

Definition 3.2. x ∈ R is in the full extended plus closure of I if there exists c 6= 0 ∈ R such that

for every positive integer n, c1/nx ∈ (I, pn)R+. We write x ∈ Iepf .

Definition 3.3. x ∈ R is in the full rank one closure of I if for every valuation v on R of rank

at most 1, every positive integer n, and every ǫ > 0, there exists d ∈ R+ with v(d) < ǫ such that

dx ∈ (I, pn)R+. We write x ∈ Ir1f .

Remark. We can ignore rank zero valuations unless R is a field. Occasionally we will use Icl to

indicate both closures. The word ”full” will also be obmitted.

The definition of extended plus closure is reminiscent of tight closure: czq = axq + byq with

q = pe means c1/qz = a1/qx + b1/qy. In fact the definitions make sense in equicharacteristic p and

for complete local mdomains, both coincide with tight closure.
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It is easy to see that these closures satisfy 1,2,3,6. Properties 4,5 are hard and will be swept

under rug!. Property 9 also holds (the definition of extended plus closure is motivated by that fact).

In fact we can get a more general result:

Theorem 3.4. Supose dimR = d and I is an ideal of R generated by n elements. If y ∈ In+d then

y ∈ (Id+1)cl.

While persistence and localization remains elusive, the most critical properties we want are

tightness and colon-capturing. Tightness seems almost impossible to prove directly, but we were

delighted to find that it is implied by colon-capturing.

To prove this, we first note that if tightness fails for a regular local ring R, it fails for R̂:

I
ffl � //

� _

››

R
� _

››

IR̂
ffl � // R̂

so we may assume R is complete. We begin with a lemma which is actually enough to show that

colon-capturing implies the Direct Summand Conjecture.

Lemma 3.5. Let R be a complete local domain such that colon-capturing holds for cl and assume

that every finite integral extension of R is equidimensional. Let x1, ..., xn be a full system of

parameters, let r = xf1

1 ...xfn
n and J = (xf1+1

1 , ..., xfn+1
n )R. Then (J : r) ⊆ (x1, ..., xn)cl.

Proof. We will prove it for rank one closure. Since J is primary, pN ∈ J for some N . Thus we may

ignore pn in the definition of the closure. We will allow R to vary if necessary and prove the result

by induction on e = f1 + ... + fn. The case e = 0 is trivial. Assume the result is true for e < k

and now want to prove for e = k > 0. Some fi must be positive. WLOG, assume fn > 0. Assume

b ∈ (J : r). So :

bxf1

1 ...xfn

n = a1x
f1+1
1 + ... + anx

fn+1
n

or :

xfn

n (bxf1

1 ...x
fn−1

n−1 − anxn) = a1x
f1+1
1 + ... + an−1x

fn−1+1
n−1



12 RAY HEITMANN’S LECTURES

By the colon-capturing property, which we assume, bxf1

1 ...xfn
n − anxn ∈ (xf1+1

1 , ..., x
fn−1+1
n−1 )r1f . Thus

bxf1

1 ...x
fn−1

n−1 ∈ (xf1+1
1 , ..., x

fn−1+1
n−1 , xn)r1f . Take any valuation v of R, and any ǫ > 0. We can find

d ∈ R+ with v(d) < ǫ/2 and dbxf1

1 ...x
fn−1

n−1 ∈ (xf1+1
1 , ..., x

fn−1+1
n−1 , xn)R+. Thus we can find a finite

integral extension S of R containing d such that dbxf1

1 ...x
fn−1

n−1 ∈ (xf1+1
1 , ..., x

fn−1+1
n−1 , xn)S. By the

induction hypothesis applied on S, we get db ∈ ((x1, ..., xn)S)r1f . Hence there exists c ∈ S+ with

v(c) < ǫ/2 and cdb ∈ (x1, ..., xn)S+. But S+ = R+ and v(cd) < 2ǫ/2 = ǫ. So b ∈ (x1, ...xn)1rf .

˜

Now, note that if R is regular, S is integral over R, and suppose :

(x1...xn)k ∈ (xk+1
1 , ..., xk+1

n )S

then the above lemma says : 1 ∈ (x1, ..., xn)r1f ⊆ (x1, ..., xn) , clearly impossible. Thus colon-

capturing implies Lemma 2.3 and so also the Direct Summand Conjecture.

Next, we want to discuss how colon-capturing also implies the existence of balanced big Cohen-

Maculay algebras for R. Recall that an R-algebra B is a balanced big Cohen-Maculay algebra for

R if mB 6= B and every system of parameters for R is a regular sequence on B. Hochster (2002)

used the results in [Heitmann,2002] to show that for dimension 3, balanced big Cohen-Macaulay

algebras exists in a weakly functorial sense :

Theorem 3.6. Let (R, m) → (S, n) be a local homomorphism of complete local domains of mixed

characteristic and dimension at most 3. Then there is a commutative diagram :

B // C

R

OO

// S

OO

where B, C are balanced big Cohen-Macauley algebras over R, S respectively.

The existence of weakly functorial balanced big Cohen-Macaulay algebras is a very useful result.

(See the lectures of Hochster in this summer course).
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The proof of Theorem 3.6 starts with the idea of ”partial algebra modifications”. We will first try

to create a balanced big Cohen-Macaulay algebra for R in a relatively free way. Consider a system

of parameters x1, ..., xn and an R-algebra T , if for some k, and α, xk+1α ∈ (x1, ...xk)T , we will force

α into (x1, ..., xk)T by letting T ′ = T [X1, ...Xk]/(α − x1X1 − ... − xkXk). Start with R0 = R and

repeat the process with careful indexing, the direct limit R∞ has the property that x1, ..., xn is a

regular sequence. The problem is (x1, ..., xn)R∞ may be the whole ring !. If that is the case, at

some step i we must have 1 ∈ mRi (Here 1 is the image in Ri of 1 ∈ R). First, observe that, at

each step, Ri is a direct limit of modules Mij =
Ri−1[X1,...,Xk]degree≤j

(α−x1X1−...−xkXk)Ri−1[X1,...,Xk]degree≤j−1
. The violating

condition 1 ∈ mRi must also becomes 1 ∈ mMij for some j.

So we could consider a sequence of R-modules M0 = M , Mi+1 =
Mi[X1,...,Xk]degree≤Ni

(α−x1X1−...−xkXk)R[X1,...,Xk]degree≤Ni−1
.

Such a sequence is called a sequence of partial algebra modifications. We can build a double se-

quence over R → S as M0 = R, M1, ..., Mr, N0 = S ⊗R Mr, N1, ..., Ns. A double sequence is called

bad if the image of 1 ∈ R in Ns is in nNs.

It is not hard to show that weakly functorial balanced big Cohen-Macaulay algebras for R, S

exist iff no bad double sequence of partial algebra modifications exists. The difficult part of the

proof is to build, from a bad double sequence and a fixed rational number ǫ > 0, a commutative

diagram :

R[1
p
]+

=
// R[1

p
]+

=
// ...

=
// R[1

p
]+ // S[1

p
]+

=
// S[1

p
]+

=
// ...

=
// S[1

p
]+

R

OO

// M1

OO

// ... // Mr

OO

// S ⊗R Mr

OO

// N1

OO

// ... // Ns

OO

such that the first vertical map is the inclusion map, the vertical maps from Mi, Ni are R, S-

linear respectively, and the image of each Nj is inside p−Dr+jǫS+, where Di’s are positive integers

formed recursively. Then, chasing 1 from R to the rightmost S[1
p
]+ in two ways, we can see that

1 ∈ np−Dr+sǫS+ (because of badness). Let ǫ = 1/N , this means that pDr+s ∈ nNS+ for all N > 0,

a contradiction !.
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To be able to build the above commutative diagram, we need a key result from Heitmann’s 2002

paper which showed that pǫH2
m(R+) = 0 for all rational ǫ > 0 (So, roughly speaking, plus closure

”almost” has colon-capturing property. See Lecture 4 of this note). So, it is natural to search for

a closure whose colon-capturing property implies weakly functorial balanced big Cohen-Macaulay

algebras. Also, it would be nice if the colon-capturing property of such a closure follows from colon-

capturing property of closures defined at the beginning of the lecture. Of course, such a closure

must be comparatively large. A somewhat technical candidate is discussed in the Appendix.

4. Direct Summand Conjecture in Dimension 3

Unlike tight closure, the extended plus closure does not let us bypass the understanding of the

plus closure. In particular, when is an element z ∈ I+ ?. In the case I = (x, y)R, we have a

tool. Suppose z ∈ I+, then z = vx + wy with v, w ∈ R+. Choosing v, w is the same as choosing

their minimal monic polynomials f(T ), g(T ). But since v = z−vx
y

, f determines a polynomial for

w, whose coefficients are in the quotient field of R, and the denominators are powers of y. For w

to be in R+, those coefficient must be in R. Specifically, if f(T ) = T n + a1T
n−1 + ... + an we need

:
∑i

j=0

(

n−j
i−j

)

ajz
i−jxj ∈ yiR for 1 ≤ i ≤ n. The nice thing is that the first condition depends on

a1, the second on a1, a2, the third on a1, a2, a3, etc. Nothing like that work for 3-generators ideals.

There is too much freedom !

Let (R, m) be an excellent domain of mixed characteristic p.

Theorem 4.1. (Unpublished) If x1, x2, x3 are parameters, then ((x1, x2) : x3) ⊆ (x1, x2)
epf .

Theorem 4.2. If p, x, y are parameters, ((x, y) : pN ) ⊆ (x, y)epf ∀ N . In fact pǫ((x, y) : pN) ⊆
(x, y)R+ for all rational ǫ > 0.

Theorem 4.3. If dimR = 3, pǫH2
m(R+) = 0 for all rational ǫ > 0.

Note that theorem 4.3 implies the Direct Summand Conjecture, and more, for dimension 3 (see

Lecture 3).
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We will ouline the proof of Theorem 4.3. We may assume R is integrally closed. Since R satisfy

(S2), a power of any element in m is a colon-killer.Assume pN , x, y are colon-killing parameters. It

suffices to prove pǫ((x, y) : pN) ⊆ (x, y)R+ for all ǫ > 0. For simplicity, we also assume that ((x,y):pN )
(x,y)R

is cyclic, so ((x, y) : pN) = (x, y, z)R for some z. We want to show pǫz ∈ (x, y)+ for all ǫ > 0. It

suffices to prove it for ǫ = 1
pK+1 , K any positive integer.

The colon-killing property says that ∀ m, k ≥ N, ((xm, ym) : pk) = ((x, y) : pN)(xy)m−1 +

(xm, ym)R (1). In our cyclic situation and k = N , it says: ((xm, ym) : pN) = (xm, ym, (xy)m−1z)

(2).

First, we adjoin pǫ to R. Now we want to construct v, w integral over R such that pǫz = yv+xw.

We will pick v to be a root of a monic polynomial f(T ) of degree pL, L = N +K. Then w = pǫz−yv
x

.

As above, w is integral over R provided that :

i
∑

j=0

(

N − j

i − j

)

ajp
e(i−j)zi−jyj ∈ (xi)R

for each i = 1, ..., pL. Viewed another way, for each such i, we want to find ai, bi so that :

i−1
∑

j=0

(

N − j

i − j

)

ajp
e(i−j)zi−jyj = bix

i − aiy
i

We will illustrate the idea in the proof by working on a specific case : p = 2, N = 2, L = 3 (so

K = 1 and ǫ = 1/4).

i = 1 : 8pǫz = b1x − a1y. Solving this is trivial since we already have 4z + bx + ay = 0 for some

a, b. In fact we can choose a1, b1 to be multiples of 21+ǫ.

i = 2 : 28p2ǫz2 + 7peza1y = b2x
2 − a2y

2. To do this we need a result that says essentially that

we can’t pick a1 too badly :
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Lemma 4.4. Let z ∈ ((x, y) : pN ). Assume we have chosen a0 = 1, a1, ..., ak−1 ∈ R so that :

i
∑

j=0

(

N − j

i − j

)

ajp
e(i−j)zi−jyj ∈ (xi)R

for i = 1, ..., k − 1. Then, for some M :

pM

(k−1
∑

j=0

(

N − j

k − j

)

ajp
e(k−j)zk−jyj

)

∈ (xk, yk)R

Thus, in our case, z1 = 28p2ǫz2 + 7peza1y ∈ ((x2, y2) : 4) = (x2, y2, xyz)R (from (2)). Therefore

z1 = Ay2 + Bx2 + Cxyz. Note that the terms in z1 are divisible by 21+2ǫ (remember p = 2!), so we

can also make A, B, C to be divisible by 21+2ǫ. Finally, to get rid of C we replace a1 by a1 − 2−ǫCx
7

(it is still in R because 7 is a unit and C is divisible by 21+2ǫ.

i = 3 : 56p3ǫz3 + 21p2ǫz2a1y + 6pǫza2y
2 = b3x

3 − a3y3

This is handled similarly but there is a twist. The LHS can be written as Ay3+Bx3+Cx2y2z with

A, B, C divisible by 21+3ǫ. Again we get rid of C by ”tweaking” a2 but the number 6 complicates

things: the new a2 is only divisible by 22ǫ. We have lost a factor of 2!.

When we come to i = 5, we lose a second power of 2 and have to settle for a new a4 which is

divisible by 24ǫ−1. The fact that ǫ = 1
4

saves us! If we go through the entire process, we see that

the powers we lose from a1, ..., a8 are 0,1,1,2,1,2,2,3 respectively (actually the last one isn’t needed

unless the degree is greater than 8. In general, it can be shown that the rate at which we lost

powers is logarithmic. So we can offset it with the gain from pǫ, which is linear. Hence using higher

degrees for f(T ) allows us to lower ǫ.

In the non-cyclic case, for example when i = 2 we have to use (1) to write z1 = Ay2+Bx2+Cxyz2

with z2 ∈ ((x, y) : 4). Monitoring the powers of p precisely becomes much more difficult (In fact,

we had to use power of σ = p−1
√

p) and we will need higher degree polynomials.
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